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Effects on DNA and Antioxidant System of
Anabas Testudineus on Experimental Exposure
to a Sublethal Concentration of Methylmercury
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Absiract- Mercury is the most toxic in the organic form like
methylmercury (MeHg), with an ability to accumulate in the
cells of aquatic organisms like fish. This has been known to
adversely affect the functions of almost every aspect of life.
This study examined the effects of MeHg exposure on certain
antioxidant defences in the liver and muscle of climbing perch
(Anabas testudineus) adults and juveniles; the effect on DNA
of erythrocytes were also studied. After 15 d of MeHg
exposure (87.6 ug L), the effect of MeHg on DNA of the fish
were analysed using comet assay and the activities of SOD
(superoxide dismutase), catalase (CAT) and glutathione (GSH)
alongwith lipid peroxidation levels (LPQO) in the form of TBARS
were used as antioxidant markers. The juvenile erythrocytes
showed more DNA damage in the form of comets than adults.
The activities of SOD significantly increased in all the
experimental groups and tissues whereas catalase (CAT)
activity increased in adult liver and musclesbut juvenile liver
reported a decrease. Glutathione (GSH) levels showed
difference in induction depending on the age of the fish with
adult liver and muscle showing decrease and juveniles
showing significant increase at 15 days of exposure. whereas
exposure to MeHg did not remarkably affect CAT activity The
levels of lipid peroxidation (LPO) increased in a time
dependent manner showing tissue specificity with the higher
levels in the liver than muscles. Overall, higher sensitivity to
oxidative stress induced by MeHg was detected in the liver
than the muscle. These findings improve our understanding of
the tissue-specific accumulation of heavy metals and their
roles in antioxidant responses in marine fish subjected to
MeHg exposure.

Keywords: mehg, SCGE, antioxidants, comets, anabas
testudineus.

l. INTRODUCTION

quatic ecosystems act as a sink for many
‘ Ncontaminants that could cause various

physiological damage which is not restricted to
molecular, biochemical, cellular and physiological
damage[1]. According to International Agency for
Research on Cancer (IARC) methylmercury (MeHg) is
classified as an element belonging to the group 2B,
making it a possible human carcinogen[2]. Many
studies have been conducted on the effect of such toxic
chemicals upon fish genome and antioxidant system[3].
The high toxicity of heavy metals along with their
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bioaccumulative property make them very important
when it comes to environmental contamination as they
are able to induce damage in the genes[4]. Genotoxicity
studies are extremely important in aguatic ecosystems,
as the toxic substances can accumulate in water [5]and
fish respond in manner similar to higher vertebrates, and
may be used to estimate genotoxic effects that such
compounds may cause in animals especially the
humans [6]. However, research into clastogenic or
mutagenic effects in tropical air-breathing fishes
exposed to contaminants is scarce [7].

Mercury and some organomercurial
compounds cause genomic damagedue to their effect
on tubulin, the component of spindle fibers and
important for cytoplasmic organization. The impairment
of polymerization causes metaphasic chromosome
contraction, delay of centromeric division with slow
anaphasic movement[8]. MeHgalso increases the
reactive oxygen species (ROS) or free radicals which
accelerates reactions that induce genotoxicity.

The main line of defence against pollutants and
xenobiotics is the antioxidant system, with components
that prevent ROS from being formed or removing it
when formed, preventing damage to the vital
components of the cell [9]. ROS are also involved in cell
functions like signalling; hence, antioxidant system does
not entirely remove oxidants, but instead, keeps the
quantity at the optimum level [10]. MeHg is known to
produce ROS and generate oxidative stress leading to
stress damage [11]. Inorganic mercury showed high
oxidative-stress-inducing potential in B. amazonicus[12].
Such changes in the enzyme activity have been used as
an early warning system to detect the potential to cause
adverse effects well before the onset of serious
pathological damage in the animals exposed to
toxicants [13]. The cell defences against ROS include
scavenger compounds such as glutathione and
enzymes with antioxidant activities such as SOD, CAT
and GPx[14]. The ROS have the capacity to react with
lipids, proteins and nucleic acids, which leads to several
biochemical injuries. The changes in the antioxidant
activities show a shift in the equilibrium in the organism
[15] and the induction or decrease in the enzyme
activities in relation to oxidative stress is used as the
marker for the presence of hazardous substances [16].
These changes are more pronounced in aquatic
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organisms as they are more sensitive compared to
those on land [15].

This study aimed toevaluate genotoxicity by
using comet assay on the erythrocytes and the impact
on a few components of the antioxidant system
in muscles and liver of Anabas testudibeus (Bloch, 1840)
exposed to a sublethal concentration of MeHg.

[I.  MATERIALS AND METHODS

a) Test Animal

The test organism A. testudineus (Fig. 1.) was
selected as per the criteria put forth by Rand and
Petrocelli [17].

b) Test Chemical (Toxicant)

In the aquatic environment, methylmercury
(MeHg) is produced by the action of bacteria on
elemental and inorganic mercury. MeHg is a very potent
neurotoxin with potential to accumulate in the body of
the organism. An organic compound of mercury is used
in the experiment. The chemical in the form of the iodide
salt (MeHgl) of 98% purity was acquired from Alfa
Aeasar, England. The stock solution of 100 ppm was
prepared from the salt which was diluted as needed for
the experiment.

c) Median lethal concentration

The median lethal concentration (96h LCs,) for
the animal was observed to be 438.21 ug L' (95%
fiducial Cl 314.65 — 610.32 ug L") or 0.438 mg L' by
probit analysis [18].

For the experimental exposure, 25 fish each of
juvenile (average length 9.27 = 0.62 cm and weight
11.96 = 2.36 g) and mature (average length 13.96 =
0.93 cm and weight 36.86 + 10.10 g) life stages were
utilised as experimental and control groups. The
sublethal concentration was (LCs/5); 87.6 ug L' of
MeHg. The fish were exposed as per the semi-static
renewal test with the toxicant water renewed every four
days and with intermittent feeding.

d) Comet Assay

At the end of the 15-day exposure period, the
exposed fish were sampled along with the control fish.
Five fish each were used for the analysis. The blood
from the fish was obtained by cardiac puncture and
transferred into heparinized tubes. For the comet assay,
the method of Singh et al.[19] was used. The slides
were photographed using inverted epifluroscent
microscope (Olympus CKX41) attached with camera
(Opitka Pro5 CCD). Comets were scored using Tritek
comet scoring software and correlated statistically.

e) Antioxidant assay

After exposing to MeHg, five fish from exposure
groups along with those from the control experiment
were sacrificed by spinal dislocation. The fish were
weighed, and the liver and muscle were removed and
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weighed. The tissues for the biochemical analyses were
stored at —80°C until use. The dissected tissues were
homogenized in a 1:15 ratio (1 g tissue:15 mL buffer),
using a chilled glass homogenizer with chilled
phosphate buffer (0.1 M, pH 7.4). The homogenate
was used for LPO and total GSH quantification, and to
prepare the post-mitochondrial supernatant (PMS). The
homogenate was centrifuged at 13,400 g for 20
minutes in a refrigerated centrifuge (Eppendorf 5415R)
and the supernatant is the PMS for antioxidant enzyme
analyses. Aliquots of PMS were stored at —80°C until
analysis. The antioxidant analyses were conducted as
detailed below at the Vizhinjam Centre of Central
Marine Fisheries Research Institute. The assays were
performed by standard methods as follows. SOD was
estimated [20]. The CAT assay was conducted by
standard protocol[21]. The activity of CAT is expressed
as picomoles of hydrogen peroxide decomposed per
minute per milligramme protein.The standard method
[22] was used to estimate the MDA contents formed
due to lipid peroxidation. The results were calculated
using the extinction coefficient of the pink chromophore
(1.56 x 10°M" cm™) and expressed as nanomoles of
MDA formed per milligramme protein.Total GSH was
also determined[23]. The GSH content was calculated
with the help of the standard graph and expressed as
nanomoles per milligramme protein.The values (mean =
SD) are graphically represented.

I11. RESULT

a) Comet Assay

The results showed an increase in the number
of comets in both the juveniles and the adults when
compared with those of the control. The DNA damage
could be visualised as comets with a tail and a head,
and the juveniles had more pronounced comets,
whereas the control showed minimal comets but
pronounced heads. In the case of the length of comets
(Fig. 2) the juveniles showed more induction when
compared to the adults. The lengths of the comets of
the juveniles are significantly longer when compared to
the controls and so are those of the adults. Both results
showed high significance at p < 0.01 revealing that the
MeHg exposure for 15 days induces significantly higher
DNA damage in the erythrocytes of both juveniles and
adults. Even though there are more comets formed in
the juveniles than in adults, the results do not show
significant difference when compared to each other.

The results do not show significant difference
except in the case of juveniles compared to controls.
The tail lengths are not significantly different in this case.
The erythrocytes of control juvenile fish showed few
comets and more of the pronounced (Fig. 3). The
comets in the juvenile fish were pronounced (Fig. 4),
which are caused by the single strand and double
strand damage causing the smaller DNA fragments to



move out into the matrix creating the illusion of tails
when stained. After 15 days of exposure to sublethal
concentration of MeHg, comets were formed in most of
the cells in the adults and the DNA damage was
pronounced in most cases with the formation of
‘hedgehogs” (Fig. 6) that are considered to indicate
necrotic and apoptotic cells and may not be analysed
by the software used for the analysis hence, the
insignificant values. Such damage was not observed in
the control fish (Fig. 5).

b) Antioxidant Enzyme Levels

i. Superoxide dismutase activity

The results of the SOD activity (mean + SD) are
presented in Fig. 7. All the values increased and are
highly significant when compared with the control data.
The liver and muscle of the juvenile fish were analysed
and found to exhibit increase at 15" day of exposure. In
the case of the adults, the liver and muscle showed
trend in the SOD levels similar to that in the juveniles.

ii. Catalase activity

The juvenile liver showed a decrease in activity
after 15 days of exposure in comparison with the control
values. In the adult liver, activity is significantly increased
when compared to the control. The adult muscle
showed an increase over the entire time of exposure
similar to that seen in the adult liver. After 15 days of
exposure, the values kept increasing in both juvenile
and adult muscle (Fig. 8). All the values are significant
(o< 0.01) with all tissues other than juvenile liver
showing increase in the values at 15 days of exposure.

c) Non-enzymatic Antioxidant Levels

i. Lipid peroxidation activity via TBARS levels
The quantity of MDA (measured as TBARS)
formed in the control liver of the juvenile fish was

analysed to be at 276.97 umol mg™” protein and in the
mature liver, it was 541.33 pumol mg” protein. The
formation of TBARS increased in both the juvenile and
adult fish liver. The juvenile liver had the value at 7706.7
umol mg” on day 15, whereas in adult liver it increased
to 7719.9 umol mg" protein on day 15. The same was
the case with the muscles from both the groups
showing increase in the levels of TBARS formed; from
values of 66.73 umol mg” protein to 990 pmol mg
protein in juvenile muscle and 33.28 pmol mg™ protein
to 729.30 umol mg™ protein in adult muscle (Fig. 9). All
the values obtained for TBARS are highly significant (o<
0.01) when compared to the control values and showed
an increase which means the rate of lipid peroxidation
also increased during exposure.
ii. GSH activity

GSH was observed to be 0.02 mmol mg™ tissue
in the liver of juveniles and 0.185 mmol mg™ in the adult
liver at the start of the experiment. With the increase in
the duration of exposure to 15 days, GSH levels in the
juvenile liver increased, whereas in the adult liver, it
decreased. The change in the values is significant (p<
0.01) when compared to the control. The GSH content in
the muscles of the juvenile fish in the control group was
found to be 0.00974 mmol mg™ tissue weight and in the
mature fish, the value was 0.0178 mmol mg™ (Fig. 10).
The values decreased in the case of both mature and
juvenile fish with significant values (p< 0.01) and (p<
0.001), respectively.

Figures

Fig. 1: Test animal - Anabas testudineus
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Fig. 2: Comet length in px(mean=SD) obtained in juvenile and adult test fish (**p< 0.001)
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Fig. 3: Erythrocytes from the control juvenile fish
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Fig. 5: Comets seen in the juvenile fish after 15

days of exposure to sublethal concentration of
MeHg
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Fig. 4: Erythrocytes of control adult fish
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Fig. 6: Erythrocytes from adult fish after exposure
showing “hedgehogs”
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Fig. 8: CAT activity in the liver and muscle
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Fig. 9: MDA formed as a result of varying exposure
duration of MeHg on the liver and muscle

Fig. 10: Levels of GSH in the liver and muscle of
juvenile and adult fish on MeHg exposure

IV.  DISCUSSION

Exposure to toxins can affect the genes and
alter DNA which is the carrier of information from
generation to generation and the altered DNA will be
inherited by the future progeny. According to Almeida et
al.[24], mutations are any changes or damages in the
DNA structure that can be inherited, create
carcinogenesis or even cause cell death. Comet assay
or SCGE is a rapid and sensitive method to analyse the
DNA damage in any tissue [25]. Comet assay is the
best procedure for the detection of the damaging effect
of chemicals and pollutants under the laboratory and
field conditions. It can detect genetic damage due to
low levels of toxicant exposure, especially heavy metals

like mercury. The types of damages assessed are
strand breaks, alkali-labile sites, DNA cross linking and
erroneous as well as incomplete DNA excision repair
sites. Thismethod was used to assess the DNA damage
in the lymphocytes exposed to mutagenic agents[26].
Metal salts create genotoxic effects by the generation of
ROS that damage the DNA, and interfere with the DNA
repair and replication processes. Creating damages like
single and/or double strand breaks, DNA-DNA cross-
links, DNA  protein  cross-links and  base
modifications[27]. Comet assay has been used to
quantify DNA damage in single cells [28] under
laboratory conditions [29].

The study conducted on the DNA damage
caused due to the exposure of the juvenile and adult fish
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to the toxicant reveals that MeHg is highly genotoxic. In
this study, the lengths of the comets of the juveniles are
seen to be significantly higher when compared to those
of the controls; same is the case with the adults. Both
the results are highly significant at p < 0.01. This result
shows that MeHg exposure induces significantly higher
instances of DNA damage in the erythrocytes of both
juveniles and adults. Though more comets were formed
in the juveniles than in adults, the statistical analyses do
not show significant difference when compared to each
other. It is considered that the longer the comet length,
the more damaged the DNA is. The DNA damage as
per the comet assay shows that the more affected are
the juveniles, but the DNA in the adults seem to be
highly fragmented creating more of ghosts than comets.
Genotoxic agents produce DNA damage that can be
either repaired or the damage is irreversible and
continues, and such the damage can eventually lead to
cell death. MeHg has the ability to damage cellular
macromolecules like lipids and DNA by oxidative
damage[30].

The sublethal concentration of MeHg in static
conditions to which the A. testudineus were exposed to,
was sufficient to induce significant alterations in SOD
antioxidant enzymes such as and CAT inducing
probable oxidative damages in lipids and proteins and,
consequently, oxidative stress. SOD and CAT activities
increased after 96 hours of exposure to mercuric
chloride in all the tissues of B. amazonicus[12]. SOD
catalyses the dismutation of O*to water and hydrogen
peroxide, which is detoxified by CAT. Due to the
inhibitory effects on ROS formation, the SOD-CAT
system provides the first defence-line against oxygen
toxicity due to metals [31] and is usually used as a
biomarker indicating ROS production [32; 16]. The
induction of the SOD-CAT system indicates a fast
adaptive response of the redox-defence system in the
liver, gills, white muscle and heart of B. amazonicus after
exposure to mercury [12]. On the exposure to effluents,
CAT in channel catfish (lctalurus punctatus) showed a
significant increase. The increase or decrease in the
activities of antioxidant enzymes depends on the
intensity and duration of the exposure of the metals they
are exposed to [33].

The most important and easily available redox
balance buffer in the living body happens to be
glutathione [34]. It is a scavenger of the oxyradical and
is important in the antioxidant defence, and also is a
very important measure of the detoxification capacity of
an organism [35]. The GSH molecule can also
scavenge other ROS directly and is involved in various
processes vital for normal cellular function such as DNA
and protein synthesis [36]. The cells of the organism in
contact with metals usually expel them by coupling
directly with GSH.Mercury binds to the sulfhydryl groups
of glutathione stopping it from functioning as a free
radical scavenger [37] and causes the collapse of the
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antioxidant mechanisms in the cell. This can result in cell
degeneration, loss of membrane integrity and
eventually, cell necrosis [38], but various studies show
that the GSH activities in fishes respond differently to the
exposure to mercury. In M. cephalus and L. aurata,
mercury exposure shows increase in the GSH content

[39], whereas in A. testudineus, the GSH levels
decrease on exposure to 0.166 mg L™ 'Hg*" for
24 hours [40]. The levels of GSH in snakeheads

increase when exposed to subacute concentrations of
mercury but decrease under longer exposure duration
[41]. During long-term exposure, GSH could be involved
in the formation of conjugates with Hg?* leading to the
formation of linear Il covalent complexes [42]. The cause
of the depletion in GSH could be the consumption
during the phase Il biotransformation (involving GSH-
dependent enzymes) observed more in the muscles
than in the liver and gill [43]. These complexes are
excreted as mercapturic acid leading to the decrease in
GSH in order to eliminate mercury [44]. Thus, the
decrease in the GSH content could be due to oxidative
stress, accumulation and even elimination process.
Theliver is the site of GSH synthesis and is exported to
extraheptic tissues like kidney, brain and muscle. White
muscle has fewer number of mitochondria and are not
as efficient at recharging GSH due to lowered transport
from the liver [45]. Thus, the depletion of GSH in the
muscle is a better indicator of pollutant-based oxidative
stress than that in the liver.Thelevels of GSH normally
tend to decrease with the increase in age of the
organisms [46], which further decreases during
oxidative stress. The increase in the juvenile liver GSH
could be due to the increased replenishment of GSH by
the uptake of amino acid substrates and the activities of
biosynthetic enzymes in the liver. In the case of B.
amazonicus, the GSH content in the white muscle
decreased [12] similar to the observation in the present
study. This decline in GSH content may be due to the
ability of GSH to bind directly with mercury or due to the
non-conversion of the thiol group back to GSH by GR. In
most cases, if the initial increase in the free radicals is
small, the antioxidant system is capable to neutralize the
effects and readjust the balance between the ROS
production and ROS scavenging capacities [47].

The present study revealed higher LPO levels in
liver and muscle, a clear oxidative stress indication. LPO
is a complex process resulting from reactions in
biological membranes causing the formation of lipid
hydroperoxides. These molecules are able to fragment
the double bonds of unsaturated fatty acids and
disintegrate the lipids of the cellular membrane [48]. The
oxidative stress was confirmed by the increases in lipid
peroxidation in liver, gills, white muscle and heart of B.
amazonicus after exposure to mercuric chloride [12].
Similarly, after mercury exposure, increases in LPO
levels were also detected in the brain and kidney of the
Atlantic salmon [49] and in the liver of Russian sturgeon



Acipenser  gueldenstaedti[50]. This  study also
emphasizes the capability of antioxidants such as CAT,
SOD and GSH to be biomarkers of contaminant
mediated oxidative stress in a variety of aquatic
organisms, and the variations in their levels are a
reflection of the response of the organism to
pollutants[51].

V. (CONCLUSION

This study showed that MeHg at very low
concentration is capable of inducing various major
damages to the genetic makeup as well as the
antioxidant architecture of exposed fish. MeHg induced
the damage at a concentration which is very much
below the permissible limits put forth by health agencies
and at a very short span of time. Such damage could be
detrimental to the organism, and can even create
possible defects in the future generations leading to
change in the population structure and the genetic
makeup of the species as well as the diversity of the
ecosystem. This study also reports the formation of
highly fragmented DNA beyond computer recognition
(ghosts) as a drawback for the comet assay. Organic
mercury even at sublethal concentrations and short-term
exposure is potent enough to induce an oxidative stress
in the case of the air-breathing fish that is otherwise
capable of surviving under extreme conditions. These
changes can impair DNA and lipid membrane functions,
thus affecting the homeostasis. The protective
mechanisms against the toxicant-induced stress fall
short of maintaining the physiological integrity. The data
obtained suggest that mercury at the concentrations
that are irrelevant in terms of environmental and health
points of view are capable of inducing negative impact
on behaviour, health status, reproduction and overall
success of A. testudineus, a native air-breathing fish of
India, making its survival vulnerable.
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