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Cyclic codes are among the most useful and well-studied code families for
various reasons, such as effective encoding and decoding. A cyclic code can
be viewed as an ideal in a certain quotient ring obtained from a polynomial
ring with coefficients from a finite field [1, 2]. Quasi-Cyclic codes are a gener-
alization of cyclic codes [6, 8]. Algebraically, Quasi-Cyclic codes are modules
rather than ideals [10, 13].
A mΘ approach of the notion of sets has allowed to bring out the new classes
of sets: mΘ sets. The notion of modal Θ-valent set (mΘ set) noted (FpZ, Fα),
p prime, is defined by F. Ayissi Eteme in [12, 16, 7]. Research on modal al-
gebra has evolved and led to the theory of mΘ codes [11, 15, 17].
The theory of error-correcting mΘ codes over finite fields has experienced
tremendous growth since its inception [5]. Progress has been attained in the
direction of determining the structural properties of mΘ codes over large
families of mΘ fields. This paper is a contribution along those lines as we
focus on codes over finite mΘ pseudo fields with a linear lattice of mΘ ideals
(the so-called chain mΘ pseudo fields).
The purpose of this paper is to obtain structure theorems for Quasi-Cyclic
codes in more general setting. The structures of Quasi-Cyclic codes of length
r over finite chain mΘ pseudo field F(pkZ, 1) are established when r is not
divisible by the characteristic of the residuemΘ pseudo field F(pkZ, 1). Some
cases where r is divisible by the characteristic of the residue mΘ pseudo field
F(pkZ, 1) are also considered.

Abstract- The sets present an enrichment from the logical viewpoint compared with the 
classical sets. The subset of the invariants of a set is a classical set, which leads to the 
canonical construction of the structures of modal - valent pseudo field. In this note the purpose is 
to define on a finite chain pseudo field, , the structures of Quasi-Cyclic codes of 
length r.

Keywords: 𝑚𝑚Θ set, 𝑚𝑚Θ pseudo field, chain 𝑚𝑚Θ pseudo field, quasi-cyclic 𝑚𝑚Θ codes, 
linear 𝑚𝑚Θ codes.
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After presenting preliminary concepts and results on mΘ set in Section 2.
Section 3 presents a canonical construction of the structures of modal Θ-
valent field and modal Θ-valent field. Section 4 is devoted to the notion
of modal Θ-valent extension of a finite field. Section 5 define the intrin-
sic polynomial representation of the mΘ pseudo field F(pkZ, r). Section 6
presents the mΘ Quasi-Cyclic codes. Lastly, section 7 presents the structure
of Quasi-Cyclic code over finite chain mΘ pseudo field F(pkZ, 1).

(FpZ, Fα)

mΘ sets are considered to be non-classical sets which are compatible with a
non-classical logic called the chrysippian mΘ logic.

[14] Let E be a non-empty set, I be a chain whose first and
last elements are 0 and 1 respectively, (Fα)α∈I∗ where I∗ = I \{0} be a family
of applications form E to E.
A mΘ set is the pair

(
E, (Fα)α∈I∗

)
simply denoted by (E, Fα) satisfying the

following four axioms :

• ∩
α
Fα (E) = ∩

α∈I∗
{Fα (x) : x ∈ E} 6= ∅;

• ∀α, β ∈ I∗, if α 6= β then Fα 6= Fβ;

• ∀α, β ∈ I∗, Fα ◦ Fβ = Fβ;

• ∀x, y ∈ E, if ∀α ∈ I∗, Fα (x) = Fα (y) then x = y.

[16] (The theorem of mΘ determination)
Let (E,Fα) be a mΘ set.

∀x, y ∈ E, x =Θ y if and only if ∀α ∈ I∗, Fα (x) = Fα (y) .

[16]

[5] Let C (E,Fα) = ∩
α∈I∗

Fα (E). We call C (E,Fα) the set of

mΘ invariant elements of the mΘ set (E,Fα).

[16] Let (E,Fα) be a mΘ set. The following properties
are equivalent:

1. x ∈ ∩
α∈I∗

Fα (E);

2. ∀α ∈ I∗, Fα (x) = x;

3. ∀α, β ∈ I∗, Fα (x) = Fβ (x);

4. ∃µ ∈ I∗, x = Fµ (x).

Quasi-Cyclic Codes Over Finite Chain 𝑚𝑚Θ Pseudo Field F(𝑝𝑝𝑘𝑘Z, 1)

II. Preliminaries

a) The modal Θ-valent set structure and the algebra of 

Definition 0.1. 

Theorem 0.1. 

Proof 0.1. 

Definition 0.2. 

Proposition 0.1. 

Ref

14.F
. 

A
y
issi 

E
tem

e, A
n
n
ea u

 
c h

rysip
p
ien

 
-valen

t,
C

R
A

S
,  

P
aris 

298, 
sé

rie
1, 1984,             

p
p
.1 -

4.
Θ



   

   
  

  
  

    
 

  
 

[16]
[12]

Let (E,Fα) and (E ′, F ′α) be two mΘ sets. Let X be a non-empty set. We
shall call

1. (E ′, F ′α) a modal Θ-valent subset of (E,Fα) if the structure of mΘ set
(E ′, F ′α) is the restriction to E’ of the structure of the mΘ set (E,Fα),
this means:

• E ′ ⊆ E ;

• ∀α : α ∈ I∗, F
′
α = Fα|E′ .

2. X a modal Θ-valent subset of (E,Fα) if:

• X ⊆ E ;

• (X,Fα|X ) is a mΘs which is a modal Θ-valent subset of (E,Fα).

In all what follows we shall write Fαx for Fα (x), FαE for Fα (E), etc · · ·

Let p ∈ N, a prime number. Let us recall that if a ∈ FpZ.

FpZ = Fp ∪ {xpZ : ¬ (x ≡ 0 (modp))} ; Fp = {0, 1, 2, · · · , p− 1}.

We define the mΘ support of a denoted s (a) as follows:

s (a) =

{
a if a ∈ Fp;
x if a = xpZwith e(x ≡ 0 (mod p)) .

Thus s (a) ∈ Fp.
[14] Let ⊥ be a binary operation on Fp. So, ∀a, b ∈ Fp, a ⊥

b ∈ Fp. Let x, y ∈ FpZ. We define a binary operation ⊥∗on FpZ as follows :

x ⊥∗ y =

s(x) ⊥ s(y) if
{
x, y ∈ Fp
(s(x) ⊥ s(y)) ≡ 0 (mod p) otherwise

(s(x) ⊥ s(y))pZ otherwise.

⊥∗ as defined above on FpZ will be called a mΘ law on FpZ for x, y ∈ FpZ.
Thus we can define x + y ∈ FpZ and x × y ∈ FpZ for every x, y ∈ FpZ,

where + and × are mΘ addition and mΘ multiplication respectively.

[12] (FpZ, Fα, +, ×) is a mΘ ring of unity 1 and of mΘ unity
1
pZ .

[12]
Since p is prime, (FpZ, Fα) is a mΘ field.

[4] x is a divisor of zero in (FpZ, Fα) if it exists y ∈ FpZ
such that x× y = 0

[4]
p = 2, we have F2Z = {0, 1, 12Z, 32Z}

The table of mΘ determination and tables laws of F2Z.
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Proof 0.2. 

Definition 0.3. 

Definition 0.4. 

Theorem 0.2. 

Proof 0.3. 

Remark 0.1. 

Definition 0.5.

Example 0.1. 
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F2Z 0 1 12Z 32Z
F1 0 1 1 0
F2 0 1 0 1

+Θ 0 1 12Z 32Z
0 0 1 12Z 32Z
1 1 0 0 0

12Z 12Z 0 0 0
32Z 32Z 0 0 0

×Θ 0 1 12Z 32Z
0 0 0 0 0
1 0 1 12Z 32Z

12Z 0 12Z 12Z 32Z
32Z 0 32Z 32Z 12Z

Observation:
F2Z has no divisor of zero, is a mΘ ring from four elements, that’s a mΘ
field of four elements.

Let p be a prime number, k 6= 0 a positive integer, q = pk and Fq a finite
field with q elements. Two mΘf K1 and K2 of same characteristic p and of
same cardinal p2k are mΘ isomorphic.

Consider that k = 1, so q = p. Fp = Z
pZ is the prime field of characteristic

p and of p elements. The modal Θ-valent quotient ring (mΘqr) FpZ as the
modal Θ-valent quotient ZpZ

pZpZ
.

Let F∗pZ = FpZ − {0}. ∀x ∈ F∗pZ, ∃x′ ∈ F∗pZ / x · x′ =
1pZ
pZpZ

.

FpZ has p2 elements but has no proper sub mΘ ring verifying the preceding
property for F∗pZ.
For which reason, FpZ is the prime mΘf with p2 elements. Fp is the prime
sub field of the mΘ invariants of FpZ. Let f be a polynomial with coefficients
in Fp. Clearly, it is all the same that:

1. fp(x) irreducible over Fp.

2. fpZ(x) irreducible over FpZ.

Let F(pZ, r) =
FpZ[X]

(f(X))
be the mΘr modulo f(x), (mΘr(f)). f(x) ∈ Fp[X].

deg(f) = r, r ∈ N∗, f irreducible over Fp.

FpZ[X] −→ F(pZ, r) : g 7−→ rg; g = qg · f(x) + rg, 0 ≤ dg(rg) < dg(f).

(FpZ)r −→ F(pZ, r) : (a0, · · · , ar−1) 7−→

r−1∑
i=0

aix
i is a bijection and therefore

becomes a mΘr isomorphism for the mΘ laws modulo f(x). Since f is
irreducible over FpZ, F(pZ, r) is a mΘf .
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III. Canonical Construction of Modal Θ-Valent Fields (𝑚𝑚 Θ𝑓𝑓) 
and Modal Θ-Valent Pseudo Fields(𝑚𝑚Θ𝑝𝑝𝑓𝑓)

a) Canonical construction of modal Θ-valent fields (mΘf)[9]

Observations:
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1. F(pZ, r) is a mΘf of cardinal p2r;

2. FpZ is its prime sub mΘf of cardinal p2;

3. FpZ and F(pZ, r) are booth of characteristic p since ∀i :

i = 0, · · · , p− 1; 1 + 1 + · · ·+ 1︸ ︷︷ ︸
i times

+ 1pZ + · · ·+ 1pZ︸ ︷︷ ︸
(p−i) times

= 0

[9]

According to a previous notation,

F(pZ, 1) = FpZ, F(p, 1) =
Z
pZ
, F(p, r) = GF(p, r).

Consider that k 6= 1, so q = pk. Let then F(pkZ, 1) denote the quotient mΘr

FpkZ =
ZpZ
pkZpZ

and let

O(pk, 1) = Opk = { a

pkZpZ
: a ∈ ZpZ, s(a)/pk} = { a

pkZ
: a ∈ Z, a/pk}.

Let F∗(pkZ, 1) = F(pkZ, 1)−O(pk, 1); k ∈ N∗. Then ∀x : x ∈ F∗(pkZ, 1), ∃x′ :
x′ ∈ F∗(pkZ, 1) : x · x′ = 1pZ

pkZpZ
.

So we call FpkZ a mΘ pseudo field (mΘpf). FpkZ has pk+1 elements and is of
characteristic pk. It has no proper sub mΘpf with the same as the preceding
properties for F∗(pkZ, 1). Finally, F(pkZ, 1) is the prime mΘpf with pk+1

elements.

Let now f ∈ Zpk [X] : dg(f) = r and f irreducible over Zpk = Z
pkZ . Let

F(pkZ, r) = F(pkZ, 1)[X]
(f(X))

mΘr modulo f(x). F(pkZ, r) is a mΘpf .

(F(pkZ, 1))r −→ F(pkZ, r) : (a0, · · · , ar−1) 7−→
r−1∑
i=0

aix
i is a bijection and

therefore a mΘ ring modulo f(X) isomorphism. Since cardF(pkZ, 1) = pk+1,
cardF(pkZ, r) = p(k+1)r.

[9] ∀k ∈ N− {0},
1. F(pkZ, r) is a mΘpf of cardinal p(k+1)r.

2. F(pkZ, 1) is its prime sub mΘpf of pk+1 elements.

3. F(pkZ, 1) and F(pkZ, r) are booth of characteristic pk.

[9]

F(pk, r) = GF(pk, r) is the sub pseudo field of the mΘ invariants of
the mΘpf F(pkZ, r). Fpk = Z

pkZ is the prime sub pseudo field of the mΘ

invariants of FpkZ; the prime sub mΘpf with pk+1 elements.

Quasi-Cyclic Codes Over Finite Chain 𝑚𝑚Θ Pseudo Field F(𝑝𝑝𝑘𝑘Z, 1)
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Theorem 0.3.

Proof 0.4. 

b) Canonical construction of modal Θ-valent pseudo fields (mΘpf)

Theorem 0.4.

Proof 0.5. 
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[9]

1. Any mΘf K of characteristic p prime and then of cardinal p2r, r ∈ N∗
is mΘ isomorphic to the mΘf F(pZ, r);

2. Any mΘf K ′ of characteristic pk, p prime and then of cardinal p(k+1)r,
r ∈ N∗ is mΘ isomorphic to the mΘf F(pkZ, r).

[9]

Note thatK is a finite field of cardinal pn, p, n ∈ N∗ and then of characteristic
p prime. β ∈ K, of minimal polynomial mβ(x) ∈ Fp[x], r = degFp(mβ(x)) ∈
N∗, mβ(x) is irreducible over Fp.

Let Iβ = 〈mβ(x)〉Fp[x] the principal ideal of Fp[x] gener-
ated by mβ(x). Since Fp ⊂ FpZ, Fp[x] ⊂ FpZ[x].
Let a ∈ F∗pZ: ∃µ, Fµa 6= 0, then Fµa ∈ F∗p, thus mβ(Fµa) 6= 0 and since
Fµmβ(a) = mβ(Fµa), Fµmβ(a) 6= 0. Then mβ(a) 6= 0.

Therefore, mβ(x) is also irreducible over FpZ. It is known that FpZ[x]

〈mβ(x)〉 is a

mΘ field with p2r elements and then of characteristic p. Fp[x]

mβ(x)
is its subfield

of the Θ-invariants who has pr elements and characteristic p.

Let Iβ pZ = 〈mβ(x)〉FpZ[x] the principalmΘ ideal of FpZ[x] generated bymβ(x).
∀α, FαIβ pZ = Iβ therefore Iβ pZ is amΘ maximal ideal of FpZ[x]. Then define
Φβ pZ : FpZ[x] −→ F(pZ, n) as follows; if f(x) =

∑q
i=0 aix

i ∈ FpZ[x],

Φβ pZ(f(x)) = f(β) =

q∑
i=0

aiβ
i ∈ F(pZ, n).

By definition Φβ pZ is amΘ ring morphism since then Φβ pZ(FpZ[x]) = {f(β) | f(x) ∈
FpZ[x]} is a sub mΘ field of F(pZ, n). Therefore the following diagram mΘ
commutes

FpZ[x]
Φβ pZ//

ϕΦβ pZ
��

ϕΦβ pZ(FpZ[x])
ipZ // F(pZ, n)

FpZ[x]

Iβ

Φ̃β pZ=
Φβ pZ
〈mβ(x)〉

88

• FpZ[x]

Iβ
=

FpZ[x]

〈mβ(x)〉 is a mΘ field of cardinal p2r and then of characteristic
p.
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Theorem 0.5. 

Proof 0.6. 

IV. Modal Θ-Valent Extension of a Finite Field

Observations:
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• Through the mΘ ring isomorphism Φ̃β pZ, Φ̃β pZ(FpZ[x]) becomes a mΘ
subfield of F(pZ, n) with the mΘ field structure of p2r elements ex-
ported from FpZ[x]

〈mβ(x)〉 by Φ̃β pZ.

FpZ(β) = ΦpZ(β) = Φ̃β pZ(FpZ[x]) = {f(β) | f(x) ∈ FpZ[x]}

1. FpZ[β] has p2r elements and characteristic p.

2. FpZ is the prime mΘ subfield of FpZ[β].

3. Any sub mΘ field of F(pZ, n) containing FpZ and β contains FpZ[β].

4. ∀a ; a ∈ FpZ[β], ∃ai, i = 0, 1, · · · , r − 1 / ai ∈ FpZ : a =
∑r−1

i=0 aiβ
i.

Henceforth we call FpZ[β] the mΘ extension of Fp and FpZ
to β.

We call a mΘ primitive element of F(pZ, n) any generator
if there exists one, noted α, of F(pZ, n) − F(p, n). This meaning that ∀a :
a ∈ F(pZ, n)− F(p, n), ∃m ∈ N : 0 ≤ m ≤ ω(F∗(pZ, n); a = αm.

23Z and 53Z are two m3 generators of F3Z.

If α ∈ F(pZ, n) is amΘ primitive element then F(pZ, n) =
FpZ(α).

Suppose u ∈ F(pZ, n) − F(p, n) and α is a mΘ primitive el-
ement: ∃m, m ∈ N : 0 ≤ m ≤ ω(F∗(pZ, r), u = αm. Let f(x) = xm ∈
FpZ[x], Φβ pZ(f(x)) = f(α) = xm.

Therefore u = αm = f(α) ∈ FpZ(α). Thus F(pZ, n) = FpZ(α).

Let k ∈ N, r, p ∈ N∗, p prime 2 ≤ p. It is plain in [7] that:

∏
a∈F∗(pkZ, 1)

(x− a) =
∏

x∈F̃∗
pk

(x− a)×
∏

a∈F∗(pkZ, 1)−F∗
pk

(x− a)

= (xϕ(pk) − 1)(xϕ(pk+1) − 1pZ).

F(pk, 1) = Z
pkZ .
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V. The Intrinsic Polynomial Representation of 
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Θ

F(𝑝𝑝𝑘𝑘Z, )r



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let < xϕ(pk)− 1 > and < xϕ(pk+1)− 1pZ > be the ideals of
F(pk, 1)[x] respectively generated by xϕ(pk) − 1 and xϕ(pk+1) − 1pZ, then

1. < xϕ(pk) − 1 > is a maximal mΘ ideal of F(pk, 1)[x];

2. < xϕ(pk+1) − 1pZ >$< xϕ(pk) − 1 >.

1. < xϕ(pk) − 1 > is a mΘ ideal since generated by the mΘΘ
invariant polynomial xϕ(pk) − 1; this Θ ideal is a maximal since <
xϕ(pk) − 1 >F

pk
[x] is maximal in Fpk [x] and ∀α ∈ I∗, Fα < xϕ(pk) −

1 >=< xϕ(pk) − 1 >F
pk

[x]. This is sufficient to claim that F(pk, 1)[x]

<xϕ(pk)−1>
is

a mΘ pseudo field, and as such mΘ isomorphic to the mΘ pseudo field
F(pk, ϕ(pk)).

2. xϕ(pk+1) − 1pZ ∈< xϕ(pk) − 1 >. Since ϕ(pk+1) = pϕ(pk), xϕ(pk+1) =

xpϕ(pk). Henceforth,

xϕ(pk+1) − 1pZ = xpϕ(pk) − 1pZ

= (xϕ(pk))p − 1ppZ

= (xϕ(pk) − 1pZ)p

= (xϕ(pk) − 1)(xϕ(pk) − 1pZ)p−1

This last expression shows that xϕ(pk+1)−1pZ ∈< xϕ(pk)−1 >. Trivially,
xϕ(pk)−1 /∈< xϕ(pk+1)−1pZ > . Therefore < xϕ(pk+1)−1pZ >$< xϕ(pk)−
1 >, ∀k ∈ N∗. Thus < xp(p−1) − 1pZ >$< xp−1 − 1 >.

The mΘ pseudo field F(pkZ, ϕ(pk)) = F(pkZ, 1)[x]

<xϕ(pk)−1>
is what we

call the intrinsic polynomial representation of the mΘ pseudo field F(pkZ, r).

F(pZ, ϕ(p)) = F(pZ, 1)[x]

<x(p−1)−1>
is the intrinsic polynomial repre-

sentation of F(pZ, r) with r = ϕ(p) = p− 1, k = 1.

For a finite commutative mΘ pseudo field F(pkZ, 1) the
following conditions are equivalent:

1. F(pkZ, 1) is a local mΘ pseudo field and the maximal mΘ ideal M of
F(pkZ, 1) is principal;

2. F(pkZ, 1) is a local principal mΘ ideal pseudo field;

3. F(pkZ, 1) is a chain mΘ pseudo field.
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Proposition 0.3.

Proof 0.8. 

Definition 0.8.

Corollary 0.1.

Proposition 0.4.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

i) =⇒ ii). Let I be an mΘ ideal of F(pkZ, 1). If I = F(pkZ, 1)
then I is generated by the identity 1. If I ( F(pkZ, 1), then I ⊆ M . By i),
M is generated by an element, say M = 〈a〉. Therefore, I = 〈ai〉, for some
integer k. Hence, F(pkZ, 1) is a local principal mΘ ideal pseudo field.

ii) =⇒ iii). Let F(pkZ, 1) be a local principal mΘ ideal pseudo field with
the maximal ideal M = 〈a〉, and A, B be proper ideals of F(pkZ, 1). Then
A, B ⊆ M , whence there exist integers l, m such that A = 〈al〉, B = 〈am〉
(l, m ≤ the nilpotency of a). Hence, either A ⊆ B, or B ⊆ A. Thus,
F(pkZ, 1) is a chain mΘ pseudo field.

iii) =⇒ i). Assume F(pkZ, 1) is a finite commutative chain mΘ pseudo
field, then clearly F(pkZ, 1) is local. To show the maximal mΘ ideal M of
F(pkZ, 1) is principal, suppose to the contrary that M is generated by more
than one element, say b, c are in the generator set of M and b /∈ cF(pkZ, 1),
c /∈ bF(pkZ, 1). Then 〈b〉 * 〈c〉 and 〈c〉 * 〈b〉, a contradiction with the as-
sumption that F(pkZ, 1) is a chain mΘ pseudo field. Thus, M is principal,
proving i).

Let a be a fixed generator of the maximal ideal M . Then a is nilpotent
and we denote its nilpotency index by t. The ideals of F(pkZ, 1) for a chain

F(pkZ, 1) = 〈a0〉 ) 〈a1〉 ) · · · ) 〈at−1〉 ) 〈at〉 = 〈0〉.

Let F(pkZ, 1) = F(pkZ, 1)
M

. By : F(pkZ, 1)[x] −→ F(pkZ, 1)[x], we denote
the natural mΘ pseudo field homomorphism that maps ρ 7−→ ρ+M and the
variable x to x.

Let F(pkZ, 1) be a finite commutative chain mΘ pseudo
field, with maximal ideal M = 〈a〉, and let t be a nilpotency a. Then we get
the following statements.

1. For some prime p and positive integers k, l (k ≥ l), |F(pkZ, 1)| = pk+1,
|F(pkZ, 1)| = pl+1, and the characteristic of F(pkZ, 1) and F(pkZ, 1)
are powers of p.

2. For i = 0, · · · , t, |〈ai〉| = |F(pkZ, 1)|t−i. In particular, |F(pkZ, 1)| =
|F(pkZ, 1)|t, so, k = lt.

Two mΘ polynomials f1, f2 ∈ F(pkZ, 1)[x] are called mΘ coprime if
〈f1〉+ 〈f2〉 = F(pkZ, 1)[x]. A mΘ polynomial f ∈ F(pkZ, 1)[x] is called basic
mΘ irreducible if f is mΘ irreducible in F(pkZ, 1)[x]. A mΘ polynomial
f ∈ F(pkZ, 1)[x] is called regular if it is not a zero divisor.
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Proof 0.9. 

Proposition 0.5.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

For a finite mΘ pseudo field F(pkZ, 1), consider the set Fr(pkZ, 1) of n-
tuples of elements from F(pkZ, 1) as a module over F(pkZ, 1) in the usual
way. A subset C ⊆ Fr(pkZ, 1) is called a linear mΘ code of length r over
F(pkZ, 1) if C is an F(pkZ, 1)-submodule of Fr(pkZ, 1). C is called mΘ
cyclic if, for every mΘ codeword x = (x0, x1, · · · , xr−1) ∈ C, its cyclic shift
(xn−1, x0, x1, · · · , xn−2) is also in C. An n-tuple c = (c0, c1, · · · , cr−1) ∈
Fr(pkZ, 1) is identified with the mΘ polynomial c0 + c1x+ · · ·+ cr−1x

r−1 in
F(pkZ, 1)[x]
<xr−1>

, which is called the mΘ polynomial representation of
c = (c0, c1, · · · , cr−1).

It is well known that a code C of length r over F(pkZ, 1) is mΘ cyclic if and
only if the mΘ set of polynomial representations of its mΘ codewords is an
mΘ ideal of F(pkZ, 1)[x]

<xr−1>
.

Given x = (x0, x1, · · · , xr−1), y = (y0, y1, · · · , yr−1) ∈ Fr(pkZ, 1), their
scalar product is

x · y = x0y0 + x1y1 + · · ·+ xr−1yr−1.

(evaluated in F(pkZ, 1)). Two mΘ words x, y are called orthogonal if ∀α ∈
I∗, Fα(x) · Fα(y) = 0. For a linear mΘ code C over F(pkZ, 1), its dual code
C⊥ is the set of mΘ words over F(pkZ, 1) that are orthogonal to all mΘ
codewords of C;

C⊥ = {x ∈ F(pkZ, 1)|∀α ∈ I∗, Fα(x) · Fα(y) = 0, ∀y ∈ C}.

A mΘ code C is called self-dual if C = C⊥. For a finite mΘ pseudo field
F(pkZ, 1) with maximal ideal 〈a〉 and the nilpotency t of a is even, the code
〈a t2 〉 is self-dual and is called the trivial self-dual code.

Let F(pkZ, 1) be a finite commutative mΘ pseudo field
and

a(x) = a0 + a1x+ · · ·+ ar−1x
r−1;

b(x) = b0 + b1x+ · · ·+ br−1x
r−1 ∈ F(pkZ, 1)[x].

Then a(x)b(x) = 0 in F(pkZ, 1)[x]
<xr−1>

if and only if (a0, a1, · · · , ar−1) is mΘ or-
thogonal to (br−1, br−2, · · · , b0) and all its cyclic shifts.

Let ζ denote the cyclic shift for mΘ codewords of length r, i.e.,
for each (x0, x1, · · · , xr−1) ∈ Fr(pkZ, 1).

ζ(x0, x1, · · · , xr−1) = (xr−1, x0, · · · , xr−2).

Quasi-Cyclic Codes Over Finite Chain 𝑚𝑚Θ Pseudo Field F(𝑝𝑝𝑘𝑘Z, 1)
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VI. 𝑚𝑚Θ Quasi-Cyclic Codes

Proposition 0.6.

Proof 0.10. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Thus, ζ i(br−1, br−2, · · · , b0), i = 1, 2, · · · , r are all cyclic shifts of (br−1, br−2, · · · , b0).

Let c(x) = c0 + c1x + · · · + cr−1x
r−1 = a(x)b(x) ∈ F(pkZ, 1)[x]

<xr−1>
. Then for

k = 0, 1, · · · , r − 1,

ck =
∑

i+j=k or i+j=r−k

aibj

= (a0, a1, · · · , ar−1) · (bk, bk−1, · · · , bk+1)

= (a0, a1, · · · , ar−1) · ζk+1(br−1, br−2, · · · , b0).

Therefore, c(x) = 0 if and only if ck = 0 for k = 0, 1, · · · , r − 1 if and only
if

(a0, a1, · · · , ar−1) · ζk+1(br−1, br−2, · · · , b0) = 0,

for k = 0, 1, · · · , r − 1 if and only if (a0, a1, · · · , ar−1) is orthogonal to
(br−1, br−2, · · · , b0) and all its cyclic shifts, as desired.

(quasi-cyclic mΘ code)
A linear mΘ code C of length r = lk over a finite mΘ pseudo field F(pkZ, 1)
is called a quasi-cyclic mΘ code of index k if for every mΘ codeword c ∈ C
there exists a number k such that the mΘ codeword obtained by k cyclic shifts
is also a mΘ codeword in C. That is,

c = (c0, c1, · · · , cr−1) ∈ C =⇒ c′ = ζk(c) = (cr−k, · · · , c0, · · · , cr−k−1) ∈ C.

In the definition k is defined as the smallest number of cyclic shifts where
the mΘ code is invariant. Quasi-cyclic mΘ codes are a generalization of
cyclic mΘ codes.

Let F(pkZ, 1) be a finite chain mΘ pseudo field with the maximal mΘ ideal
〈a〉, and t be the nilpotency of a. There exist a prime p and an integer l such
that |F(pkZ, 1)| = pl, |F(pkZ, 1)| = plt, the characteristic of F(pkZ, 1) and
F(pkZ, 1) are powers of p. In this section, we assume r to be a positive integer
which is not divisible by p; that implies r is not divisible by the characteristic
of the residue mΘ pseudo field F(pkZ, 1), so that xr − 1 is square free in
F(pkZ, 1)[x]. Therefore, xr − 1 has a unique decomposition as a product of
basic irreducible pairwise coprime mΘ polynomials in F(pkZ, 1)[x].

Quasi-Cyclic Codes Over Finite Chain 𝑚𝑚Θ Pseudo Field F(𝑝𝑝𝑘𝑘Z, 1)

       

1

Y
ea

r
20

23

81

© 2023   Global Journals

       

               

                          

                   

  

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
III  
  
Is
s u

e 
  
  
 e

rs
io
n 

I 
 

V
III

  
 

(
F
)

Definition 0.9.

VII. Structure of Quasi-Cyclic Code Over Finite Chain

𝑚𝑚Θ Pseudo Field F(𝑝𝑝𝑘𝑘 Z, )1

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let F(pkZ, 1) be a finite chain mΘ pseudo field with the max-
imal mΘ ideal 〈a〉, and t be the nilpotency of a. If f is a regular basic irre-
ducible mΘ polynomial of the mΘ pseudo field F(pkZ, 1)[x], then F(pkZ, 1)[x]

〈f〉
is also a chain mΘ pseudo field with precisely the following ideals:

〈0〉, 〈1〉, 〈1 + 〈f〉〉, 〈a+ 〈f〉〉, · · · , 〈at−1 + 〈f〉〉.

First we show that for distinct values of i, j ∈ {0, 1, · · · , t−1},
〈ai+〈f〉〉 6= 〈aj +〈f〉〉. Suppose 〈ai+〈f〉〉 = 〈aj +〈f〉〉, for 0 ≤ i < j ≤ t−1.
Then, there exists g(x) ∈ F(pkZ, 1)[x] with deg(g) < deg(f) such that ai +
〈f〉 = aj + 〈f〉. That means ajg(x)− ai ∈ 〈f〉. As

deg(ajg(x)− ai) ≤ deg(g) < deg(f)

it follows that ajg(x)− ai = 0. Multiplying by at−j gives at+i−j = 0, which is
a contradiction to our hypothesis that a has nilpotency t and 0 < t+ i−j < t.
Let I be a nonzero ideal of F(pkZ, 1)[x]

〈f〉 and h + 〈f〉 a nonzero element of
I. By assumption, f is a basic irreducible mΘ polynomial in F(pkZ, 1)[x],
hence, f̄ is irreducible in F(pkZ, 1)[x]. Therefore, gcd(h̄, f̄) = 1, or f̄ . If
gcd(h̄, f̄) = 1, that is, h̄, f̄ are coprime in F(pkZ, 1)[x], then h, f are coprime
in F(pkZ, 1)[x]. So there exist u, v ∈ F(pkZ, 1)[x] such that uh+ vf = 1.
That implies

(u+ 〈f〉)(h+ 〈f〉) = 1 + 〈f〉

whence h+ 〈f〉 is invertible in F(pkZ, 1)[x]
〈f〉 . Therefore,

I =
F(pkZ, 1)[x]

〈f〉
= 〈1 + 〈f〉〉.

For the case gcd(h̄, f̄) = f̄ , for all h + 〈f〉 ∈ I, which means f̄ divides h̄,
hence, there exist w, z ∈ F(pkZ, 1)[x] such that h = wf + az. Whence

h+ 〈f〉 ∈ 〈a+ 〈f〉〉, for all h+ 〈f〉 ∈ I

implying I ⊆ 〈a + 〈f〉〉. Let k be the greatest integer < t such that I ⊆
〈ak + 〈f〉〉. Then, as I * 〈ak+1〈f〉〉, there is a (nonzero) element h′+ 〈f〉 ∈ I
such that h′ + 〈f〉 /∈ 〈ak+1 + 〈f〉〉. Since h′ + 〈f〉 ∈ I ⊆ 〈ak + 〈f〉〉, there
exist w′, z′ ∈ F(pkZ, 1)[x] such that h′ = w′f + akz′. Now gcd(z̄′, f̄) = 1,
or f̄ . Suppose gcd(z̄′, f̄) = f̄ , then f̄ divides z̄′ and so there exist w′′, z′′ ∈
F(pkZ, 1)[x] such that z′ = w′′f + az′′. Hence,

h′ = w′f + akz′ = w′f + ak(w′′f + az′′)

= (w′ + akw′′)f + ak+1z′′.
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Lemma 0.1.

Proof 0.11. Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

It follows that h′+ 〈f〉 ∈ 〈ak+1 + 〈f〉〉, a contradiction. Thus, gcd(z̄′, f̄) = 1.
The same argument as above yields that z′+〈f〉 invertible in F(pkZ, 1)[x]

〈f〉 , which
means that there exists z0 ∈ F(pkZ, 1)[x] such that

(z′ + 〈f〉)(z0 + 〈f〉) = 1 + 〈f〉.

Therefore

ak + 〈f〉 = (z0 + 〈f〉)(akz′ + 〈f〉)

= (z0 + 〈f〉)(h′ + 〈f〉) ∈ I.

Consequently, I = 〈ak + 〈f〉〉.

Customarily, for a mΘ polynomial f of degree k, its reciprocal mΘ
polynomial xkf(x−1) will be denoted by f ∗. Thus, for example, if f(x) =
a0 + a1x+ · · ·+ ak−1x

k−1 + akx
k, then

f ∗(x) = xk(a0 + a1x
−1 + · · ·+ ak−1x

−(k−1) + akx
−k)

= ak + ak−1x+ · · ·+ a1x
k−1 + a0x

k.

Moreover, if f(x) is a factor of xr − 1, we denote f̂(x) = xr−1
f(x)

.

Assume F(pkZ, 1) is a finite chain mΘ pseudo field with
maximalmΘ ideal 〈a〉, and that t is the nilpotency of a. Let xr−1 = f1f2 · · · fl
be a representation of xr−1 as a product of basic irreducible pairwise-coprime
polynomials in F(pkZ, 1)[x]. Then any ideal in F(pkZ, 1)[x]

〈f〉 is a sum of mΘ

ideals of the form 〈aj f̂i + 〈xr − 1〉〉, where 0 ≤ j ≤ t, 1 ≤ i ≤ r.

By the Chinese Reminder theorem, we have

F(pkZ, 1)[x]

〈xr − 1〉
=

F(pkZ, 1)[x]

∩li=1〈fi〉
∼=
⊕ l∑

i=1

F(pkZ, 1)[x]

〈fi〉
.

Thus, any mΘ ideal I of F(pkZ, 1)[x]
〈xr−1〉 is of the form

⊕∑l
i=1 Ii, where Ii is an

mΘ ideal of F(pkZ, 1)[x]
〈fi〉 . According to the previous lemma, for 1 ≤ i ≤ r,

Ii = 0 or Ii = 〈ak + 〈fi〉〉, for some k ∈ {0, · · · , t− 1}. Then Ii correspond
to 〈akf̂i + 〈xr − 1〉〉 in F(pkZ, 1)[x]

〈xr−1〉 . Consequently, I is a sum of ideals of the
form 〈aj f̂i + 〈xr − 1〉〉.
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Theorem 0.7.

Proof 0.12. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let F(pkZ, 1) be a finite mΘ pseudo field with maximal mΘ
ideal 〈a〉, and t be the nilpotency of a. The numbers of quasi-cyclic mΘ codes
over F(pkZ, 1) of length r is (t+ 1)l, where l is the number of factors in the
unique factorization of xr − 1 into a product of monic basic irreducible pair-
wise coprime mΘ polynomials.

From now on, in order to simplify notation, we will just write l0 + l1x +
· · ·+ lr−1x

r−1 for the corresponding coset l0 + l1x+ · · ·+ lr−1x
r−1 + 〈xr − 1〉

in F(pkZ, 1)[x]
〈xr−1〉

Let C be a quasi-cyclic mΘ codes of length r over a fi-
nite mΘ pseudo field with maximal mΘ ideal 〈a〉, and t be the nilpotency
of a. Then there exists a unique family of pairwise coprime monic mΘ poly-
nomials F0, F1, · · · , Ft in F(pkZ, 1)[x] such that F0F1 · · ·Ft = xr − 1 and
C = 〈F̂1, aF̂2, · · · , at−1F̂t〉. Moreover

|C| = (|F(pkZ, 1)|)
∑t−1
i=0(t−i)deg(Fi+1).

Let xr − 1 = f1 · · · fl be the unique factorization of xr − 1 into
a product of monic basic irreducible pairwise coprime mΘ polynomials. C is
a direct sum of ideals of the form 〈aj f̂i〉, where 0 ≤ j ≤ t, 1 ≤ i ≤ l. After
reordering if necessary, we can assume that

C = 〈f̂k1+1〉 ⊕ · · · ⊕ 〈f̂k1+k2〉 ⊕ 〈af̂k1+k2+1〉 ⊕ · · · af̂k1+k2+k3〉 ⊕

· · · ⊕ 〈at−1f̂k1+···+kt+1〉 ⊕ · · · ⊕ 〈at−1f̂r〉

where k1, · · · , kt ≥ 0 and k1 + · · · + kt + 1 ≤ r. Let k0 = 0, and kt+1 be a
nonnegative integer such that k1 + · · ·+ kt + 1 ≤ r. For i = 0, · · · , t, define

Fi = fk0+···+ki+1 · · · fk0+···+ki+1.

Then by our construction, it is clear that F0, · · · , Ft are pairwise coprime,
F0 · · ·Ft = f1 · · · fr = xr − 1, and

C = 〈F̂1〉 ⊕ 〈aF̂2〉 ⊕ · · · ⊕ 〈at−1F̂t〉.

To prove the uniqueness, assume G0G1 · · ·Gt = xr−1 and C=〈Ĝ1, aĜ2, · · ·, at−1Ĝt〉.
Then

F(pkZ, 1)[x]

〈xr − 1〉
= 〈Ĝ0〉 ⊕ 〈Ĝ1〉 ⊕ · · · ⊕ 〈Ĝs〉
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Corollary 0.2.

Theorem 0.8.

Proof 0.13. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

thus, C = 〈Ĝ1〉⊕〈aĜ2〉⊕· · ·⊕〈at−1Ĝs〉. Now there exist nonnegative integers
l0 = 0, l1, · · · , lt+1 with l0+l1+· · ·+lt+1 = l, and a permutation {f ′1, · · · , f ′r}
of {f1, · · · , fr} such that, for i = 0, 1, · · · , t

Gi = f ′l0+···+li+1 · · · f ′l0+···+li+1.

Hence,

C = 〈f̂ ′l1+1〉 ⊕ · · · ⊕ 〈f̂ ′l1+l2〉 ⊕ 〈af̂ ′l1+l2+1〉 ⊕ · · · af̂ ′l1+l2+l3〉 ⊕

· · · ⊕ 〈at−1f̂ ′l1+···+lt+1〉 ⊕ · · · ⊕ 〈at−1f̂ ′r〉

Now for i = 0, · · · , t, it follows that li = ki, and, furthermore,{f ′l0+···+li+1
, · · · , f ′l0+···+lt+1

}
is a permutation of {fk0+···+ki+1

, · · · , fk0+···+kt+1}. Therefore, Gi = Fi, for
i = 0, · · · , t.
To calculate the order |C|, note that

C = 〈F̂1〉 ⊕ 〈aF̂2〉 ⊕ · · · ⊕ 〈at−1F̂t〉

and for i = 0, 1, · · · , t− 1

|〈aiF̂i+1〉| = (
|F(pkZ, 1)|
|〈at−i〉|

)(n−degF̂i+1) = (
|F(pkZ, 1)|t

|F(pkZ, 1)|i
)degFt+1

= (|F(pkZ, 1)|)(t−i)degFt+1 .

Hence,

|C| = |〈F̂1〉| · |〈aF̂2〉| · · · · · |〈at−1F̂t〉|

= (|F(pkZ, 1)|)tdegF1 · (|F(pkZ, 1)|)(t−1)degF2 · · · (|F(pkZ, 1)|)degFt

= (|F(pkZ, 1)|)
∑t−1
i=0(t−i)deg(Fi+1).

Let C be a quasi-cyclic code of length r over a finite chain
mΘ pseudo field F(pkZ, 1), which has maximal mΘ ideal 〈a〉 and t is the
nilpotency of a. Then there exist polynomials g0, g1, · · · , gt−1 in F(pkZ, 1)[x]
such that C = 〈g0, ag1, · · · , at−1gt−1〉 and gt−1|gt−2| · · · |g1|g0|(xr − 1).

According to previous theorem, there exists a family of pair-
wise coprime monic mΘ polynomials F0, F1, · · · , Ft in F(pkZ, 1)[x] such
that F0F1 · · ·Ft = xr − 1 and C = 〈F̂1, aF̂2, · · · , at−1F̂t〉. Define

gi =

{
F0F1 · · ·Ft, if 0 ≤ i ≤ t− 2
F0, if i = t− 1.
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Theorem 0.9.

Proof 0.14. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Then clearly gt−1|gt−2| · · · |g1|g0|(xr − 1). Moreover, for 0 ≤ i ≤ t − 1, we
have

aiF̂i+1 = aiF0 · · ·FiFi+2 · · ·Ft = aigiF1 · · ·Fi.

Therefore, C ⊆ 〈g0, ag1, · · · , at−1gt−1〉. On the other hand, g0 = F0F1 · · ·Ft ∈
C. Since F1, F2 are coprime mΘ polynomials in F(pkZ, 1)[x], there exist
polynomials u, v ∈ F(pkZ, 1)[x] such that uF1 + vF2 = 1. It follows that

g1 = F0F3 · · ·Ft = (uF1 + vF2)F0F3 · · ·Ft

= uF0F1F3 · · ·Ft + cF0F2F3 · · ·Ft = uF̂2 + vg0

whence ag1 = auF̂2 + avg0 ∈ C. Continuing this process, we obtain aigi ∈ C
for 0 ≤ i ≤ t− 1, which implies

〈g0, ag1, · · · , at−1gt−1〉 ⊆ C.

Consequently, C = 〈g0, ag1, · · · , at−1gt−1〉.

This note studies the Quasi-Cyclic codes over a finite chain mΘ pseudo field
F(pkZ, 1), which leads to the modal structure of the notion Quasi-Cyclic
codes over a finite chain pseudo field [3]. It appears that the Structures of
Quasi-Cyclic codes of length r over a finite chain mΘ pseudo field F(pkZ, 1)
are established when r is not divisible by the characteristic of the residue mΘ
pseudo field F(pkZ, 1). Some cases where r divisible by the characteristic of
the residue mΘ field F(pkZ, 1) are also considered.
At the end of this study, some interesting problems remain to be solved:

1. We would like to construct the mΘ structure of cyclic dual codes and
negacyclic codes over finite chain mΘ pseudo field F(pkZ, 1).

2. We would like to define a necessary and sufficient condition for the
existence of self-dual cyclicmΘ codes over amΘ pseudo field F(pkZ, 1).
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