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Abstract-

 

An expression was obtained for the energy density of 
the moving black-body radiation, i.e., the Stefan-Boltzmann 
law valid in the interval of object velocities from zero to the 
velocity of light in vacuo when the angle of observation θ

 

equals zero. The object temperature is shown to comprise two 
parts. The first one is a scalar invariant under the Lorentz 
transformations. The second one is a vector depending on the 
velocity of system motion. The scalar component of the 
temperature is a contraction of two tensor components of rank 
3. Under normal conditions this mathematical object is a 
scalar. Taking account of a tensor character of the 
temperature a new formulation is given for the second 
thermodynamics law. The results obtained are of the great 
practical importance, in particular, while designing devices to 
measure the radiation temperature of moving cosmic objects, 
e.g., quasars.   
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I.

 

Introduction

 
he problem of the moving black-body radiation 
arose in 1907 – almost immediately after the 
creation of Special relativity (SR). It is in this year 

that Kurd von Mosengeil’s big article was published in 
der Annalen der Physik [1]. This work supervised by Max 
Planck underlies his relativistic thermodynamics [2]. The 
great scientist considered the theory of the black-body 
radiation to be well-studied and the most suitable for 
formulating foundations of thermodynamics correct over 
the entire whole interval of object velocities v, i.e., 
ranging from zero to the velocity of light in vacuo.

 
In article [1] a system is studied comprising a 

radiator of electromagnetic waves, receiver and reflector 
(mirror).

 

The radiators are receivers at the same time.

 
The three elements are moving uniformly and 
rectilinearly in space with a relativistic velocity forming 
an acute angle

 

with one another. As a result, the 
temperature transformation law was obtained under 
relativistic conditions:

                                 2
0 1 β−= TT ,                      (1)

 where 0T
 

is the temperature if v<<c

 

(here and below 

index “0” means that the given quantity concerns normal 
conditions); ./ cv=β

 

For more than 50 years formula (1) had not 
been called in question until X.Ott’s article was 
published [3], in which the relativistic temperature was 
shown to transform following another law: 

                            2
0 1/ β−= TT .                          (2) 

The expression (2) was obtained by X.Ott for a 
variety of physical processes including electromagnetic 
radiation. However unlike Mosengeil, X.Ott elected 
another approach for studying the process of 
electromagnetic wave radiation under relativistic 
conditions. He examined wave emission of individual 
atoms, whereas Mosengeil studied black-body 
radiation, as we have noticed above. In particular, in [1] 
Stefan-Boltzmann’s law was obtained:  

                                 4
0

0

0
0 aT

V
E

==ε ,                        (3) 

based on the famous Planck formula derived first 
semiempirically:   
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where 0E is the radiation energy of the black-body; V0 is 
the volume; а is  Stephan-Boltzmann’s constant (J/сc 
∙grad4); ( )T,ωρ  is the radiative energy density (J/сc); k 
is Boltzmann’s constant; ω  is the frequency of 
oscillator radiation.  
As known, Stefan-Boltzmann’s constant equals: 

                                 33

24

15 c
ka


π
= .                           (5) 

X.Ott’s article has induced a long-term polemic 
on the temperature transformation under relativistic 
conditions. Some researchers adhered to Planck-
Einstein’s viewpoint; the others adhered to X.Ott’s. 
Some scientists considered the temperature to be a 
relativistic invariant [4]. There appear absolutely exotic 
opinions. For example, the authors of Ref. [5] arrived at 
a conclusion of the temperature under relativistic 
conditions being changed both according to Planck, 
and to Ott, and to Callen and Horwitz as the able 
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situation requires. Moreover, P. Landsberg and G. 
Matsas have decided to put end to the long-time 
dispute [6, 7]. In particular, they write (I cite): “…the 
proper temperature T alone is left as the only 
temperature of universal significance. This seems to 
complete a story started 90 years ago [8] (more than 
100 years today – E.V.) of how usual temperature 
transforms, and to conclude a controversy [3] of 33 
years’ standing”. ( 50 years’ today).      

What is authors’ opinion [6, 7] based on? Their 
basis is as follows.  

First of all, the authors used an Unruh-De Witt 
detector, i.e., a two-level monopole, with a unit interval 

of the radiation energy 'ω . Then the authors [6, 7] 
suppose that black-body radiation with the proper 
temperature T is at rest in some inertial reference frame 
S. The excitation rate of the detector moving with a 
constant velocity v is found from quantum field theory. It 
is proportional to the particle number density

( ) ''' ,, ωω dvTn . As a result, the following formula was 
obtained: 
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which, as the authors of [6, 7] noted, could not be reduced at v=0  to the well-known formula
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We obtain from (6) an expression which does 
not defy interpretation, as v .c→                                                                                                      

 In opinion of P.
 
Lands

 
berg and G.

 
Matsas, 

formula (6) is absolutely correct, thus it is unnecessary 
to speak about an unified law of temperature 
transformation under  relativistic conditions. However it 
is not completely the case. Both the results obtained by 
Mosengeil (and soon used by Planck), and the 
mathematical monster (6) are incorrect. It is necessary 
to admit that the main

 
reason of such a dramatic 

situation with a relativistic temperature is a giant 
scientific authority of Max Planck first and Albert 
Einstein. Naturally, after publishing X.Ott’s article this 
work was carefully checked. Errors had not been found. 

But nobody
 

dared check the works [1, 2, 8]. These 
articles were carried out just after the creation of Special 
Relativity (SR) when nobody had known on the Bose-
Einstein distribution. As we have noticed above, 
Planck’s well-known formula, concerning black-body 
radiation, was obtained by a semiempirical way without 
involving this distribution. After the discovery of this 
distribution, in the twenties of last century, Planck’s 
formula was already obtained with its help. However if 
the radiator of electromagnetic waves is moving with a 
relativistic velocity, the form of Bose-Einstein distribution 
changes drastically – it becomes at least a function of 
two variables, which immediately follows from SR 
electrodynamics.
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0
0′
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X3 X3
′

X1, X1
′

X2 X2
′

1 2

Fig.1: X1 ,X2 ,X3 and X1
′ ,X2

′ ,X3
′ are the laboratory reference frame and that moving uniformly and rectilinearly with the 

velocity v. 1 is the observer at rest; 2 is the radiating black body



Indeed, examine the simplest case represented 
in the Fig.1. As seen, there are two reference frames. 
One of them (with primes) is moving uniformly and 
rectilinearly with the velocity v. There is a cylindrical 
object at rest in the moving reference frame. There is a 
cylindrical cavity in the object. The walls of the cavity are 
a black-body. They are emitting and absorbing photons. 
There is a very small hole on a face-wall of the object 
(see Fig.1). The flux of photons is flowing out the cavity. 
Since the hole is very small, the equilibrium of the 
photon gas in the cavity does not disturb practically. The 
photon radiator is at rest in the moving reference frame. 
An observer is at rest in the laboratory reference one. 
The observer is detecting photons (the energy of the 
electromagnetic wave). Here Maxwell’s 3-D tensor of 
energy-momentum αβσ has only one component - 11σ . 
It is equal to the density of energy in the wave [9]. 
Knowing the density of energy in the flux of photons, we 
can estimate the density of energy of the photon gas in 
the cavity in practice. If the angle θ  between v and the 
observer is 2/3π  (the object is moving away from the 
observer), then the radiation frequency of the oscillator 
ω will be for this case equal to 

                             
β
β

ωω
+
−

=
1
1 2

0 .                       (8a) 

If the object is moving to the observer i.e., the 
velocity of the system is equal to -v, then  

                              β
β

ωω
−
−

=
1
1 2

0 .                       (8b) 

Denote the frequencies ω in (8a) and (8b) as 

1ω  and 2ω then 

                    ,
12 2

021

β

ωωω
ω

−
=

+
=                    (8c) 

If the angle θ  were )2/( π− , then the formula 
for the frequency transformation would have another 
form, namely: 

                                
2

0 1 βωω −= .                       (9) 

for the observer in the laboratory reference frame.
 

Thus without taking into consideration (8) and 
(9), we cannot evidently use the well-known Bose-
Einstein distribution for obtaining the Stefan-Boltzmann 
law when the object under study is moving with 
relativistic speed.

 

The aforesaid allows us to formulate a main 
goal of our work – obtaining a radiation law for the 
black-body moving with a relativistic velocity when the 

angle θ  between the moving velocity v and the observer 
is 2/3π  (see Fig.1). A solution of the problem will be 
performed by the methods given in [9].  

Here we must be added the following.  Attempts 
have been made to obtain the law connecting the 
radiation intensity with the temperature when relativistic 
effects are involved [10, 11]. For example, in [11] an 
ultrarelativistic plasma is examined containing electrons 
and positrons. Their annihilation generates electro-
magnetic radiation. Its intensity is defined, in particular, 
with the help of a one-dimensional Bose-Einstein 
distribution. It is proportional to the plasma temperature 
to the fourth power, with the velocity of the object as a 
whole being equal to zero. It is plasma particles that are 
in motion.    

II. Methods and Results 

a) Definition of the number of field oscillators with a 
given frequency when the angle θ is 3π/2 (Fig.1)    

Assume that we have an opaque object with an 
inner cylindrical cavity. Its surface is a black body 
heated up to some temperature T. There is a 
thermodynamical equilibrium in the cavity between its 
inner surface and  electromagnetic radiation. There is a 
very small hole in the object cover, through which 
electromagnetic waves radiate out of the cavity (see 
Fig.1). The object is moving uniformly and rectilinear 
with the velocity v together with the reference frame. The 
radiation from the cavity is detected with a device being 
at rest in a laboratory reference frame. First of all, we will 
show that the Stefan-Boltzmann law (3) is incorrect over 
the whole range of object motion velocities, i.e., from 
zero up to v→c. Indeed, according to X. Ott [3], the 
radiation energy in the cavity is equal to: 

             

( )

2

1
0

1 β

ω

−
=
∑

n
nh

E ,   n=1,2,….l ,                (10)
 

then the electromagnetic energy density 
 

       ( )
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0
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ε

−
=

−
=

∑
V

h

V
E

n
n

, n=1,2,…l ,      (11)
 

where n is an oscillator serial number, ( )nω is the 
frequency of its oscillations.

 

For the flux of photons moving away from the 
cavity (see Fig1), the equations (10) and (11) are also 
correct, Indeed, there is only one component 11σ of

 

Maxwell’s stress tensor (see above). The component is 
equal 
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where  )03(02)3(2 , EE are the intensity components of the 

electric field in the directions 2 and 3 for the observers in 
the laboratory reference frame and for the observer 
moving with the system under study correspondingly;

)03(02)3(2 , HH are the intensity components of the 

magnetic field in the directions 2 and 3 for the above 
observers. 

No matter how the temperature of the system 
transforms, i.e., according to Planck or to Ott or to 
Callen and Horwitz, we shall always arrive at the point of 
absurdity. Indeed, let the temperature transform, e.g., 
according to Planck, i.e., to (1). In this case the right 
side of (3) will have the following form ( )224

0 1 β−aT . 
Then, as seen from (11), the right side of (3) appears to 
tend to zero as v→c, while the left side of this formula to 
increase infinitely. This indicates a close connection 
between the radiation law of a moving black body and 
the temperature transformation under relativistic 
conditions. 

Now find the number of oscillators g( 21 ,ωω )

21 ωω dd  with frequencies in intervals 111, ωωω d+  and  

222 , ωωω d+
 

and a given polarization in the cavity 
using  the well-known procedure [9]. The following fact 

should be pointed out at once.      The number of these 
oscillators is a function of two variables. The reason for 
that was explained above but here the following should 
be noted. If a spherical coordinate system is used for 
the case v<<c, then in our case it is convenient to use 
a cylindrical one taking account of formulae (8) and (9). 

The classical approach to finding the quantity 
( ) ωω dg

 
is based on using the number space n

 

followed by transition to a spherical space of the wave 

vector k=│k│=
L

n π2
, where L is the normalized cube 

edge, and finally to the spherical space of frequencies
ω . In the case studied we use a cylindrical space 
representable as two spaces – flat circular and linear 
perpendicular to one another. Then to define the 
necessary quantity we shall use two coordinate 
systems: polar and one-dimensional Euclidean, i.e., a 
straight line. The amount of numbers within the spherical 
layer dn of the spherical space is dnn24π  [9] (the 
spherical coordinate system). The amount of numbers 

1n in the circular layer is equal to 112 dnnπ  (the polar 
coordinate system). As to 2n in a linear interval of one-
dimension space, it will be equal to 2dn . As a result, we 
have for the whole system:

 
               g( 21 ,ωω ) 21121 2 dndnndd πωω = .          (12)

 
Turning from a number space to a wave vector 

space and finally to a frequency one, we shall have:  

   g( 21 ,ωω ) =21 ωω dd ( ) ( ) 2
2
132

211
2

2
13

211
211 22

22 LL
c

ddLLdkdkkdndnт ∆∆=∆∆=
π

ωωω
π

π
π  = 

                                                                              = 
( )

V
c

dd
∆

32
211

2π
ωωω

.                                                                    (13) 

In case of electromagnetic waves should be 
taken into account two polarizations, and then we shall 
have: 

      ( )21 ,ωωg =21 ωω dd V
c
dd

∆32
211

2π
ωωω

.           (14) 

Here it is important to emphasize that formula 
(14) is correct for the observer at rest in a real space 
monitoring, from the referring frame, the object moving 
then uniformly and rectilinearly with the relativistic 
velocity v. Since the radiation is thermal the average 
volume of the oscillators with a given polarization will 
almost be independent of time. In this case, it is 
unnecessary to define oscillator numbers in Minkowski 
space.  

 

b) Relativistic temperature as either a vector or a tensor 
Now we should make a new attempt to solve 

some problems connected with the relativistic 
temperature. First of all, we should clarify if this 
thermodynamic parameter is a scalar or appears to be a 
vector or a tensor. In this connection we should first 
recall the formulae for velocity addition in SR. As known, 
the components of the total velocity in the directions X2 
or X3 will tend to zero for the observer in the laboratory 
reference frame as v→c (see Fig.1).  In turn, the 
component parallel to axes the X1 will not do that. This 
suggests immediately that the temperature becomes a 
mathematical object different from a scalar. What is the 
object? 

Until very recently the temperature in the above 
case is considered to be either  a scalar or a quantity 
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forming a vector with other quantities. For example, in 
[10] V. Hamity represents this thermodynamical 
parameter as  

                    
T
v
ˆ

µ
µ =Θ ,  ,3,2,1,0=µ                 (15) 

where µv  is a unit 4-vector in Minkowski space, 
moreover 

                      =µv [ αvv ,0 ],  α=1,2,3,                     (16) 

i.e., ≡αv v is a velocity vector in Euclidean space; 

                                  1=µ
µvv .                                 (17) 

Further, developing the idea of temperature 
vector representation, the author of [10] finally comes to 
the following expression:     

                                   kTv /µµβ =  ,                      (18) 

with ( )0,0,0,ββµ =  , then 

     kT/0
µµ δβ = ,  



















=

1000
0100
0010
0001

ν
µδ .               (19) 

Other authors, e.g., [12], also tried to represent 
the relativistic temperature exclusively as a vector. 
However, in our opinion, this approach to the problem is 
incorrect, since the photon gas in the cavity is a 
continuous medium. Then an expanded tensor 
approach is necessary to describe energy processes in 
it. In this case the second thermodynamics law can be 
represented in Minkowski space as   

  ,4,3,2,1,;4,3,2,1,,; === βα
δ

δσ
αβ

αβ kji
gT
gQ

i
jk

ijk

   (20)                               

where the heat Q and the temperature T are tensors of 
rank 3, but αβgg jk ,  are covariant fundamental tensors. 

Formula (20) needs a special explanation. 
As known, M.Planck assumed that σσ ≠ (v), 

i.e., the entropy of the system varies exclusively owing to 
thermodynamical processes in the object under study 
and is independent of its velocity relative to the observer 
in the laboratory reference frame [2]. As will be shown 
below, the law (20) agrees with the Planck statement. 
Further, the contraction of the heat and temperature 
tensors with the fundamental tensors transforms them to 
the vectors multiplied into scalar quantities. The latter 
are invariant parts of the above tensors that do not vary 
when passing from one reference frame to another. As 

to the vectors, their components are equal to unity when 
the moving system 4-velocity equals to zero, i.e., 

                             n=



















i
1
1
1

,                           (21) 

2

41
4'33'22'

2

41
1'

1
,,,

1 β

β

β

β

−

+−
===

−

−
=

nnnnnnnnnn
 
, (22)

      

where i
 
is imaginary unit; ,/ cv=β       

 

Then the contraction in (20) of two vector 
quantities in indices i

 
gives a scalar quantity, which is 

invariant under the Lorentz transformations. As to heat 
and the temperature, their invariant parts vary 
exclusively owing to purely thermodynamic reasons. In 
turn, the vector components vary exclusively, when 
passing from

 
one reference frame to another. In both 

cases either the heat or the temperature are inversely 

proportional to the quantity 21 β− . Then the entropy 

will not change in the absence of heat input into the 
system. The latter is in a full accord with the results 
obtained in works [13, 14, and 15] where the 
temperature was shown to transform under relativistic 

conditions in inverse proportion to the quantity 21 β− . 
Then we can represent the temperature in Minkowski 
space as     

                    Τ=Τ== iii ngTT αβ
αβ n,                 (23),

 

where Τ
 

is the invariant part of the tensor magnitude of 
rank 3, i.e., αβiT . In the real space formulae (20) and 
(23) remain unchanged with the only difference that, 
first, we now use affine tensors, second, the 
dependences (21) and (22) take the form: 

 

                                n =
















1
1
1

,                         (24)

 

                  33'22'

2

1
1' ,,

1
nnnnnn ==

−
=

β

 

.    (25)

                                

At v=0 the spatial components of iT

 

coincide 
in Euclidean space with the same components in 
Minkowski space.

 

In space-time the components of squared sum 
of the vector quantityΤ n read  
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                                                         222222222222
ττ Τ=Τ+Τ+Τ=Τ=Τ+Τ+Τ zyxzyx nnnn ,                                     (26)           

invariant in all inertial reference frames. 

On the other hand the invariant of this sort gives in Euclidean space   

=Τ+Τ+Τ '
3

3'2'
2

2'2'
1

1'2 nnnnnn
 

                                                    222
3

32
2

22
1

12
zyxnnnnnn Τ+Τ+Τ=Τ+Τ+Τ= =invar,                                  (27)

taking into consideration that  11''
1 =nn

 
(affine tensors), 

i.e., the spatial part of the invariant connected with the 
temperature 4-tensor is completely identical to the 
invariant connected with the temperature 3-tensor. It is 
very important since it allows one to solve our problem 
directly in Euclidean space. As to the ultrarelativistic 
plasma considered in [11], the aforesaid will be valid in 
this case as well, which will be discussed below. 

 

c)
 

Radiation Intensity Dependence vs. Temperature for 
a Moving Black Body 

 

Consider a black body moving uniformly and 
rectilinearly at angle θ=3π/2 with respect to the observer 
in the laboratory reference frame. Based on the 
aforesaid and on classical methods (i.e.,for v <<c, see, 
e.g., [9, 16]) we can now begin its solution taking into 
consideration the follow. Now we use a cylindrical 
coordinate system and certain elementary normalizing 
volume in it. This volume contains two independent 
oscillators. The first oscillator is oriented parallel to axis 
1. The second one is oriented perpendicularly to this 
axis. Then we can write an expression for the average 

total energy ε
 
of the linear oscillators with quantum 

numbers 121 == nn
 
as follows (cylindrical space, zero 

oscillations are neglected):                                                                                                 


        ( ) ( )



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ω
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ωωεεε




ee

nn

,      

 

(28)

 

where 1ω
 

and 2ω are the frequencies of oscillators in 
the direction perpendicular and parallel to the velocity of 
the moving object; 1n

 
and 2n are positive (quantum) 

integers for the oscillators in the first and second 
directions. In

 
this case 121 == nn , since photons are 

bosons, they can be in one quantum state; 21 ,TT
 
are 

the values of the temperature tensor components.
 

Obtaining the formula (28), we have used the 
law of the probability multiplying since the both 
oscillators are independent one another.

 

Then the average volume of the total energy ε  

of the electromagnetic field per unit volume in the 
moving cavity proves to equal
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e

d

e

d
c

e

d

e

d
cV

E
.              (29)

 

As a result, we have obtained, in fact, four improper integrals, three of them converge. The last two integrals 
in (29) differ only by variables. They are easily calculated using variable transformations as follows:        
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where a is the Stefan-Boltzmann constant, i.e.,   

                                                                                 33
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= .                                                                         (32) 
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where ( )zΓ  
is the gamma function [17] , 
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 As seen, the integral (35)  is integrated by quadratures but it divergences within the interval ∞−0 , namely, 

                                                      ( )[ ] ∞→+−+−=
∞→

=

y
y

yey
Tk

I 0
''

2 1ln


,
Tk

y 2ω= ,                                         (36) 

however, we can overcome the difficulties
 
that have arisen. Indeed, we obtain the infinity for zero in the bottom limit 

of the integral (35). But we can take a numberϑ in the bottom limit of (35) instead zero. The number has to be very 
close to zero at a given temperature taking into account of the energy, by which we neglect. It must be much less 
than the whole energy radiated by the black body in this direction, i.e.,

 

                                                                        
<<ϑ ( )[ ] ∞→

=+−+−
y
y

yey ϑ1ln .                                                     (37) 

Here we should note that a conscious inaccuracy was made in the classical method of obtaining Stefan-
Boltzmann’s law. As known, according to this method,  the integration takes place in the space of positive (quantum) 
integers. But they form a continuum for large values. If the integers are small, there is a discrete series, and we 
cannot formally integrate. If nevertheless we are doing that, we have:
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As a result, we have for 2I : 
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and 
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                                                        ( ) 2
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2
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−

=
β

ε  .                                        (40) 

 
If the velocity v=0, we have from (40): 

                                                                           ( )Λ+= 238.0208.04
00 aTε  ,                                                   (41) 

but after this condition we must have 0,208 + 0,238 1=Λ  
according to Stefan-Boltzmann’s law. Then  33.3=Λ  

and 
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             (42)  

for the energy density of radiation under relativistic conditions. 

Now we show that the condition (37) is met, i.e., that quantity ϑ is near to zero and much less than 

( )[ ] ∞→

=+−+−
y
y

yey ϑ1ln . 

First, we should solve a transcendent equation 

                                                                   ( )ϑϑ e+−−==Λ 1ln22.7 ,                                    (43) 

its solution (see Appendix below) is: 

                                                                       )1ln( Λ−−−= eϑ .                                              (44) 

and  .33.30416.0 <<≈ϑ
 
As we see, condition (37) is full met.

 

III.
 

Discussion 

It should be noted at once that the dependence 
(42) does not lead to the point of absurdity and 
contradictions. The dependence (42) provides rather a 
probable answer to the question concerning the 
temperature transformation under relativistic conditions. 
It is evident that the dependence (1) is incorrect and 
would be rejected many years ago and without all 
mathematical involvements if it were not a giant authority 
of Planck and Einstein. Really, how is the dependence 
(1) be followed if such cosmic objects as quasars do 
exist, whose velocity v

 
of motion can be equal 0,93c

 
with 

the luminosity reaching enormous values? The first 
principle of thermodynamics leads to the point of 
absurdity under relativistic conditions if one considers 
that the temperature of the

 
object under study varies 

with proportion to 2

2

1
c
v

− as cv → . Indeed, in order 

to obtain the Lorentz transformation from the first 
principle of thermodynamics we have to express the 
heat throw the temperature, i.e., TdSdQ = or 

.SdTdQ =
 

The entropy is a Lorentz invariant, i.e.,

0SS = . If we did not input the heat in the studied 
system accelerating it up to speed v, then 0=TdS  and 

the quantity T
 
disappears from

 
the equation. Only the 

term .SdT gives us the result; it is .1/ 2
0 β−=TT

 

However, e.g., Einstein [8], uses the expression 
2

0 1 β−=QQ and it means that 0.1 2
0 ≠−= βTT as 

0SS = . It is a nonsense. 
 

In the most general case the temperature is a 
complex mathematical object. It comprises an invariant 
part independent of the motion velocity and a part 
dependent on the velocity and oriented in space. Under 
normal conditions the temperature becomes a scalar, 
the same does for the heat. The entropy problem has 
not been studied completely. It is not improbable that 
the entropy can be a tensor object in which indices are 
contracted which results in a scalar independent of the 
system motion velocity. Evidently, it is for experiment to 
solve this problem. However no experiment has been 
performed since the birth of relativistic thermodynamics 
in 1907. Of course, the law (20) requires justification at 
the molecular level, however it is other problem.  

Having obtained the above results, we can now 
make important conclusions concerning relativistic 
thermodynamics as a whole. First of all, they concern a 
relativistic temperature T. Taking into consideration the 
above results and results obtained in [3, 13-15, 18 - 23], 
we can now contend with a high degree of probability: 
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only the dependence of the kind 21/1~ β−T
provides a possibility of obtaining a consistent relativistic 
thermodynamics, which is correct over the entire interval 
0 – c of the motion velocities of the object under study. 
As a proof of this argument we represent all 
fundamental thermodynamical parameters and 
dependences (as already known and obtained recently) 
containing them. There is the temperature in these 
parameters and dependences. It varies in inverse 

proportion to 21 β− . 

1. The average value of kinetic energy of the molecule 
(atom) translational motion:  

                                  
kT

2
3

=ε .                               (45) 

Evidently, the dependence (45) is correct over 
the entire interval of object motion velocities if the 

temperature varies in inverse proportion to 21 β− . 

2. The equation of state of perfect gases [13, 20]: 

                                
NkTpV

=
− 21 β

,                         (46) 

naturally, for the observer in the laboratory reference 
frame; the pressure p is  Lorentz invariant; the volume of 

gas 2
0 1 β−=VV . 

3. The equations of state for the interface separating a 
pure liquid and its vapours [13, 20]. 

The equations are valid over the entire interval 0 

– v of the object velocities if 2
0 1/ β−= TT ; besides, 

the surface tension is Lorentz invariant like the pressure.   
4. The thermodynamic potentials (internal energy, 

enthalpy, free energy, free enthalpy) including their 
specific (J/cm2) values [15]  

Dependences obtained are correct on the entire 
velocity interval 0–v if 2

0 1/ β−= TT ; the 

dependences are not  contradictory and absurdity. A 
similar result is obtained for the chemical potential 

(including its specific values), i.e., 21/1~ βµ − [23, 

24].  
As known, the chemical potential of photon gas 

equals to zero. This fact does not contradict the latter 
relation. Indeed, write down it as 

21/),,( βµ −= constzyxi , 

const=zero for the photon gas. As cv →  the root in 
the relation tends to zero, however 0/0 in the right-hand-
side of the relation will be equal to zero because the root 
only tends to zero but const equals zero by definition. 

5. Small fluctuations of volume, microparticles, 
temperature [22].      

The dependences obtained are valid for 
intervals of object velocities where fluctuations are small. 
If the temperature in the formulae obtained varies in 

inverse proportion to 21 β− , we do not come to any 

contradictions or absurdity.   
6. The theory of the charge transfer according to H.Ott 

and E.V.Veitsman[3, 25]. 
The theory is correct under relativistic conditions 

if only the object temperature varies in inverse 

proportion to 21 β− . 

7. A closed thermodynamical cycle and the well-known 
thermodynamical principles as follows   

∫ = 0Eδ , 

∫ ∫ == 0
T
QS δδ , 

are correct if 2
0 1/ β−= TT [3, 22]. 

8. The radiation energy and momentum vary in the 

range 0 – c inverse proportional to 21 β− , i.e., 

as 2
0 1/ β−= TT  [3]. 

9. Chemical reaction rates w, e.g., 

[ ] ( ) 11
1 Aa

RT
AaRTaA

dt
dw r ===
Α

=
Αν

, 

vary over the interval 0 – c inverse proportional to 
21 β− , i.e., as 2

0 1/ β−= TT [23]. Here Αν is the 

stoichiometric coefficients of the substance A; Ar
 is the 

affinity according to De Donde; a is a phenomenological 
coefficient. 

We cannot obtain a consistent aggregate of the 
thermodynamic parameters and dependences 
containing the parameters under Lorentz transformation 

if 0TT =  
and .1 2

0 β−= TT  What is more, we 
sometimes come to contradictions with special relativity 
and the first principle of thermodynamics using these 
relations, e.g., 0TT =   (see below). As to the theories 
where the latter temperature transformations are used 
for a specific process, and contradictions are absent at 
first sight, so we again come to absurdity but in a 
implicit form. For example, Clapeyron s'  equation 

NkTpV =  is quite formally correct under relativistic 
conditions even if the gas temperature varies according 
to Planck, however at the same time formula (45) 
describing the energy of the molecule (atom) 
translational moving is correct under the relativistic 
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conditions if the temperature of the object transforms 
only following Ott s'  theory. The other variants are 
absent here. However this dependence and Clapeyron
s'  equation treat the same division of physics – 

thermodynamics of gases and vapours. But if in the 
framework of this division of physics the temperature of 
the system may transform under relativistic conditions 
otherwise, then it is nonsense.   

Take, e.g., the equality T=T0 )( 'TT = . As 
known, the temperature of gases or liquids depends on 
the velocities w their molecules (atoms) relatively the 
mass centre of the system under study. Let us be an 
observer in the laboratory references frame (see above, 
Fig,1). He is observing the microparticle velocities 
relatively the mass centre of a moving system containing 
a gas. The velocity components are equal according to 
SR:      

w
1
 =

2

'
1

'
1

1
c
vw

vw

+

+
   ,

 

w
2  

=

2

'
1

2'
2

1

1

c
vw

w

+

− β
  , 

w
3
=

2

'
1

2'
3

1

1

c
vw

w

+

− β
   .  

As we see, the velocity w has to vary at 
transition from one reference frame to another one. The 
equality T=T0 contradicts to SR. It contradicts also the 
first principle of thermodynamics. Indeed, according to 
Callen and Horwitz [4] enthalpy H, chemical potential μ 
and temperature T are the Lorentz-invariants. However, 
then we will be at a deadlock because according to the 
Gibbs’ equation (it follows from the first principle of 
thermodynamics)  

                 ,;
,, pSNp N

H
S
HT 







∂
∂

=






∂
∂

= µ               (47) 

where S is the entropy, p
 
is the pressure and N is the 

number of microparticles in the system. Going from one 
referee frame to other one, we obtain in (47) 0/0, i.e., 
indeterminate forms which we cannot evaluate. 

 

Of utmost interest is to consider if the 
dependence (20) remains valid for the case of an 
ultrarelativistic high-temperature spherical plasma 
(fireball) [11]. According to the author of [11], the 
spectrum of its equilibrium radiation ( )*ωεγd

 
(J/cc) 

due to the annihilation of electrons and positrons is 
described by the dependence   

          ( ) *

22
*

2
*

332

4

* 1*
ω

ωω
π

ωε ωγ d
e

f
c

Td
−

∆−
=


 ,   (48)             

in the fireball, where T/* ωω =
 
is the dimensionless 

frequency; Т>>mc2
 

is the energy, i.e., apparently, 
kT=θ (k is the Boltzmann constant, T

 
is now the 

absolute temperature; θ
 
not to be confused with the 

angle similarly designated (see above); Trelp /,ω=∆ ; 

relp,ω  is the relativistic frequency of the plasma 
oscillations; f is a dimensionless constant.  

Formula (20) is valid for the case (48) with the 
vector part of the temperature dependent on the total 
velocity of electrons and positrons in the fireball but not 
on the velocity of its centre of mass.  If their velocities 
are very high, then we have the well-known case 
described, e.g., in [10]. This is the case of a system of 
particles being widely apart and moving with very high 
velocities. It should be noted that these two cases are 
not fully identical, since the microparticles in [10] are not 
identical before and after the collision. In article [11], an 
electron-positron collision results in their annihilation. 
However these cases are very similar, thus the system 
energy ε  may be given as 

                           ∑
− 2

2

2

1

~

c
v

сm

i

iε ,                        (49) 

where im  
is the microperticle mass, iv  

is its velocity.
 

Then the vector part of the temperature in the 
ultrarelativistic case will transform in inverse proportion 

of the roots 22 /1 cvi− . Here we immediately arrive at 

the conclusion that the dependence (48) is very 
doubtful, since the right side does not transform 
identically to its left side under the relativistic conditions. 
It should be also noted that the object studied in [11] is, 
in fact, a stable fireball. Evidently, when the density of 
electrons and positrons exceeds a certain limit, the 
stability will be broken, and an explosion will occur.  

IV.
 

Conclusions 

Law was obtained for the black-body radiation 
in the whole interval of its (black-body) movement 
speed, i.e., from zero up to the speed of light in vacuum.

 

This law is a special case when an angle θ
 
between the 

movement velocity of the object under study and the 
observer is equal to zero. When the black-body speed is 
zero we obtain Stefan-Boltzmann law; when the black 
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body speed tends to the speed og light in vacuum we 
do not come to absurdity and contradictions.   

Appendix. Obtaining the solution of (44). 
We have from (43) 

                     ( ) Λ=+−− eee ln1lnln ϑϑ ,                (50) 

                       Λ=







+−

e
e

e ln
1

ln ϑ

ϑ

       (51) 

                                   Λ=







+−

e
e

e
ϑ

ϑ

1
,                   (52) 

                                 ϑϑ eee +−=Λ− 1 ,                     (53) 

                             1)( −=−Λ− ϑϑ eee ,                      (54) 

                                ( ) 11 −=−Λ−eeϑ  ,                     (55) 

and finally 

),1ln(
1

1ln
1

1ln Λ−
Λ−Λ− −−=






−

=







−
−= e

ee
ϑ  i. e., (44). 
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