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 Introduction- It is a well-known fact that the in- radius of a Pythagorean triangle (A right-triangle 
whose sides form a Pythagorean triple) is always an integer [1]. The purpose of this note is to 
extent this result in the following sense. 

If in any Pythagorean triangle a string of a finite number (say, k) of equal circles, inside the 
triangle, are so taken that  

i. each of the k circles touches a given side (other than the hypotenuse) 
ii. each of the (k-2) non-extreme circles also touch the two neighbouring circles. 
iii. the extreme two circles touch the nearest other side also.       
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It is a well-known fact that the in- radius of a Pythagorean triangle (A right-triangle 

whose sides form a Pythagorean triple) is always an integer [1]. The purpose of this note 

is to extent this result in the following sense.

If in any Pythagorean triangle a string of a finite number (say, k) of equal circles, inside 

the triangle, are so taken that 

i. each of the k circles touches a given side (other than the hypotenuse)

ii. each of the (k-2) non-extreme circles also touch the two neighbouring circles.

iii. the extreme two circles touch the nearest other side also.

We claim that these circles will have a rational radius for all k. We also work out 

the value of r explicitly.

              Before proceeding for the proof, we need to use the following facts

a. A special category of Pythagorean triples is that of primitive 

Pythagorean triples which are merely  Pythagorean triples having no 

common factors.

b. Every Pythagorean triple is of the form 2ab ,
2 2a b− ,

2 2a b+ , where a

and b are positive coprime integers and a b    [2].

           

            Let ABC be right angled at B.

            Without loss of   generality, we can assume that the sides of ABC form a
 

primitive pythagorean triple. Let 2AB ab= , 
2 2BC a b= − and 

2 2AC a b= +

where
 
a and b are coprime with a b .
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e-mail: kbsubramaniam.1950@gmail.com
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We need to consider two cases depending on whether the strings of circles are taken 

on BC or on AB. Accordingly, we have to prove our assertion considering both the 

cases.

           It may be noted here that in this case 
2 2(2k -1)r<(a -b )                   (1)

           Let O be the centre of the circle (nearest to AC) and OM ⊥ BC.

            Let r be the radius of each of these circles.

            Clearly, OC bisects ACB. Let ACB = 2 so that OCB =   .

             We have,

2 2

OM
tan

MC (2 1)

r

a b k r
 = =

− − −

Also, 

2 2

AB 2
tan 2

BC

ab

a b
 = =

−
  

      
2 2

22 2

2 2 2

2

2 ( ) (2 1)

1
[( ) (2 1) ]

r

ab a b k r

ra b

a b k r

− − −
 =

− −
− − −

      (By the duplication formula for tangent function)

     
22 2 2 2 2 2 2 2 2 2 2 2{4 2( 2 ) ( )} ( )(4 2 ) ( ) 0abk a b ab k a b r a b abk a b ab r ab a b + − − − − − − + − − + − =
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Case 1: String of circles lying along BC
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i.e, 
2 0Ar Br C− + =     

where,

2

2 2 2 2 2

2 2 2

2 2 2

4 2( 2 ) ( )

( )(4 2 )

( )

A abk a b ab k a b

B a b abk a b ab

C ab a b

= + − − − −

= − + − −

= −

                we have,

22 2 22 2 2 2 2 2 2 2 2 2 24 4 {4( ) (4 2 ) ( ) 2( 2 ) ( )}B AC a b abk a b ab ab a b abk a b ab k a b− = −− + − − − + − − − −

              4 4 2( )a b= −

which clearly asserts that r must be rational

  now,

                  
2 4

2

B B AC
r

A

 −
=

22 2 2 4 4

2 2 2 2 2

( )(4 2 ) ( )

2{4 2( 2 ) ( )}

a b abk a b ab a b

abk a b ab k a b

− + − −  −
=

+ − − − −

22 2 2 4 4( )(4 2 ) ( )

2(2 )(2 )

a b abk a b ab a b

ak b a bk b a

− + − −  −
=

− − − +

Here we claim that we have to discard the plus sign.

Because if we take plus sign then r becomes

                         

22 2 2 2 2( ){(4 2 ) ( )}

2(2 )(2 )

a b abk a b ab a b

ak b a bk b a

− + − − + +
− − − +

                             
2 2( )(2 )

(2 )(2 )

a a b bk b a

ak b a bk b a

− − +
=

− − − +

                              
2 2( )

(2 )

a a b

ak b a

−
=

− −

                        By the condition (1), we have

                            
2 2

2 1
a b

k
r

−
 −
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

                         2
2 1

ak b a
k

a

− −
  −

                          
0b − 

                         Which is absurd. This justifies our claim
                             If we take minus sign r becomes

            

22 2 2 2 2( ){(4 2 ) ( )}

2(2 )(2 )

a b abk a b ab a b

ak b a bk b a

− + − − − +
− − − +

              
2 2( )(2 )

(2 )(2 )

b a b ak b a

bk b a ak b a

− − −
=

− + − −

              
2 2( )

(2 1)

b a b

k b a

−
=

− +

Clearly, this option satisfies the condition (1)

                    It may be noted here that (2k -1)r<2ab                               (2)

           Let Q be the centre of the circle (nearest to AC) and QN ⊥ AB.

            Let r be the radius of each of these circles.
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Case 2: String of circles lying along BC

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

            Clearly, QA bisects BAC. Let BAC = 2 so that QAB =  .

             

              

                 We have,

tan
2 (2 1)

QN r

NA ab k r
 = =

− −

Also, 

2 2

tan 2
2

BC a b

AB ab


−
= =   

2 2

2

2

2

2 (2 1)

2
1

{2 (2 1) }

r

a b ab k r

rab

ab k r

− − −
 =

−
− −

    (By the duplication formula for tangent function)

2 2 2 2 2 2 2 2 2{( )( ) (2 1)} ( ){( )(2 1) 2( )} ( )( ) 0a b k k ab k r ab a b k ab r a b ab − − + − − − − + + − =

i.e, 
2 0Ar Br C− + = , where

2 2 2( )( ) (2 1)A a b k k ab k= − − + −

2 2( ){( )(2 1) 2( )}B ab a b k ab= − − +

2 2 2( )( )C a b ab= −

2 2 2 2 2 2 2 2 2 2 24 ( ) {( )(2 1) 2( )} 4{( )( ) (2 1)}( )( )B AC ab a b k ab a b k k ab k a b ab− = − − + − − − + − −

                2 2 2 2( ) ( )ab a b= +

which clearly asserts that r must be rational

now,

     
2 4

2

B B AC
r

A

 −
=

        
2 2 2 2

2 2 2

( ){( )(2 1) 2( )} ( )

2{( )( ) (2 1)}

ab a b k ab ab a b

a b k k ab k

− − +  +
=

− − + −
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

       
2 2 2 2( ){( )(2 1) 2( )} ( )

2( )( )

ab a b k ab ab a b

ka kb b ka kb a

− − +  +
=

− + + −

                Here  we claim that we have to discard the plus sign.

Because if we take plus sign then r becomes

2 2 2 2( ){( )(2 1) 2( )} ( )

2( )( )

ab a b k ab ab a b

ka kb b ka kb a

− − + + +
− + + −

       
2( )( )( )

2( )( )

ab a b ka kb b

ka kb b ka kb a

+ − +
=

− + + −

        
( )( )

( )

ab a b

ka kb a

+
=

+ −

                        By the condition (2), we have

    
(2 1)

2

k r
ab

−
   

( ) (2 1)

( ) 2

r ka kb a k r

a b

+ − −
 

+

  
b

k
a b

 
+

   

Which is absurd (as k is an integer). This justifies our claim

If we take minus sign r becomes

                      

2 2 2 2( ){( )(2 1) 2( )} ( )

2( )( )

ab a b k ab ab a b

ka kb b ka kb a

− − + − +
− + + −

   
( )( )

( )( )

ab a b ka kb a

ka kb b ka kb a

− + −
=

− + + −

   
( )

( )

ab a b

k a b b

−
=

− +

Clearly, this option satisfies the condition (2)
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

             

            

Interestingly, the values of r in in both the cases are free from k in the 

numerator.                                                                                          
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