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The Heat Transfer by Radiation under
Relativistic Conditions

Emil V. Veitsman

Absiract- An expression was obtained for the energy density of
the moving black-body radiation, i.e., the Stefan-Bolizmann
law valid in the interval of object velocities from zero to the
velocity of light in vacuo when the angle of observation 0
equals zero. The object temperature is shown to comprise two
parts. The first one is a scalar invariant under the Loreniz
transformations. The second one is a vector depending on the
velocity of system motion. The scalar component of the
temperature is a contraction of two tensor components of rank
3. Under normal conditions this mathematical object is a
scalar. Taking account of a tensor character of the
temperature a new formulation is given for the second
thermodynamics law. The results obtained are of the great
practical importance, in particular, while designing devices to
measure the radiation temperature of moving cosmic objects,
e.g., quasars.
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I. INTRODUCTION

arose in 1907 - almost immediately after the

creation of Special relativity (SR). It is in this year
that Kurd von Mosengeil's big article was published in
der Annalen der Physik [1]. This work supervised by Max
Planck underlies his relativistic thermodynamics [2]. The
great scientist considered the theory of the black-body
radiation to be well-studied and the most suitable for
formulating foundations of thermodynamics correct over
the entire whole interval of object velocities v, ie.,
ranging from zero to the velocity of light in vacuo.

In article [1] a system is studied comprising a
radiator of electromagnetic waves, receiver and reflector
(mirror). The radiators are receivers at the same time.
The three elements are moving uniformly and
rectilinearly in space with a relativistic velocity forming
an acute angle with one another. As a result, the
temperature transformation law was obtained under
relativistic conditions:

T =Ty\1- 5, ™)

where T, is the temperature if v<<c (here and below

The problem of the moving black-body radiation

index “0” means that the given quantity concerns normal
conditions); f#=v/c.

Author: Independent Researcher, 28 department, 5 Klimashkin Str.,
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For more than 50 years formula (1) had not
been called in question until X.Ott's article was
published [3], in which the relativistic temperature was
shown to transform following another law:

T=T,1{1- . @

The expression (2) was obtained by X.Ott for a
variety of physical processes including electromagnetic
radiation. However unlike Mosengeil, X.Ott elected
another approach for studying the process of
electromagnetic wave radiation under relativistic
conditions. He examined wave emission of individual
atoms, whereas Mosengeil studied black-body
radiation, as we have noticed above. In particular, in [1]
Stefan-Boltzmann’s law was obtained:

gy =2 =aly, (©)

based on the famous Planck formula derived first
semiempirically:

8hw’dw

o, T)do = — :
¢l et —1} 4)

where E| is the radiation energy of the black-body; V; is
the volume; a is Stephan-Boltzmann’s constant (J/cc
-grad”); p(a),T) is the radiative energy density (J/cc); k
is Boltzmann’s constant; @ is the frequency of

oscillator radiation.
As known, Stefan-Boltzmann’s constant equals:

k*r?
a=——.
15h3%c3

X.Ott’s article has induced a long-term polemic
on the temperature transformation under relativistic
conditions. Some researchers adhered to Planck-
Einstein’s viewpoint; the others adhered to X.Oftt’s.
Some scientists considered the temperature to be a
relativistic invariant [4]. There appear absolutely exotic
opinions. For example, the authors of Ref. [5] arrived at
a conclusion of the temperature under relativistic
conditions being changed both according to Planck,
and to Oft, and to Callen and Horwitz as the able

()
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situation requires. Moreover, P. Landsberg and G. First of all, the authors used an Unruh-De Witt
Matsas have decided to put end to the long-time detector, i.e., a two-level monopole, with a unit interval

dispute [6, 7]. In particular, they write (I cite): "...the  of the radiation energyfiw . Then the authors [6, 7]
proper temperature T alone is left as the only gynho5e that black-body radiation with the proper
temperature of universal significance. This seems 10 emperature T is at rest in some inertial reference frame
complete a story started 90 years ago [8] (more than g The excitation rate of the detector moving with a
100 years today — EV.) of how usual temperature  ongtant velocity v is found from quantum field theory. It
transforms, and to conclude a controversy [3] of 33 g proportional to the particle number density
years’ standing”. (50 years’ today).

What is authors’ opinion [6, 7] based on? Their :
basis is as follows. obtained:

(. . kT m 1_6—(hw'm)/krm .
n(a),T,v)da) = In do

47[202Vh 1_ e—(hw'\/l—v/c)/kT\/l+v/c

n'(a)',T,v)da)'. As a result, the following formula was

which, as the authors of [6, 7] noted, could not be reduced at v=0 to the well-known formula

oo : 2/ ,
n (a) T ,v)da) = Zﬂz(ae)hw,/ckf _1)da) . 7)

We obtain from (6) an expression which does But nobody dared check the works [1, 2, 8]. These
not defy interpretation, as v — c. articles were carried out just after the creation of Special

In opinion of P. Lands berg and G. Matsas, Relativity (SR) when nobody had known on the Bose-
formula (6) is absolutely correct, thus it is unnecessary  Einstein distribution. As we have noticed above,
to speak about an unified law of temperature Planck’s well-known formula, concerning black-body
transformation under relativistic conditions. However it ~ radiation, was obtained by a semiempirical way without
is not completely the case. Both the results obtained by  involving this distribution. After the discovery of this
Mosengeil (and soon used by Planck), and the distribution, in the twenties of last century, Planck’s
mathematical monster (6) are incorrect. It is necessary  formula was already obtained with its help. However if
to admit that the main reason of such a dramatic the radiator of electromagnetic waves is moving with a
situation with a relativistic temperature is a giant relativistic velocity, the form of Bose-Einstein distribution
scientific authority of Max Planck first and Albert changes drastically — it becomes at least a function of
Einstein. Naturally, after publishing X.Ott's article this two variables, which immediately follows from SR
work was carefully checked. Errors had not been found.  electrodynamics.

X3 XS'

A A

Xy, Xy

Lt

’

X2 X2

Fig.1: X, X, Xzand X, X, X, are the laboratory reference frame and that moving uniformly and rectilinearly with the
velocity v. 1 is the observer at rest; 2 is the radiating black body
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Indeed, examine the simplest case represented
in the Fig.1. As seen, there are two reference frames.
One of them (with primes) is moving uniformly and
rectilinearly with the velocity v. There is a cylindrical
object at rest in the moving reference frame. There is a
cylindrical cavity in the object. The walls of the cavity are
a black-body. They are emitting and absorbing photons.
There is a very small hole on a face-wall of the object
(see Fig.1). The flux of photons is flowing out the cavity.
Since the hole is very small, the equilibrium of the
photon gas in the cavity does not disturb practically. The
photon radiator is at rest in the moving reference frame.
An observer is at rest in the laboratory reference one.
The observer is detecting photons (the energy of the
electromagnetic wave). Here Maxwell's 3-D tensor of
energy-momentum o, has only one component - o, .
It is equal to the density of energy in the wave [9].
Knowing the density of energy in the flux of photons, we
can estimate the density of energy of the photon gas in
the cavity in practice. If the angle @ between v and the

observer is 37/2 (the object is moving away from the
observer), then the radiation frequency of the oscillator
w will be for this case equal to

V1-p°

O=@)—.

1+

If the object is moving to the observer i.e., the
velocity of the system is equal to -v, then

}1_ 2
= 0_/3_ (8b)
1-p
Denote the frequencies w in (8a) and (8b) as
@, and @, then

(8a)

= , (8c)
2 1- pB°

If the angle @ were(—x/2), then the formula
for the frequency transformation would have another

form, namely:
0= w\1- 7 . ©)

for the observer in the laboratory reference frame.

Thus without taking into consideration (8) and
(9), we cannot evidently use the well-known Bose-
Einstein distribution for obtaining the Stefan-Boltzmann
law when the object under study is moving with
relativistic speed.

The aforesaid allows us to formulate a main
goal of our work — obtaining a radiation law for the
black-body moving with a relativistic velocity when the

angle 6 between the moving velocity v and the observer
is 37 /2 (see Fig.1). A solution of the problem will be
performed by the methods given in [9].

Here we must be added the following. Attempts
have been made to obtain the law connecting the
radiation intensity with the temperature when relativistic
effects are involved [10, 11]. For example, in [11] an
ultrarelativistic plasma is examined containing electrons
and positrons. Their annihilation generates electro-
magnetic radiation. Its intensity is defined, in particular,
with the help of a one-dimensional Bose-Einstein
distribution. It is proportional to the plasma temperature
to the fourth power, with the velocity of the object as a
whole being equal to zero. It is plasma particles that are
in motion.

I[I.  METHODS AND RESULTS

a) Definition of the number of field oscillators with a
given frequency when the angle 6 is 3rt/2 (Fig.1)

Assume that we have an opaque object with an
inner cylindrical cavity. lts surface is a black body
heated up to some temperature T. There is a
thermodynamical equilibrium in the cavity between its
inner surface and electromagnetic radiation. There is a
very small hole in the object cover, through which
electromagnetic waves radiate out of the cavity (see
Fig.1). The object is moving uniformly and rectilinear
with the velocity v together with the reference frame. The
radiation from the cavity is detected with a device being
at rest in a laboratory reference frame. First of all, we will
show that the Stefan-Boltzmann law (3) is incorrect over
the whole range of object motion velocities, i.e., from
zero up to v—c. Indeed, according to X. Ott [3], the
radiation energy in the cavity is equal to:

iha)é”)
E — 1

Ji-p2

then the electromagnetic energy density

z leha)(()")
& =

A A D

where n is an oscillator serial number, o"is the
frequency of its oscillations.

For the flux of photons moving away from the
cavity (see Fig1), the equations (10) and (11) are also
correct, Indeed, there is only one component o, of

Maxwell’s stress tensor (see above). The component is
equal

n=12,...1,

=12,..1,

(11)
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2 2 2 2
E02+E03+H02+H03

1- B

2 2 2 2
oy~ E,+E;+H,+H; =

E 02(03) H 02(03)

where  E, ), Egy g3 are the intensity components of the

electric field in the directions 2 and 3 for the observers in
the laboratory reference frame and for the observer
moving with the system under study correspondingly;
H 3y, Hyare the intensity components of the

magnetic field in the directions 2 and 3 for the above
observers.

No matter how the temperature of the system
transforms, i.e., according to Planck or to Ott or to
Callen and Horwitz, we shall always arrive at the point of
absurdity. Indeed, let the temperature transform, e.g.,
according to Planck, i.e., to (1). In this case the right
side of (3) will have the following form aTo‘t(l_ﬂZ)z.
Then, as seen from (11), the right side of (3) appears to
tend to zero as v—c, while the left side of this formula to
increase infinitely. This indicates a close connection
between the radiation law of a moving black body and
the temperature transformation under relativistic
conditions.

Now find the number of oscillators g(@,, ®,)

dw,dw, with frequencies in intervals @,, w, + dw, and
®,,®,+dw, and a given polarization in the cavity
using the well-known procedure [9]. The following fact

g(a)]_!a)z) da)lda)z = zmldnldnz =

In case of electromagnetic waves should be
taken into account two polarizations, and then we shall
have:

w,do,do, AV

2.3

g(a)l 1 0, ) dodo, =
21°c

(14)

Here it is important to emphasize that formula
(14) is correct for the observer at rest in a real space
monitoring, from the referring frame, the object moving
then uniformly and rectilinearly with the relativistic
velocity v. Since the radiation is thermal the average
volume of the oscillators with a given polarization will
almost be independent of time. In this case, it is
unnecessary to define oscillator numbers in Minkowski
space.

© 2023 Global Journals

27k, dk, dk, AL
(271)3 v

a)lafa)lzafa)2 AV
(27)*c®

should be pointed out at once. The number of these
oscillators is a function of two variables. The reason for
that was explained above but here the following should
be noted. If a spherical coordinate system is used for
the case v<<c, then in our case it is convenient to use
a cylindrical one taking account of formulae (8) and (9).

The classical approach to finding the quantity
g(a))da) is based on using the number space n
followed by transition to a spherical space of the wave

2
vector k= | k| = n—. where L is the normalized cube

edge, and finally to the spherical space of frequencies
@ . In the case studied we use a cylindrical space
representable as two spaces — flat circular and linear
perpendicular to one another. Then to define the
necessary quantity we shall use two coordinate
systems: polar and one-dimensional Euclidean, i.e., a
straight line. The amount of numbers within the spherical
layer dn of the spherical space is 4m?dn [9] (the
spherical coordinate system). The amount of numbers
n,in the circular layer is equal to 2zm,dn, (the polar
coordinate system). As to n,in a linear interval of one-
dimension space, it will be equal todn, . As a result, we
have for the whole system:
9(w,,m,)dwdow, = 2m,dn,dn, . (12)
Turning from a number space to a wave vector
space and finally to a frequency one, we shall have:

o dodo,

T AL’AL, =

(13)

b) Relativistic temperature as either a vector or a tensor

Now we should make a new attempt to solve
some problems connected with the relativistic
temperature. First of all, we should clarify if this
thermodynamic parameter is a scalar or appears to be a
vector or a tensor. In this connection we should first
recall the formulae for velocity addition in SR. As known,
the components of the total velocity in the directions X,
or Xg will tend to zero for the observer in the laboratory
reference frame as v—c (see Fig.1). In turn, the
component parallel to axes the X; will not do that. This
suggests immediately that the temperature becomes a
mathematical object different from a scalar. What is the
object?

Until very recently the temperature in the above
case is considered to be either a scalar or a quantity



forming a vector with other quantities. For example, in
[10] V. Hamity represents this thermodynamical
parameter as

Vﬂ

0" = o u=0123 (15)

where v#
moreover

is a unit 4-vector in Minkowski space,

v =[v0 v, =123, (16)

i.e., v¥ =vis a velocity vector in Euclidean space;
M —
vy, =1 (17)

Further, developing the idea of temperature
vector representation, the author of [10] finally comes to
the following expression:

B,=v, kT (18)

with 3, =(,3,0,0,0) ., then

B,=6,1kT . &5 = (19)

o O O B+
o O +— O
O B, O O
O O O

Other authors, e.g., [12], also tried to represent
the relativistic temperature exclusively as a vector.
However, in our opinion, this approach to the problem is
incorrect, since the photon gas in the cavity is a
continuous medium. Then an expanded tensor
approach is necessary to describe energy processes in
it. In this case the second thermodynamics law can be
represented in Minkowski space as

5Q[jkgjk .

00 =— i, jok=1234a,=1234, (20)
Ttaﬂg

aff

where the heat Q and the temperature T are tensors of
rank 3, but g, , g, are covariant fundamental tensors.
Formula (20) needs a special explanation.

As known, M.Planck assumed that o # o (v),
i.e., the entropy of the system varies exclusively owing to
thermodynamical processes in the object under study
and is independent of its velocity relative to the observer
in the laboratory reference frame [2]. As will be shown
below, the law (20) agrees with the Planck statement.
Further, the contraction of the heat and temperature
tensors with the fundamental tensors transforms them to
the vectors multiplied into scalar quantities. The latter
are invariant parts of the above tensors that do not vary
when passing from one reference frame to another. As

to the vectors, their components are equal to unity when
the moving system 4-velocity equals to zero, i.e.,

1
' (21
n= )
1
i
1 _ 4 ) ) ) _ 1 4
ey A S B el L LA -7

Nt

where i is imaginary unit; # = v/ ¢,

Then the contraction in (20) of two vector
quantities in indices / gives a scalar quantity, which is
invariant under the Lorentz transformations. As to heat
and the temperature, their invariant parts vary
exclusively owing to purely thermodynamic reasons. In
turn, the vector components vary exclusively, when
passing from one reference frame to another. In both
cases either the heat or the temperature are inversely

proportional to the quantity«/1— £ . Then the entropy

will not change in the absence of heat input into the
system. The latter is in a full accord with the results
obtained in works [13, 14, and 15] where the
temperature was shown to transform under relativistic

conditions in inverse proportion to the quantity 4/1— 37 .
Then we can represent the temperature in Minkowski

space as

V1- B2

T'=T"g,,=Tn =Tn, (23),
where T is the invariant part of the tensor magnitude of

rank 3, i.e., 7' . In the real space formulae (20) and
(23) remain unchanged with the only difference that,

first, we now use affine tensors, second, the
dependences (21) and (22) take the form:
1
. nl . .
n'= —— 2:nz,n?’:n3 (25)

N

At v=0 the spatial components of 7" coincide
in Euclidean space with the same components in
Minkowski space.

In space-time the components of squared sum
of the vector quantity T n read
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T?n? +T%n?

invariant in all inertial reference frames.

+Tn2 =T?n? =T + T +T.

=T?

On the other hand the invariant of this sort gives in Euclidean space

2 1 ¢ 2 2 2.3 ¢
Tnn +T°n°n,+T°n"n, =

=T?n'n, + T?n’n, + T?n’n, = T + Ty2 +T? =invar,

taklng into consideration that nl t=1 (affine tensors),

e., the spatial part of the invariant connected with the
temperature 4-tensor is completely identical to the
invariant connected with the temperature 3-tensor. It is
very important since it allows one to solve our problem
directly in Euclidean space. As to the ultrarelativistic
plasma considered in [11], the aforesaid will be valid in
this case as well, which will be discussed below.

c) Radiation Intensity Dependence vs. Temperature for
a Moving Black Body

Consider a black body moving uniformly and
rectilinearly at angle 6=_3rm/2 with respect to the observer
in the laboratory reference frame. Based on the
aforesaid and on classical methods (i.e.,for v <<c, see,
e.g., [9, 16]) we can now begin its solution taking into
consideration the follow. Now we use a cylindrical
coordinate system and certain elementary normalizing
volume in it. This volume contains two independent
oscillators. The first oscillator is oriented parallel to axis
1. The second one is oriented perpendicularly to this
axis. Then we can write an expression for the average

total energy £ of the linear oscillators with guantum

(27)

numbers n, =n, =1 as follows (cylindrical space, zero
oscillations are neglected):

- many =1 o + .
e=(g+s,) ” (@ hj)z) . (28
e —1)e? -1

where @, and @, are the frequencies of oscillators in
the direction perpendicular and parallel to the velocity of
the moving object; n, and n,are positive (quantum)
integers for the oscillators in the first and second
directions. In this casen, =n, =1, since photons are
bosons, they can be in one quantum state; 7;,7, are
the values of the temperature tensor components.

Obtaining the formula (28), we have used the
law of the probability multiplying since the both
oscillators are independent one another.

Then the average volume of the total energy &
of the electromagnetic field per unit volume in the
moving cavity proves to equal

- E, 2h 7 @lde, T do 2 ¢ wodo, ¢ odo
CTRE- A ZE)ZcSI T e +(27T)263I T e (29)
“le? —1]"|e% -1 le —1|%e? -1

As a result, we have obtained, in fact, four improper integrals, three of them converge. The last two integrals
n (29) differ only by variables. They are easily calculated using variable transformations as follows:

hiow hao
Yoy = 12) _ 1(2) ’ (30)
Oyoy kT
2h T o dw, T wdw, 2070, Tyldyl T Vo dy, _
2 3 e, h -
" r)e FR RO (e -1) e -1)
2 2 4 4 2T2T2
_ 200, m K7l 6 o0garir? 31)
2r)fnec 36 120
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where a is the Stefan-Boltzmann constant, i.e.,

151
2t @oldw, F do 2h . .
I, = [ 7=- LI, (33)
eares[ e Yo ) e
.7 dlde 0> yidy o’ 6’ 6}
I = —1 1 :—1 1 1 :—1F :—l -1. ~=3. _1
) ! %_1 h30(—)ey1—1 e (z)¢(2) h3215498 31h3, (34)
where F(z) is the gamma function [17] ,
(@)=t =12y Ly isaes Mz +1)=T(:)r()=(2)=1
= K* 4 9
¢ d 0,7 d o
Q:I ﬁé@ :7$I ;Elz_&Py+MGi+eﬂ;0 (35)
“le® -1 o ¥

As seen, the integral (35) is integrated by quadratures but it divergences within the interval 0 — oo, namely,

—m N _ ha)2
Y k|T| )

I;:%[—y+ln(—l+ey) (36)

ly=0

however, we can overcome the difficulties that have arisen. Indeed, we obtain the infinity for zero in the bottom limit
of the integral (35). But we can take a number & in the bottom limit of (35) instead zero. The number has to be very
close to zero at a given temperature taking into account of the energy, by which we neglect. It must be much less
than the whole energy radiated by the black body in this direction, i.e.,

9 << [—y+|n(—1+ ey)y:;. (37)

Here we should note that a conscious inaccuracy was made in the classical method of obtaining Stefan-
Boltzmann’s law. As known, according to this method, the integration takes place in the space of positive (quantum)
integers. But they form a continuum for large values. If the integers are small, there is a discrete series, and we

cannot formally integrate. If nevertheless we are doing that, we have:

. ¢ d KT|% g kT KT
h-f e L'j(egl):L'[_yﬂn(_“ey)];_gﬂg, -
9 ekm—l g

As aresult, we have for [, :

2 o
]2 ZWIZIZ :31

2670,

=172 —0.238Aal’T,, 39
(27 Y nc L %)

and
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£y

) 0.208a77T} +0.238AaTT, .

If the velocity ¥=0, we have from (40):

&, =aTl;'(0.208+0.238A) ,

(41)

but after this condition we must have 0,208 + 0,238 A =1 according to Stefan-Boltzmann's law. Then A =3.33

and

E,

&= =0.208aT°T? + 0.792T°T, = 0.2087}?
w aly I 142 (O

T T
O +0.79275, 22

-p 1- 8

(42)

for the energy density of radiation under relativistic conditions.
Now we show that the condition (37) is met, i.e., that quantity Gis near to zero and much less than

[— y+ In(—1+ ey)]i:; .
First, we should solve a transcendent equation

A=7.22=9-In(-1+¢°),

its solution (see Appendix below) is:

9=—Inll—e™).

and 3~ 0.0416 << 3.33. As we see, condition (37) is full met.

[11. DISCUSSION

It should be noted at once that the dependence
(42) does not lead to the point of absurdity and
contradictions. The dependence (42) provides rather a
probable answer to the question concerning the
temperature transformation under relativistic conditions.
It is evident that the dependence (1) is incorrect and
would be rejected many years ago and without all
mathematical involvements if it were not a giant authority
of Planck and Einstein. Really, how is the dependence
(1) be followed if such cosmic objects as quasars do
exist, whose velocity v of motion can be equal 0,93c with
the luminosity reaching enormous values? The first
principle of thermodynamics leads to the point of
absurdity under relativistic conditions if one considers
that the temperature of the object under study varies

2
I %

with proportion to 1——2 asv —c. Indeed, in order
c

to obtain the Lorentz transformation from the first
principle of thermodynamics we have to express the
heat throw the temperature, ie., dQ =TdS or
dQ = SdT. The entropy is a Lorentz invariant, i.e.,
§=S,. If we did not input the heat in the studied
system accelerating it up to speed v, then TdS = 0 and

© 2023 Global Journals

the quantity T disappears from the equation. Only the

term SdT.gives us the result; it is T =T, //1- .
However, e.g., Einstein [8], uses the expression

0=0,+1- g% and it means that T =T,/1- *.#0as
S =S§,. ltis anonsense.

In the most general case the temperature is a
complex mathematical object. It comprises an invariant
part independent of the motion velocity and a part
dependent on the velocity and oriented in space. Under
normal conditions the temperature becomes a scalar,
the same does for the heat. The entropy problem has
not been studied completely. It is not improbable that
the entropy can be a tensor object in which indices are
contracted which results in a scalar independent of the
system motion velocity. Evidently, it is for experiment to
solve this problem. However no experiment has been
performed since the birth of relativistic thermodynamics
in 1907. Of course, the law (20) requires justification at
the molecular level, however it is other problem.

Having obtained the above results, we can now
make important conclusions concerning relativistic
thermodynamics as a whole. First of all, they concern a
relativistic temperature 7. Taking into consideration the
above results and results obtained in [3, 13-15, 18 - 23],
we can now contend with a high degree of probability:



only the dependence of the kind T ~1/41-f°

provides a possibility of obtaining a consistent relativistic
thermodynamics, which is correct over the entire interval
0 — ¢ of the motion velocities of the object under study.
As a proof of this argument we represent all
fundamental  thermodynamical  parameters  and
dependences (as already known and obtained recently)
containing them. There is the temperature in these
parameters and dependences. It varies in inverse

proportion to /1— 3% .

1. The average value of kinetic energy of the molecule
(atom) translational motion:

3

£="kT. 45
g > (45)

Evidently, the dependence (45) is correct over
the entire interval of object motion velocities if the

temperature varies in inverse proportion to 4/1— ,32 .
2. The equation of state of perfect gases [13, 20]:

pV

1-p°

naturally, for the observer in the laboratory reference
frame; the pressure p is Lorentz invariant; the volume of

gas V =V,/1- B% .

3. The equations of state for the interface separating a
pure liquid and its vapours [13, 20].
The equations are valid over the entire interval 0
— v of the object velocities if T =T, //1— 3 ; besides,
the surface tension is Lorentz invariant like the pressure,
4. The thermodynamic potentials (internal energy,
enthalpy, free energy, free enthalpy) including their
specific (J/cm?) values [15]

= NkT , (46)

Dependences obtained are correct on the entire
velocity interval  O0-v if T=T,/1-p%; the
dependences are not contradictory and absurdity. A
similar result is obtained for the chemical potential

(including its specific values), i.e., u~1/41— % [23,
24].

As known, the chemical potential of photon gas
equals to zero. This fact does not contradict the latter
relation. Indeed, write down it as

1,(x,y,z) = const [ \[1-

const=zero for the photon gas. As v — ¢ the root in
the relation tends to zero, however 0/0 in the right-hand-
side of the relation will be equal to zero because the root
only tends to zero but const equals zero by definition.

5. Small fluctuations of
temperature [22].
The dependences obtained are valid for
intervals of object velocities where fluctuations are small.
If the temperature in the formulae obtained varies in

inverse proportion to4/1— %, we do not come to any

contradictions or absurdity.
6. The theory of the charge transfer according to H.Ott
and E.V.Veitsman[3, 25].
The theory is correct under relativistic conditions
if only the object temperature varies in inverse

proportion to /1— 3% .

7. A closed thermodynamical cycle and the well-known
thermodynamical principles as follows

§5E:0,

0S= 5—020,
pos=4

volume, microparticles,

are correct if T =T, [[1- % [3, 22].

8. The radiation energy and momentum vary in the
range 0 — ¢ inverse proportional to /1— 3%, ie.,
as T=T,/\1- B° [3].

9. Chemical reaction rates w, e.g.,

_1d[a]
v, dt

=ad, = (aRT)R—AT =a,4,,

vary over the interval 0 — ¢ inverse proportional to

VJ1-p7% ie., as T=TO/1/l—ﬂ2 [23]. Here v, is the

stoichiometric coefficients of the substance A; A, is the
affinity according to De Donde; a is a phenomenological
coefficient.

We cannot obtain a consistent aggregate of the
thermodynamic  parameters and  dependences
containing the parameters under Lorentz transformation

if T=T, and T =T,\1-p*. What is more, we
sometimes come to contradictions with special relativity
and the first principle of thermodynamics using these
relations, e.g., T =T, (see below). As to the theories
where the latter temperature transformations are used
for a specific process, and contradictions are absent at
first sight, so we again come to absurdity but in a
implicit form. For example, Clapeyron's equation
pV = NkT is quite formally correct under relativistic
conditions even if the gas temperature varies according
to Planck, however at the same time formula (45)
describing the energy of the molecule (atom)
translational moving is correct under the relativistic
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conditions if the temperature of the object transforms
only following Ott's theory. The other variants are
absent here. However this dependence and Clapeyron
's equation treat the same division of physics —
thermodynamics of gases and vapours. But if in the
framework of this division of physics the temperature of
the system may transform under relativistic conditions
otherwise, then it is nonsense.

Take, e.g. the equality =T, (T =T) As
known, the temperature of gases or liquids depends on
the velocities w their molecules (atoms) relatively the
mass centre of the system under study. Let us be an
observer in the laboratory references frame (see above,
Fig,1). He is observing the microparticle velocities
relatively the mass centre of a moving system containing
a gas. The velocity components are equal according to
SR:

1+%

¢

wyy1- B

w,=——"""—
VW,
1+—*+

2
C

Ui p
. .
1+ﬂ

ol

As we see, the velocity w has to vary at
transition from one reference frame to another one. The
equality T=T, contradicts to SR. It contradicts also the
first principle of thermodynamics. Indeed, according to
Callen and Horwitz [4] enthalpy H, chemical potential u
and temperature T are the Lorentz-invariants. However,
then we will be at a deadlock because according to the
Gibbs’ equation (it follows from the first principle of
thermodynamics)

(8Hj , (8Hj
T: —_— ,ﬂz —_— ,
oS ), n ON Js,

where S is the entropy, p is the pressure and N is the
number of microparticles in the system. Going from one
referee frame to other one, we obtain in (47) 0/0, i.e.,
indeterminate forms which we cannot evaluate.

Of utmost interest is to consider if the
dependence (20) remains valid for the case of an
ultrarelativistic  high-temperature  spherical  plasma
(fireball) [11]. According to the author of [11], the

spectrum of its equilibrium radiation dgy(a)*) (J/cc)

;

s

(47)
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due to the annihilation of electrons and positrons is
described by the dependence

T oiol? -Nf

do. ,
mihicd e”™ -1

de (@.)= (48)

in the fireball, where @, = hw/T is the dimensionless
frequency; T>>mc? is the energy, i.e., apparently,
0 = kT (k is the Boltzmann constant, T is now the
absolute temperature; 6 not to be confused with the

angle similarly designated (see above); A=#hw . IT;

p.rel
®,,, is the relativistic frequency of the plasma
oscillations; fis a dimensionless constant.

Formula (20) is valid for the case (48) with the
vector part of the temperature dependent on the total
velocity of electrons and positrons in the fireball but not
on the velocity of its centre of mass. If their velocities
are very high, then we have the well-known case
described, e.g., in [10]. This is the case of a system of
particles being widely apart and moving with very high
velocities. It should be noted that these two cases are
not fully identical, since the micropatrticles in [10] are not
identical before and after the collision. In article [11], an
electron-positron collision results in their annihilation.
However these cases are very similar, thus the system
energy & may be given as

m,c’
R LU,
v2
i
Vi
C

where m; is the microperticle mass, v, is its velocity.

Then the vector part of the temperature in the
ultrarelativistic case will transform in inverse proportion

of the rootswll—vi2 /c? . Here we immediately arrive at

the conclusion that the dependence (48) is very
doubtful, since the right side does not transform
identically to its left side under the relativistic conditions.
It should be also noted that the object studied in [11] is,
in fact, a stable fireball. Evidently, when the density of
electrons and positrons exceeds a certain limit, the
stability will be broken, and an explosion will occur.

(49)

[V. CONCLUSIONS

Law was obtained for the black-body radiation
in the whole interval of its (black-body) movement
speed, i.e., from zero up to the speed of light in vacuum.
This law is a special case when an angle 6 between the
movement velocity of the object under study and the
observer is equal to zero. When the black-body speed is
zero we obtain Stefan-Boltzmann law; when the black



body speed tends to the speed og light in vacuum we
do not come to absurdity and contradictions.

Appendix. Obtaining the solution of (44).
We have from (43)

Ineg—ln(—1+e9)=|ne’\, (50)
-,
e
In =Ine! 51
—1+e” | “ o1
-,
e A
= 52
_—1+e‘9_ ¢ (%2
e e’ =—1+¢’, (53)
(e e’ —e’)=-1, (54)
e’ (e_A —1): -1, (55)

and finally

3=|n(— 7A1 l)zln( ! J:—In(l—e"), i.e., (44).

—-A
e — l-e
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