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An Extension of ‘In-Radius Property’ of Pythagorean Triangles
By K. B Subramaniam & Aji Thomas

Introduction- It is a well-known fact that the in- radius of a Pythagorean triangle (A right-triangle
whose sides form a Pythagorean triple) is always an integer [1]. The purpose of this note is to
extent this result in the following sense.

If in any Pythagorean triangle a string of a finite number (say, k) of equal circles, inside the
triangle, are so taken that

I.  each of the k circles touches a given side (other than the hypotenuse)
ii. each of the (k-2) non-extreme circles also touch the two neighbouring circles.
ii.  the extreme two circles touch the nearest other side also.
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INTRODUCTION

It is a well-known fact that the in- radius of a Pythagorean triangle (A right-triangle
whose sides form a Pythagorean triple) is always an integer [1]. The purpose of this note
is to extent this result in the following sense.

If in any Pythagorean triangle a string of a finite number (say, k) of equal circles, inside
the triangle, are so taken that
i. each of the k circles touches a given side (other than the hypotenuse)
ii. each of the (k-2) non-extreme circles also touch the two neighbouring circles.
iii. the extreme two circles touch the nearest other side also.
We claim that these circles will have a rational radius for all k. We also work out
the value of r explicitly.

Before proceeding for the proof, we need to use the following facts
a. A special category of Pythagorean triples is that of primitive
Pythagorean triples which are merely Pythagorean triples having no

common factors.
b.  Every Pythagorean triple is of the form 2ab, a®—b*, a’ +b*, where a
and b are positive coprime integersand a>b [2].

Proof:
Let AABC be right angled at B.
Without loss of generality, we can assume that the sides of AABC form a
primitive pythagorean triple. Let AB =2ab, BC =a*—b*and AC =a*+b?,
where aand b are coprime with a>b.
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We need to consider two cases depending on whether the strings of circles are taken
on BC or on AB. Accordingly, we have to prove our assertion considering both the

cases.

Case 1: String of circles lying along BC

2ab

string of k equal circles

It may be noted here that in this case (2k-1)r <(a’-b?) )
Let O be the centre of the circle (nearest to AC) and OM L BC.

Let r be the radius of each of these circles.
Clearly, OC bisects £ ACB. Let Z ACB =26 sothat L OCB = 6.

We have,
tan @ = OM = '
MC a“-b"—(2k-Dr
Also,
tan 20 = AB = Zzibz
BC a“-b
2r
2 2
= 223.?)2 = (@’ —-b )—r(22k —Dr (By the duplication formula for tangent function)
a —

(@2 =b%) = (2k =D)rT?

— {4abk? + 2(a® —b? — 2ab)k — (2% —b2)}r? — (a? —b?)(4abk +a> —b " — 2ab)r + ab(a> —b?)2 =0
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i.e, Ar’—=Br+C=0

where,

A= 4abk?+2(a® —b? —2ab)k — (a* —b?)
B =(a?—b?)(4abk +a>—b" —2ab)

Notes C =ab(a’-b*)*
we have,

B2 —4AC = (a2 —b?)*(4abk +a®>—b" —2ab) — 4ab(a? —b?)*{4abk? + 2(a? —b? — 2ab)k — (a2 —b?)}

— (a4 _b4)2

which clearly asserts that r must be rational

now,

_ B++/B*-4AC

2A

r

_ (a’—b?)(4abk +a?—b" —2ab)+(a‘ —b*)

2{4abk? + 2(a% —b? — 2ab)k — (a® —b?)}

(a®>—b?)(4abk +a?—b" —2ab) + (a* -b*)

2(2ak —b—a)(2bk —b +a)

Here we claim that we have to discard the plus sign.

Because if we take plus sign then r becomes

(a2 —b?){(4abk +a*—b’ —2ab) + (a% +b?)}

2(2ak —b—a)(2bk —b+a)

a(a? —b?)(2bk —

b+a)

" (2ak—b-a)(2bk—b+a)

_a(@*-b?)
" (2ak—b-a)

By the condition (1), we have

a’—b?
r

>2k -1
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2ak —b-a
= — >
a

2k -1

=-b>0

Which is absurd. This justifies our claim
If we take minus sign r becomes

(a2 —b?){(4abk +a% —b’ —2ab)— (a? +b?)}
2(2ak —b—a)(2bk —b + a)

_ b(a®—b*)(2ak —b-a)
~ (2bk—b+a)(2ak —b—a)

_ b(a*-b?)
~ (2k-1b+a

Clearly, this option satisfies the condition (1)

Case 2: String of circles lying along BC

string of k equal circles
|
2ab

a2_b2

It may be noted here that (2k-1)r <2ab (2)
Let Q be the centre of the circle (nearest to AC) and QN L AB.

Let r be the radius of each of these circles.
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Clearly, QA bisects ZBAC. Let / BAC =2 sothat ZQAB = f.

We have,
tan g = QN = '
NA 2ab-(2k-1Dr
Notes
Also,
2 K2
tan2p = BC _2 b
AB 2ab
2r
2 K2 _ _
= a2 ;) = 2ab (2k2 l)r (By the duplication formula for tangent function)
a r

1_{2ab — 2k -Dry

= {(a% —b?)(k? —k) +ab(2k —1)}r? — (ab){(a —b?)(2k —1) + 2(ab)}r +(a’ —b?)(ab)* =0
i.e, Ar’—Br+C =0, where

A= (a2 —b?)(k? —k)+ab(2k —1)

B = (ab){(a —b?)(2k —1) + 2(ab)}

C =(a® —b?)(ab)?
B? —4AC = (ab)*{(a —b”)(2k —1) + 2(ab) ¥ — 4{(a> —b?)(k? — k) + ab(2k —1)}(a> —b*)(ab)?

— (ab)?(a? +b?)?

which clearly asserts that r must be rational

now,

_ B++/B®-4AC

2A

r

_ (ab){(a® -b?)(2k —1) + 2(ab)} +ab(a’ +b?)
- 2{(a% —b%)(k? —k) +ab(2k —1)}
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_ (ab){(a® —b?)(2k —1) + 2(ab)} + ab(a’ +b?)
- 2(ka—kb +b)(ka+kb—a)

Here we claim that we have to discard the plus sign.

Because if we take plus sign then r becomes

(ab){(a? —b?)(2k —1) + 2(ab)}+ ab(a? + b?)

2(ka—kb +b)(ka+ kb—a)

_ 2(ab)(a+b)(ka—kb+b)
~ 2(ka—kb+b)(ka+kb—a)

_ (ab)(a+h)
~ (ka+kb—a)

By the condition (2), we have

2k ~D)r
2

<ab

r(ka+kb—a) . 2k -Dr
(a+b) 2

=k <—

Which is absurd (as Kk is an integer). This justifies our claim

If we take minus sign r becomes

(ab){(a? —b?)(2k —1) + 2(ab)}—ab(a? +b?)

2(ka—kb +b)(ka +kb—a)

_ab(a-b)(ka+kb-a)
~ (ka—kb+b)(ka+kb—a)

_ab(a—b)
~ k(a-b)+b

Clearly, this option satisfies the condition (2)

Notes



Notes

Remark

Interestingly, the values of r in in both the cases are free from k in the
numerator. a
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