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[. [NTRODUCTION

Cyclic codes are among the most useful and well-studied code families for
various reasons, such as effective encoding and decoding. A cyclic code can
be viewed as an ideal in a certain quotient ring obtained from a polynomial
ring with coefficients from a finite field [1, 2|. Quasi-Cyclic codes are a gener-
alization of cyclic codes [6, 8]. Algebraically, Quasi-Cyclic codes are modules
rather than ideals [10, 13].

A m®© approach of the notion of sets has allowed to bring out the new classes
of sets: mO sets. The notion of modal ©-valent set (mO set) noted (F,z, F,),
p prime, is defined by F. Ayissi Eteme in [12, 16, 7|. Research on modal al-
gebra has evolved and led to the theory of m®© codes [11, 15, 17].

The theory of error-correcting m® codes over finite fields has experienced
tremendous growth since its inception [5]. Progress has been attained in the
direction of determining the structural properties of m©® codes over large
families of mO fields. This paper is a contribution along those lines as we
focus on codes over finite mO pseudo fields with a linear lattice of m©O ideals
(the so-called chain m© pseudo fields).

The purpose of this paper is to obtain structure theorems for Quasi-Cyclic
codes in more general setting. The structures of Quasi-Cyclic codes of length
r over finite chain m© pseudo field F(p*Z, 1) are established when 7 is not
divisible by the characteristic of the residue m® pseudo field F(p*Z, 1). Some
cases where r is divisible by the characteristic of the residue m®© pseudo field
F(p*Z, 1) are also considered.

1. J. Jensen, The concatened structure of cyclic and abelian codes, IEE
Trans. Inform. Theory, vol.31, no 6, pp. 788 - 793, 1985.
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After presenting preliminary concepts and results on m© set in Section 2.
Section 3 presents a canonical construction of the structures of modal ©-
valent field and modal ©-valent field. Section 4 is devoted to the notion
of modal ©-valent extension of a finite field. Section 5 define the intrin-
sic polynomial representation of the m® pseudo field F(p*Z, r). Section 6
presents the mO Quasi-Cyclic codes. Lastly, section 7 presents the structure
of Quasi-Cyclic code over finite chain m© pseudo field F(p*Z, 1).

Ref

I1. PRELIMINARIES

a) The modal ®-valent set structure and the algebra of (]sz, F a)

mO sets are considered to be non-classical sets which are compatible with a
non-classical logic called the chrysippian m© logic.

Definition 0.1. [1}] Let E be a non-empty set, I be a chain whose first and
last elements are 0 and 1 respectively, (F,),c; where I, = I\ {0} be a family
of applications form E to E.
A m® set is the pair (E, (F,)
following four axioms :

) simply denoted by (E, F,) satisfying the

OéEI*

o QFa (E) = ag {F,(z): x € E} #0;

¥ - 1°dd ‘p8ET ‘T oI9S

‘6T SuRd ‘SVYHD “uores-© uorddisArgo neouu}y QW) ISSIAY o Tl

o Va,B eI, if a# [ then F, # Fp;
L4 VQ,BEI*, FaOFB:FB;
e Vr,ye E,ifVa€el,, F,(x)=F,(y) then x = y.

Theorem 0.1. [16] (The theorem of m®© determination)
Let (E, F,) be a mO set.

Ve,y€ E, x =g y if andonlyifVa € I, F, (x) = F, (y).

Proof 0.1. [16]
Definition 0.2. [5] Let C(E, F,) = QI F, (E). We call C(E, F,) the set of

mO invariant elements of the m®© set (E, Fy).

Proposition 0.1.  [16] Let (E, F,) be a m© set. The following properties
are equivalent:

1.xe N F,(E);

o€l
2. Va eI, F, (1) =x;
8. Va,B € L, Fy (x) = Fs (2);
4. 3pel, z=F,(v).

© 2023 Global Journals
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Proof 0.2. [16]
Definition 0.3. [12]

Let (E, F,) and (E', Fl) be two mO sets. Let X be a non-empty set. We
shall call

1. (E',F!) a modal ©-valent subset of (E, F,) if the structure of m®© set
(E', F!) is the restriction to E’ of the structure of the m© set (E, F,),
this means:

« B'CE :
e Va:a€l, F,=F,,.
2. X a modal ©-valent subset of (E, F,) if:
« XCE:
o (X,F, ) is a mOs which is a modal ©-valent subset of (K, F,).
In all what follows we shall write F,x for F, (x), F,E for F, (E), etc ---

Let p € N, a prime number. Let us recall that if a € .
Fpz =F,U{zpz : = (x =0(modp))}; F,={0,1,2,---,p—1}

We define the m© support of a denoted s (a) as follows:

()_ a ifaer;
A P if a=zypwith |(z =0(modp)).

Thus s (a) € F,.

Definition 0.4. [14] Let L be a binary operation on F,. So, Va, b€ F,, a L
bel,. Letx, yeF,y. Wedefine abinary operation L*on F,z as follows :

. z,y € Fp
T L* y = S(.T) L S<y) Zf {(s(ac) 1 s(y)) =0 (modp) otherwise
(s(x) L s(y)),; otherwise.

L* as defined above on IFpz will be called a m© law on Fpy, for x,y € Fpz.
Thus we can define v +y € Fpz and v x y € Fpz for every z,y € Fyz,
where + and x are mO addition and m© multiplication respectively.

Theorem 0.2.  [12] (Fyz, Fo, +, X) is a mO ring of unity 1 and of m© unity
piZ.

Proof 0.3. [12]

Remark 0.1. Since p is prime, (Fpz, Fy) is a mO field.

Definition 0.5.  [4] © is a divisor of zero in (Fpz, F,) if it exists y € Fpz
such that x x y =0

Example 0.1.  [}]
p =2, we have Fop = {0, 1, 1oz, 32z}

The table of mO determination and tables laws of Fyy.
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Foz | 0| 1] 1z | 32z

Fr |01 1 0

0|1 1
OT 0 111y |3 xOT 0] 1 |1y |3
0 0 | 1] 1sz | 397 0|10 0 0 0
1 1 0| 0 0 1 0| 1 1oz | 32z
loz | 1oz | O] 0 0 loz | 0| 1oz | 1oz | 32z
3oz [ 32z | 0| 0 0 3oz, | 0] 32z | 32z | 1oz

Observation:

Fyy; has no divisor of zero, is a m©O ring from four elements, that’s a m©
field of four elements.

[TI. CANONICAL CONSTRUCTION OF MODAL @-VALENT FIELDS (m ©f)
AND MODAL ®-VALENT PSEUDO FIELDS(mOpf)

Let p be a prime number, k # 0 a positive integer, ¢ = p* and F, a finite
field with ¢ elements. Two mOf K; and K, of same characteristic p and of
same cardinal p** are m© isomorphic.

a) Canonical construction of modal ®-valent fields (m®f£)/9]

% is the prime field of characteristic

p and of p elements. The modal ©-valent quotient ring (mOqr) F,z as the
Lz,
prpZ ’

Consider that k =1, s0 ¢ =p. F, =

modal ©-valent quotient

Let Fryy =TFpz —{0}. Vo € Fyy, ' €Ty /-2’ = Ly
F,z has p? elements but has no proper sub m® ring verifying the preceding
property for IF;Z.

For which reason, F,z is the prime m© f with p* elements. F, is the prime
sub field of the m® invariants of F,;. Let f be a polynomial with coefficients
in [F,. Clearly, it is all the same that:

1. f,(z) irreducible over F,,.
2. fyz(z) irreducible over Fy.

Observations:

Let F(pZ, r) = ?}’(Z)[?% be the mOr modulo f(z), (mOr(f)). f(x) € F,[X].

deg(f) =r, r € N*, f irreducible over F,.

Fpz|X] — F(pZ, r) : g—>14; g=qq- f(x)+ 14, 0 <dg(ry) < dg(f).
r—1

(Fpz)” — F(pZ, r) : (ag, -+, ar_1) — Zaixi is a bijection and therefore
i=0

becomes a mOr isomorphism for the m® laws modulo f(z). Since f is

irreducible over F,z, F(pZ, r) is a mOf.

© 2023 Global Journals
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Theorem 0.3. 1. F(pZ, r) is a mOf of cardinal p*';
2. F g is its prime sub mOf of cardinal p?;

3. Fpz and F(pZ, r) are booth of characteristic p since Vi :

1=0,---,p—1; 1+1+"'+1+1p2+"'+1p220
itimes (p—1) times

Proof 0.4. [9]

According to a previous notation,

F(pZ, 1) =F,z, F(p, 1) = F(p, r) = GF(p, r).

Z
pL’
b) Canonical construction of modal ®-valent pseudo fields (mO pf)
Consider that k # 1, so ¢ = p*. Let then F(p*Z, 1) denote the quotient mOr
]F k7, — kaZ

p

a a
O(pF, 1) =0, = {kaPZ D a € Ly, sla)/p"} = {pk_Z cac€Z,a/p}.

Let F*(p*Z, 1) = F(p*Z, 1)—O(p*, 1); k € N*. ThenVx : x € F*(p*Z, 1), 32’ :
¥ eF (P2, 1) x-2' = p,l%zz.

So we call iz a mO pseudo field (mOpf). F iz has p**! elements and is of
characteristic p*. It has no proper sub mOpf with the same as the preceding
properties for F*(p*Z, 1). Finally, F(p*Z, 1) is the prime mOpf with p**!
elements.

Let now f € Zy[X] : dg(f) = r and f irreducible over Z,» = p%z' Let
k
F(p*Z, r) = (p(f%Xl)))[X mOr modulo f(x). F(p*Z, r) is a mOpf.
r—1
(F(p*Z, 1)) — F(p*Z, r) : (ag, -+, @p_1) — Zaixi is a bijection and

=0
therefore a mO ring modulo f(X) isomorphism. Since cardF(p*Z, 1) = p**1,
cardF (p*Z, r) = p*+ir,
Theorem 0.4. [9] Vk € N — {0},

1. F(p*Z, r) is a mOpf of cardinal p*+Hr,
2. F(p*7Z, 1) is its prime sub mOpf of p** elements.
3. F(p*Z, 1) and F(p*Z, r) are booth of characteristic p*.

Proof 0.5. [9]

F(pk, r) = GF(p*, r) is the sub pseudo field of the m© invariants of

the mOpf F(p*Z, r). Fp = kz is the prime sub pseudo field of the m©

p
k+1

invariants of F,xz; the prime sub m©pf with p*™ elements.
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Theorem 0.5. [9]

1. Any mOf K of characteristic p prime and then of cardinal p*", r € N*
is mO isomorphic to the mOf F(pZ, r);

2. Anym®Of K' of characteristic p*, p prime and then of cardinal p**+1)r,
r € N* is mO© isomorphic to the mO f ]F(ka, r).

Proof 0.6. [9] Ref

[V. MoDAL ®-VALENT EXTENSION OF A FINITE FIELD

Note that K is a finite field of cardinal p", p,n € N* and then of characteristic
p prime. € K, of minimal polynomial mg(z) € F,[z], r = degr,(ms(x)) €
N*, mg(z) is irreducible over F,,.

Observations: — Let Ig = (mg(x))r,») the principal ideal of Fp[z] gener-
ated by mg(x). Since F, C F,z, Fp[z] C Fpz[x].

Let a € F*,z: 3u, F,a # 0, then Fj,a € F*,, thus mg(F,a) # 0 and since
F,ymg(a) = mg(Fya), Fymg(a) # 0. Then mg(a) # 0.

Fpz[z]
(mg(x))

m®O field with p*" elements and then of characteristic p. j’;[(ﬂ) is its subfield

of the ©-invariants who has p” elements and characteristic p.

Therefore, mg(z) is also irreducible over F,z. It is known that is a

Let I3,z = (mp())k,,[») the principal mO ideal of Fz[z] generated by mg(z).
Va, Folg yz = I3 therefore Ig ,7 is a mO maximal ideal of [F,;z[x]. Then define
g 7 : Fpplx] — F(pZ, n) as follows; if f(z) = Y1 a;x’ € Fyylz],

Dy pe(f (@) = F(8) = 3_aif € F(pL, ).

By definition ®4 ,7 is a mO ring morphism since then @4 ,7(F,z[z]) = {f(5) | f(x) €
F,z[z]} is a sub m®© field of F(pZ, n). Therefore the following diagram m©

"CT0g ‘Auennior) ‘ueyniqrees Surysiqnd orwapese 1I9quIe|

‘sonpeuratyenr porpdde pue oind Surnporjur @ ULID ‘OWe)y ISSIAY “q 6

commutes
Fyzla] %00, o (Fyzfo]) “~F(pZ, n)
Ig
° Fplzﬂ[x] = <Ef:([g> is a m®O field of cardinal p*" and then of characteristic
.
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e Through the mO ring isomorphism &)5 oz 55 »z(Fpzz]) becomes a mO

subfield of F(pZ, n) with the m© field structure of p*" elements ex-

Fozlz]
matay Y P8z

ported from

Notation 0.1.
FpZ(ﬁ) = (I)pz(ﬁ) = &)/B pZ(FpZ[x]) = {f(ﬁ) ‘ f(.CE) € ]FPZ[ZL“]}

Theorem 0.6. 1. F,z[B] has p*" elements and characteristic p.

2. Fpz is the prime mO subfield of F,z[5].

3. Any sub m® field of F(pZ, n) containing F,z and B contains F,z[3].

4. Ya;a€FyzB], Jai, i =0,1, - ,r—1/a; € Fpy : a:Z:;gaiﬁi.
Definition 0.6.  Henceforth we call Fpyz[f] the mO extension of F, and F,yz
to 3.

Definition 0.7.  We call a m© primitive element of F(pZ, n) any generator
if there exists one, noted o, of F(pZ, n) — F(p, n). This meaning that Ya :
a € F(pZ,n) —F(p,n),Im e N: 0 <m < w(F*(pZ, n); a = a™.

Example 0.2. 235 and 537 are two m3 generators of Fsy.

Proposition 0.2.  Ifa € F(pZ, n) is a mO primitive element then F(pZ, n) =
]sz(oz).

Proof 0.7.  Suppose uw € F(pZ, n) — F(p, n) and o is a mO primitive el-
ement: Im,m € N: 0 < m < wF*(pZ, r), u = ™. Let f(x) = 2™ €
Fzlz], ®apz(f(x)) = fla) = 2™

Therefore u = o™ = f(a) € Fyz(a). Thus F(pZ, n) = Fyz(a).

V. THE INTRINSIC POLYNOMIAL REPRESENTATION OF
THE m® Pstupo FieLd F(p*Z, r)

Let k € N, r, p € N*, p prime 2 < p. It is plain in |7] that:

H (x—a) = H(a:—a)x H (x —a)

acF* (ka7 1) $€F*pk aclF* (ka, 1)_F;k

= (22" — 1) (22" — 1,2).
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Proposition 0.3. Let < 290" — 1 > and < 2@ — 1,z > be the ideals of
k+1)

F(p*, 1)[x] respectively generated by x?#) —1 and z##"*) — 1, then

1. < 2#®") —1 > is a mazimal m© ideal of F(p*, 1)[z];
2. < a¥W™) — 1,5 >C< g¥) — 1>,

Proof 0.8. 1. < 2?®) —1> isa mO ideal since generated by the mOO
mvariant polynomial 2" — 1; this © ideal is a maximal since <
2 — 1 >F o) b mazimal in [z] and Yo € I, F, < 2@ —

1 >=< ¢ — 1 >F ifa]- This is sufficient to claim that %

a mO pseudo field, and as such mO isomorphic to the m© pseudo field
F(p*, o(p*)).

18

k+1)

2. :vso(pkzl) — 1z €< 29 — 1 > Since p(pFt) = pp(p*), z#?") =
P*®") - Henceforth,

2P0 _ pe)

— 1,z -1,z

k
- (:Uso(p ))p _ 1£Z
= (20" — 1,7)"

= (2P — 1)(2#?") — 1,7)P"

This last expression shows that 2Pt 1,7 €< 2?1 > Trivially,
2fP) —1 ¢< 290" — 15 > . Therefore < z#@") — 1,7 >C < 2#0") —
1>, VkeN*. Thus <a?? D -1, >C<a?™t —1>.

Definition 0.8. The m© pseudo field F(p*Z, p(p*)) = EGZVl] syt we

<ze(®®) _1>
call the intrinsic polynomial representation of the m© pseudo field F(p*Z, r).

Corollary 0.1. TF(pZ, p(p)) = % is the intrinsic polynomial repre-

sentation of B(pZ, r) withr = p(p) =p—1, k= 1.

Proposition 0.4.  For a finite commutative m© pseudo field F(p*Z, 1) the
following conditions are equivalent:

F(p*Z, 1) is a local m© pseudo field and the mazimal m®© ideal M of
p*7Z, 1) is principal;

p

p

= H

k7., 1) is a local principal mO ideal pseudo field;

~—" N~

1. F(

(
2. F(
3. F(p*Z

=

1) is a chain m© pseudo field.

Y
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Notes

Proof 0.9. i) = ii). Let I be an m®© ideal of F(p*Z, 1). If [ = F(p*Z, 1)
then I is generated by the identity 1. If I C F(p*Z, 1), then I C M. By 1),
M is generated by an element, say M = {a). Therefore, I = {(a'), for some
integer k. Hence, F(p*7Z, 1) is a local principal m© ideal pseudo field.

ii) = iii). Let F(p*Z, 1) be a local principal m© ideal pseudo field with
the mazimal ideal M = (a), and A, B be proper ideals of F(p*Z, 1). Then
A, B C M, whence there exist integers [, m such that A = (a'), B = (a™)
(I, m < the nilpotency of a). Hence, either A C B, or B C A. Thus,
F(p*Z, 1) is a chain m© pseudo field.

iii) = 1). Assume F(p*Z, 1) is a finite commutative chain m© pseudo
field, then clearly F(p*Z, 1) is local. To show the mazimal m® ideal M of
F(p*Z, 1) is principal, suppose to the contrary that M is generated by more
than one element, say b, ¢ are in the generator set of M and b ¢ cF(p*Z, 1),
c ¢ bF(p*Z, 1). Then (b) € (c) and {(c) € (b), a contradiction with the as-
sumption that F(p*Z, 1) is a chain m© pseudo field. Thus, M is principal,
proving ).

Let a be a fixed generator of the maximal ideal M. Then a is nilpotent
and we denote its nilpotency index by ¢. The ideals of F(p*Z, 1) for a chain

F(p'Z, 1) = () 2 (a') 2 -+ 2 (a"™") 2 (a) = (0).

Let F(p*Z, 1) = %. By — : F(p*Z, 1)[z] — F(p*Z, 1)[z], we denote
the natural m® pseudo field homomorphism that maps p — p+ M and the

variable z to z.

Proposition 0.5.  Let F(p*Z, 1) be a finite commutative chain m© pseudo
field, with maximal ideal M = (a), and let t be a nilpotency a. Then we get
the following statements.

1. For some prime p and positive integers k, | (k > 1), [F(p*Z, 1)| = pF*1,
[F(pkZ, 1)| = p*t, and the characteristic of F(p*Z, 1) and F(pkZ, 1)
are powers of p.

2. Fori=0,---,t, [{a")| = [F(p¥Z, 1)|'"". In particular, |F(p*Z, 1)| =
[F(p*Z, 1)|*, so, k =It.

Two m®O polynomials f, f» € F(p¥Z, 1)[z] are called mO coprime if
(f1)+ (f2) = F(p*Z, 1)[z]. A m®O polynomial f € F(p*Z, 1)[x] is called basic
mO irreducible if f is m© irreducible in F(pFZ, 1)[z]. A mO polynomial
f € F(p*Z, 1)[x] is called regular if it is not a zero divisor.
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VI.  m6 Quasi-CycLic CODES

For a finite m© pseudo field F(p*Z, 1), consider the set F"(p*Z, 1) of n-
tuples of elements from F(p*Z, 1) as a module over F(p*Z, 1) in the usual
way. A subset C' C F"(p*Z, 1) is called a linear m© code of length r over
F(p*Z, 1) if C is an F(p*Z, 1)-submodule of F"(p*Z, 1). C is called mO
cyclic if, for every m© codeword = = (xq, x1, -+, x,_1) € C, its cyclic shift
(Tp_1, To, T1,*+ , Tp_o) is also in C. An n-tuple ¢ = (cg, ¢1,++, ¢,_1) € Notes
F"(p*7Z, 1) is identified with the m® polynomial ¢y + cyz + - -+ + ¢,_12" ! in
]F(f;z—fl)f], which is called the m© polynomial representation of

c= (CO7 Cry- "y CT*I)-

It is well known that a code C' of length r over F(p*Z, 1) is m© cyclic if and
only if the m© set of polynomial representations of its m© codewords is an

: F(p*Z,1)[z]
mO ideal of —2=.

Given z = (ilf(), L1,y :L‘rfl)) Yy = (y07 Yy ooy yrfl) € Fr(ka7 1)7 their
scalar product is

Ty =ToYo + T1yrt ot Ty

(evaluated in F(p*Z, 1)). Two m© words =, y are called orthogonal if Vo €
L., F,(x)- F,(y) = 0. For a linear m® code C over F(p*Z, 1), its dual code
C+ is the set of mO words over F(p*Z, 1) that are orthogonal to all m©
codewords of

Ct={x e F(p*Z, 1)|Va € I,, F (z) - F.,(y) =0, Yy € C}.

A mO code C is called self-dual if ¢ = C+. For a finite m© pseudo field
F(p*Z, 1) with maximal ideal (a) and the nilpotency ¢ of a is even, the code
<a%> is self-dual and is called the trivial self-dual code.

Proposition 0.6. Let F(p*Z, 1) be a finite commutative mO pseudo field

and

a(xr) =ap+ax + -+ a1

b(x) =by+bix+ -+ b_2" ' € F(pFZ, 1)[x].
Then a(z)b(z) = 0 in W—fiﬂ if and only if (ag, ay, -+, a,—1) is mO or-
thogonal to (b._1, by_a, -+, by) and all its cyclic shifts.
Proof 0.10. Let ( denote the cyclic shift for m© codewords of length r, i.e.,
for each (xq, x1, -+, Tr_1) € FT(P*Z, 1).
C(wo, z1, -+, Tpo1) = (Tpo1, o, =+, Tpoa).
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Thus, C{(by_1, by_o, -++ , by), i =1, 2, -+, 7 are all cyclic shifts of (by_1, by_a, -+, by).

Let c(z) = co+ 1o + -+ + ¢,12" 1 = a(x)b(z) € E"2. 0l Thep for

<z"—1>
k=01, -, r—1,
Cr = Z aibj
i+j=korit+j=r—k
Notes

- (a07 ag, =, arfl) : (bk7 bk*l? ) bk+1)

- (CLO, ai, =, a’r‘—l) : <k+1(b'r—17 bT—27 T bO)
Therefore, c(z) =0 if and only if ¢, =0 for k=0,1, -, r—1 if and only
if

((IO, ai, *--, a'f—l) . Ck+1<br—17 b'r‘—27 Ty bO) - 07

for k. =0,1,---,r =1 if and only if (ag, a1, -+, a,_1) is orthogonal to
(by_1, by—a, -+, bo) and all its cyclic shifts, as desired.

Definition 0.9. (quasi-cyclic m© code)

A linear m© code C of length r = lk over a finite m© pseudo field F(p*Z, 1)
15 called a quasi-cyclic mO code of index k if for every m© codeword c € C
there exists a number k such that the m© codeword obtained by k cyclic shifts
is also a m© codeword in C. That is,

c= (007 C1y * 0y C’r‘—l) S C:>C/:Ck(C) = (Cr—ka ey, Coy ottty CT—k—l) EO

In the definition k is defined as the smallest number of cyclic shifts where
the mO code is invariant. Quasi-cyclic m© codes are a generalization of
cyclic m© codes.

VII.  STRUCTURE OF QuUASI-CycLIC CODE OVER FINITE CHAIN
m® Pseupo FIELD F(pk Z, 1)

Let F(p*Z, 1) be a finite chain m® pseudo field with the maximal m®© ideal
(a), and t be the nilpotency of a. There exist a prime p and an integer [ such
that [F(p*Z, 1)| = p!, |F(p*Z, 1)| = p', the characteristic of F(p*Z, 1) and
F(p*Z, 1) are powers of p. In this section, we assume r to be a positive integer
which is not divisible by p; that implies r is not divisible by the characteristic
of the residue mO pseudo field F(p*Z, 1), so that 2" — 1 is square free in
F(p*Z, 1)[z]. Therefore, " — 1 has a unique decomposition as a product of
basic irreducible pairwise coprime m® polynomials in F(p*Z, 1)[x].
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Lemma 0.1. Let F(p*Z, 1) be a finite chain m© pseudo field with the maz-
imal mO ideal {(a), and t be the nilpotency of a. If f is a regular basic irre-
ducible m© polynomial of the mO pseudo field F(p*7Z, 1)[z], then W
15 also a chain mO pseudo field with precisely the following ideals:

<0>7 <1>7 <1+ <f>>> <a+ <f>>7 A <at71 + <f>>

Proof 0.11. First we show that for distinct values of i, j € {0, 1, -+ , t—1},
(' (F)) # (@ + (1)) Suppose {at+(f)) = (I +{f), for0 < i< j<t—1
Then, there exists g(x) € F(p*Z, 1)[x] with deg(g) < deg(f) such that a* +
(fy =a’ + (f). That means a’g(x) —a' € (f). As

deg(a’g(z) — a’) < deg(g) < deg(f)

it follows that o/ g(x) — a® = 0. Multiplying by a'™7 gives a7 = 0, which is
a contradiction to our hypothesis that a has nilpotency t and 0 < t+i—j < t.

Let I be a nonzero ideal of M%T and h + (f) a nonzero element of

I. By assumption, f is a basic irreducible m© polynomial in F(p*Z, 1)[ ],
hence, f is zrreduczble in F(p*Z, 1)[z]. Therefore, ged(h, f) = 1, or f. If
ged(h, f) =1, that is, h, f are coprime in F(p*Z, 1)[z], then h, f are coprime

in F(p*Z, 1)[z]. So there exist u, v € F(p*Z, 1)[x] such that uh +vf = 1.
That implies

(u+ (N +) =1+ (f)

whence h + (f) is invertible in P2 Die] 7 =l Therefore,
F(p*Z, 1)[z]

[==E2 gy,

0 1+ ()

For the case gcd(h, f) = f, for all h + (f) € I, which means f divides h,
hence, there exist w, z € F(p*Z, 1)[x] such that h = wf + az. Whence

h+{fye{a+{f)), forall h+{f) el

implying I C (a + (f)). Let k be the greatest integer < t such that I C
(a*+(f)). Then, as I & (a1 (f)), there is a (nonzero) element W' + (f) € I
such that b’ + (f) ¢ (a*** + (f)). Since W + (f) € I C {(a* + (f)), there
exist w', 2’ € F(p*Z, 1)[x] such that h' = w'f + a*2'. Now gcd(2, f) = 1,
or f. Suppose gcd(2, f) = f, then f divides z' and so there exist w", 2" €
F(p*Z, 1)[z] such that 2’ = w" f 4+ az”. Hence,

ho o= w’f—l—akz’:w'f+ak(w"f+az")

= (W +d"w")f + a1
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It follows that ' + (f) € {(a*™' + (f)), a contradiction. Thus, gcd(2', f) = 1.
The same argument as above yields that 2’4 (f) invertible in WTM which
means that there exists zo € F(p*Z, 1)[z] such that

(2" + (20 + () =1+ (f).
Therefore
a* +{f) = (20+{f))a"+(f))
= (o + (MW + () el
Consequently, I = (a* + (f)).
Customarily, for a m© polynomial f of degree k, its reciprocal m®©

polynomial z* f(x~!) will be denoted by f*. Thus, for example, if f(z) =
ap+ a1z + -+ ap_12" 1 + ai2®, then

f@) = afa+ax™ + - a2 f g

k
= ar+ap_1x+---+ ala: Ly apx”.

Moreover, if f(x) is a factor of " — 1, we denote f(x) = ﬁ

Theorem 0.7. Assume F(p*Z, 1) is a finite chain m© pseudo field with
mazximal mO ideal (a), and thatt is the nilpotency of a. Leta™—1 = fifo--- f;

be a representation of x" —1 as a product of basic irreducible pairwise-coprime
k
polynomials in F(p*Z, 1)[x]. Then any ideal in W is a sum of mO©

ideals of the form (ajf}- + (" = 1)), where 0 < j <t, 1 <i<r.

Proof 0.12. By the Chinese Reminder theorem, we have

F(p*Z, 1)z] _ F(p'Z
<xr - 1> a ﬂi 1 fz @Z

Thus, any mO ideal I of M is of the form @ZZ 1 Li, where I; is an

mO ideal of W. Accordmg to the previous lemma, for 1 < i < r,
I; =0 or I; = (ar + (fi)), for some k € {0, --- , t — 1}. Then I; correspond
o (a*f; + (z" — 1)) in %. Consequently, I is a sum of ideals of the
form {(a? f; + (" —1)).
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Corollary 0.2. Let F(p*Z, 1) be a finite mO pseudo field with mazimal m©
ideal (a), and t be the nilpotency of a. The numbers of quasi-cyclic m© codes
over F(pFZ, 1) of length r is (t + 1)!, where | is the number of factors in the
unique factorization of x” — 1 into a product of monic basic irreducible pair-
wise coprime mO polynomials.

From now on, in order to simplify notation, we will just write Iy + 1z +

-+ + 112" for the corresponding coset lo + Lz + -+ l,_12" '+ (2" — 1) | qotes
F(zz’“Z,l))[JC]
z"—1

Theorem 0.8. Let C' be a quasi-cyclic m© codes of length r over a fi-
nite mO pseudo field with mazimal mO ideal (a), and t be the nilpotency
of a. Then there exists a unique family of pairwise coprime monic m®O poly-

nomials Fy, Fy, -+, Fy in F(p*Z, 1)[x] such that FoFy---Fy = 2" — 1 and
C = (Fy, aFy, -+, a7 F}). Moreover

IC| = (F(p*Z, 1) 1)|)Z§;é(t—i>deg(m+1)_

Proof 0.13. Let " —1= f1--- f; be the unique factorization of x" — 1 into
a product of monic basic irreducible pairwise coprime m® polynomials. C' is
a direct sum of ideals of the form {(a’f;), where 0 < j <, 1 <1i <. After
reordering if necessary, we can assume that

¢ = (fk1+1>®'--®<fk1+k2>@(afk1+k2+1>@'--afk1+k2+k3>®
@ (0" fer i) @ @ (@)

where ky, -+ kg >0 and ky+---+k;+1 < r. Let kg =0, and ki1 be a
nonnegative integer such that ky +---+k,+1<r. Fori =0, ---, t, define

Fi = fk0+"'+ki+1 e fk0+...+k;i+1.

Then by our construction, it is clear that Fy, --- , F; are pairwise coprime,
Fo-Fy=fi- fo=a" — 1, and

—

C=(FR)o k)@ @ 'R).

To prove the uniqueness, assume GoGy -+ -Gy = 2"—1 and C’z(é\l, aé\g, e at_lé\t>.
Then

%:@@@@m@@
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thus, C = (G1) @ (aGa) & - @ (a'~'G,). Now there exist nonnegative integers
lo=0,11, -, lip1 withlo+li+- - -+l11 = I, and a permutation {f], -+, f.}
of {fi, -+, fr} such that, fori=0,1, -+, t

_ /
G; = fl0+"'+li+1 e flo+"'+li+1'

Hence,

~

C = (') @ (s D@ i) @ afy pt,) @

D <at71fA,l1+“'+lt+1> S---D <a’t71f.,r>

Now fori =0, --- , t, it follows that l; = k;, and, furthermore,{f; .
is a permutation of { fryt- ik -y frotethesr y- Therefore, G; = Fj, for
i=0, -t

To calculate the order |C|, note that

i+l

~

C=(F)®(al)® - @ (@' F)

and fori=0,1,--- , t—1
|<azf\>| _ (|F(kav 1)’)(n—degﬂ1) _ (|F(kav 1)’t)degFt+1
i [(a*=7)] k i
[F(p*Z, 1)]

~ (FGZ, D)) esrin,

Hence,

O = [(F)|-|(aB)|- - [{a"E))|
= ([F(p*Z, 1)) . (|[F(pFZ, 1)|)1- Vo™ (|F(pFZ, 1)|)%9"

= ([FGFZ, 1)])Zimot-dea(Firn)

Theorem 0.9. Let C be a quasi-cyclic code of length r over a finite chain
m® pseudo field F(p*Z, 1), which has maximal m® ideal {a) and t is the
nilpotency of a. Then there exist polynomials go, g1, -+ , gi—1 n F(p*Z, 1)[z]
such that C' = {go, ag1, -+, a" gi_1) and gi_1|gi—2| - - - |g1]g0| (" — 1).

Proof 0.14.  According to previous theorem, there exists a family of pair-
wise coprime monic mO polynomials Fy, Fy, -+, Fy in F(p*Z, 1)[z] such
that FoFy -+ Fy =" — 1 and C = (F, aFy, -+, a"'F}). Define

[ RFR--F, if0<i<t—2
97\ R, ifi=t—1.
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Then clearly gi—1|gi—2| - |g1]gol(x™ — 1). Moreover, for 0 < i <t —1, we
have

@'Fipy = d'Fy - FiFpys- - F = d'gFy - F,
Therefore, C C {go, agy, -+ , a*"tg;_1). On the other hand, go = FoFy -+ F; €
C. Since Fy, Fy are coprime m© polynomials in F(p*7Z, 1)[z], there exist
polynomials u, v € F(p*Z, 1)[x] such that uFy + vFy = 1. It follows that

91 = FOF3"'Ft:(UF1+UF2)FOF3"'Ft
= UF()Fng N 'Ft + CFOF2F3 N 'Ft = UE-’-UQO

whence ag, = auﬁ’; +avgy € C. Continuing this process, we obtain a'g; € C
for 0 <1 <t—1, which implies

<g()a agy, -, at_lgt—1> g C
Consequently, C = {(go, agy, -+ , a''gi_1).
VIII. CONCLUSION

This note studies the Quasi-Cyclic codes over a finite chain m® pseudo field
F(p*Z, 1), which leads to the modal structure of the notion Quasi-Cyclic
codes over a finite chain pseudo field [3]. It appears that the Structures of
Quasi-Cyclic codes of length r over a finite chain m© pseudo field F(p*Z, 1)
are established when r is not divisible by the characteristic of the residue m©
pseudo field F(p*Z, 1). Some cases where r divisible by the characteristic of
the residue m® field F(p*Z, 1) are also considered.

At the end of this study, some interesting problems remain to be solved:

1. We would like to construct the mO structure of cyclic dual codes and
negacyclic codes over finite chain m© pseudo field F(p*Z, 1).

2. We would like to define a necessary and sufficient condition for the
existence of self-dual cyclic mO codes over a mO pseudo field F(p*Z, 1).
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