



# GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES

Volume 23 Issue 3 Version 1.0 Year 2023

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

## Quasi-Cyclic Codes Over Finite Chain $m\Theta$ Pseudo Field $\mathbb{F}(p^k\mathbb{Z}, 1)$

By Pemha Binyam Gabriel Cedric

*University of Douala*

**Abstract-** The  $m\Theta$  sets present an enrichment from the logical viewpoint compared with the classical sets. The subset of the  $m\Theta$  invariants of a  $m\Theta$  set is a classical set, which leads to the canonical construction of the structures of modal  $\Theta$ -valent pseudo field. In this note the purpose is to define on a finite chain  $m\Theta$  pseudo field,  $\mathbb{F}(p^k\mathbb{Z}, 1)$ , the structures of Quasi- Cyclic codes of length  $r$ .

**Keywords:**  $m\Theta$  set,  $m\Theta$  pseudo field, chain  $m\Theta$  pseudo field, quasi-cyclic  $m\Theta$  codes, linear  $m\Theta$  codes.

**GJSFR-F Classification:** DDC Code: 663.1 LCC Code: TP505



*Strictly as per the compliance and regulations of:*





R<sub>ef</sub>

# Quasi-Cyclic Codes Over Finite Chain $m\Theta$ Pseudo Field $\mathbb{F}(p^k\mathbb{Z}, 1)$

Pemha Binyam Gabriel Cedric

**Abstract-** The  $m\Theta$  sets present an enrichment from the logical viewpoint compared with the classical sets. The subset of the  $m\Theta$  invariants of a  $m\Theta$  set is a classical set, which leads to the canonical construction of the structures of modal  $\Theta$ -valent pseudo field. In this note the purpose is to define on a finite chain  $m\Theta$  pseudo field,  $\mathbb{F}(p^k\mathbb{Z}, 1)$ , the structures of Quasi-Cyclic codes of length  $r$ .

**Keywords:**  $m\Theta$  set,  $m\Theta$  pseudo field, chain  $m\Theta$  pseudo field, quasi-cyclic  $m\Theta$  codes, linear  $m\Theta$  codes.

## I. INTRODUCTION

Cyclic codes are among the most useful and well-studied code families for various reasons, such as effective encoding and decoding. A cyclic code can be viewed as an ideal in a certain quotient ring obtained from a polynomial ring with coefficients from a finite field [1, 2]. Quasi-Cyclic codes are a generalization of cyclic codes [6, 8]. Algebraically, Quasi-Cyclic codes are modules rather than ideals [10, 13].

A  $m\Theta$  approach of the notion of sets has allowed to bring out the new classes of sets:  $m\Theta$  sets. The notion of modal  $\Theta$ -valent set ( $m\Theta$  set) noted  $(\mathbb{F}_{p\mathbb{Z}}, F_\alpha)$ ,  $p$  prime, is defined by F. Ayissi Eteme in [12, 16, 7]. Research on modal algebra has evolved and led to the theory of  $m\Theta$  codes [11, 15, 17].

The theory of error-correcting  $m\Theta$  codes over finite fields has experienced tremendous growth since its inception [5]. Progress has been attained in the direction of determining the structural properties of  $m\Theta$  codes over large families of  $m\Theta$  fields. This paper is a contribution along those lines as we focus on codes over finite  $m\Theta$  pseudo fields with a linear lattice of  $m\Theta$  ideals (the so-called chain  $m\Theta$  pseudo fields).

The purpose of this paper is to obtain structure theorems for Quasi-Cyclic codes in more general setting. The structures of Quasi-Cyclic codes of length  $r$  over finite chain  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$  are established when  $r$  is not divisible by the characteristic of the residue  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ . Some cases where  $r$  is divisible by the characteristic of the residue  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$  are also considered.

**Author:** University of Douala, Faculty of Science, Department of Mathematics and computer sciences, Douala Cameroon. e-mail: gpmha@yahoo.fr



After presenting preliminary concepts and results on  $m\Theta$  set in Section 2. Section 3 presents a canonical construction of the structures of modal  $\Theta$ -valent field and modal  $\Theta$ -valent field. Section 4 is devoted to the notion of modal  $\Theta$ -valent extension of a finite field. Section 5 define the intrinsic polynomial representation of the  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, r)$ . Section 6 presents the  $m\Theta$  Quasi-Cyclic codes. Lastly, section 7 presents the structure of Quasi-Cyclic code over finite chain  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ .

## II. PRELIMINARIES

### a) The modal $\Theta$ -valent set structure and the algebra of $(\mathbb{F}_{p\mathbb{Z}}, F_\alpha)$

$m\Theta$  sets are considered to be non-classical sets which are compatible with a non-classical logic called the chrysippian  $m\Theta$  logic.

**Definition 0.1.** [14] Let  $E$  be a non-empty set,  $I$  be a chain whose first and last elements are 0 and 1 respectively,  $(F_\alpha)_{\alpha \in I_*}$  where  $I_* = I \setminus \{0\}$  be a family of applications from  $E$  to  $E$ .

A  $m\Theta$  set is the pair  $(E, (F_\alpha)_{\alpha \in I_*})$  simply denoted by  $(E, F_\alpha)$  satisfying the following four axioms :

- $\bigcap_{\alpha} F_\alpha(E) = \bigcap_{\alpha \in I_*} \{F_\alpha(x) : x \in E\} \neq \emptyset$ ;
- $\forall \alpha, \beta \in I_*, \text{ if } \alpha \neq \beta \text{ then } F_\alpha \neq F_\beta$ ;
- $\forall \alpha, \beta \in I_*, F_\alpha \circ F_\beta = F_\beta$ ;
- $\forall x, y \in E, \text{ if } \forall \alpha \in I_*, F_\alpha(x) = F_\alpha(y) \text{ then } x = y$ .

**Theorem 0.1.** [16] (The theorem of  $m\Theta$  determination)

Let  $(E, F_\alpha)$  be a  $m\Theta$  set.

$$\forall x, y \in E, x =_\Theta y \text{ if and only if } \forall \alpha \in I_*, F_\alpha(x) = F_\alpha(y).$$

**Proof 0.1.** [16]

**Definition 0.2.** [5] Let  $C(E, F_\alpha) = \bigcap_{\alpha \in I_*} F_\alpha(E)$ . We call  $C(E, F_\alpha)$  the set of  $m\Theta$  invariant elements of the  $m\Theta$  set  $(E, F_\alpha)$ .

**Proposition 0.1.** [16] Let  $(E, F_\alpha)$  be a  $m\Theta$  set. The following properties are equivalent:

1.  $x \in \bigcap_{\alpha \in I_*} F_\alpha(E)$ ;
2.  $\forall \alpha \in I_*, F_\alpha(x) = x$ ;
3.  $\forall \alpha, \beta \in I_*, F_\alpha(x) = F_\beta(x)$ ;
4.  $\exists \mu \in I_*, x = F_\mu(x)$ .

Ref

14. F. Ayissi Eteme, Anneau chrysippien  $\Theta$ -valent, CRAS, Paris 298, série 1, 1984, pp.1 - 4.

*Proof 0.2.* [16]

*Definition 0.3.* [12]

Let  $(E, F_\alpha)$  and  $(E', F'_\alpha)$  be two  $m\Theta$  sets. Let  $X$  be a non-empty set. We shall call

1.  $(E', F'_\alpha)$  a modal  $\Theta$ -valent subset of  $(E, F_\alpha)$  if the structure of  $m\Theta$  set  $(E', F'_\alpha)$  is the restriction to  $E'$  of the structure of the  $m\Theta$  set  $(E, F_\alpha)$ , this means:

- $E' \subseteq E$  ;
- $\forall \alpha : \alpha \in I_*, F'_\alpha = F_{\alpha|_{E'}}$ .

2.  $X$  a modal  $\Theta$ -valent subset of  $(E, F_\alpha)$  if:

- $X \subseteq E$  ;
- $(X, F_{\alpha|_X})$  is a  $m\Theta$ s which is a modal  $\Theta$ -valent subset of  $(E, F_\alpha)$ .

In all what follows we shall write  $F_\alpha x$  for  $F_\alpha(x)$ ,  $F_\alpha E$  for  $F_\alpha(E)$ , etc ...

Let  $p \in \mathbb{N}$ , a prime number. Let us recall that if  $a \in \mathbb{F}_{p\mathbb{Z}}$ .

$$\mathbb{F}_{p\mathbb{Z}} = \mathbb{F}_p \cup \{x_{p\mathbb{Z}} : \neg(x \equiv 0 \pmod{p})\}; \quad \mathbb{F}_p = \{0, 1, 2, \dots, p-1\}.$$

We define the  $m\Theta$  support of  $a$  denoted  $s(a)$  as follows:

$$s(a) = \begin{cases} a & \text{if } a \in \mathbb{F}_p; \\ x & \text{if } a = x_{p\mathbb{Z}} \text{ with } \neg(x \equiv 0 \pmod{p}). \end{cases}$$

Thus  $s(a) \in \mathbb{F}_p$ .

*Definition 0.4.* [14] Let  $\perp$  be a binary operation on  $\mathbb{F}_p$ . So,  $\forall a, b \in \mathbb{F}_p$ ,  $a \perp b \in \mathbb{F}_p$ . Let  $x, y \in \mathbb{F}_{p\mathbb{Z}}$ . We define a binary operation  $\perp^*$  on  $\mathbb{F}_{p\mathbb{Z}}$  as follows :

$$x \perp^* y = \begin{cases} s(x) \perp s(y) & \text{if } \begin{cases} x, y \in \mathbb{F}_p \\ (s(x) \perp s(y)) \equiv 0 \pmod{p} \end{cases} \text{ otherwise} \\ (s(x) \perp s(y))_{p\mathbb{Z}} & \text{otherwise.} \end{cases}$$

$\perp^*$  as defined above on  $\mathbb{F}_{p\mathbb{Z}}$  will be called a  $m\Theta$  law on  $\mathbb{F}_{p\mathbb{Z}}$  for  $x, y \in \mathbb{F}_{p\mathbb{Z}}$ .

Thus we can define  $x + y \in \mathbb{F}_{p\mathbb{Z}}$  and  $x \times y \in \mathbb{F}_{p\mathbb{Z}}$  for every  $x, y \in \mathbb{F}_{p\mathbb{Z}}$ , where  $+$  and  $\times$  are  $m\Theta$  addition and  $m\Theta$  multiplication respectively.

*Theorem 0.2.* [12]  $(\mathbb{F}_{p\mathbb{Z}}, F_\alpha, +, \times)$  is a  $m\Theta$  ring of unity 1 and of  $m\Theta$  unity  $\frac{1}{p\mathbb{Z}}$ .

*Proof 0.3.* [12]

*Remark 0.1.* Since  $p$  is prime,  $(\mathbb{F}_{p\mathbb{Z}}, F_\alpha)$  is a  $m\Theta$  field.

*Definition 0.5.* [4]  $x$  is a divisor of zero in  $(\mathbb{F}_{p\mathbb{Z}}, F_\alpha)$  if it exists  $y \in \mathbb{F}_{p\mathbb{Z}}$  such that  $x \times y = 0$

*Example 0.1.* [4]

$p = 2$ , we have  $\mathbb{F}_{2\mathbb{Z}} = \{0, 1, 1_{2\mathbb{Z}}, 3_{2\mathbb{Z}}\}$

**The table of  $m\Theta$  determination and tables laws of  $\mathbb{F}_{2\mathbb{Z}}$ .**



|                            |   |   |                   |                   |
|----------------------------|---|---|-------------------|-------------------|
| $\mathbb{F}_{2\mathbb{Z}}$ | 0 | 1 | $1_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ |
| $F_1$                      | 0 | 1 | 1                 | 0                 |
| $F_2$                      | 0 | 1 | 0                 | 1                 |

|                   |                   |   |                   |                   |
|-------------------|-------------------|---|-------------------|-------------------|
| $+\Theta$         | 0                 | 1 | $1_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ |
| 0                 | 0                 | 1 | $1_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ |
| 1                 | 1                 | 0 | 0                 | 0                 |
| $1_{2\mathbb{Z}}$ | $1_{2\mathbb{Z}}$ | 0 | 0                 | 0                 |
| $3_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ | 0 | 0                 | 0                 |

|                   |   |                   |                   |                   |
|-------------------|---|-------------------|-------------------|-------------------|
| $\times\Theta$    | 0 | 1                 | $1_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ |
| 0                 | 0 | 0                 | 0                 | 0                 |
| 1                 | 0 | 1                 | $1_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ |
| $1_{2\mathbb{Z}}$ | 0 | $1_{2\mathbb{Z}}$ | $1_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ |
| $3_{2\mathbb{Z}}$ | 0 | $3_{2\mathbb{Z}}$ | $3_{2\mathbb{Z}}$ | $1_{2\mathbb{Z}}$ |

**Observation:**

$\mathbb{F}_{2\mathbb{Z}}$  has no divisor of zero, is a  $m\Theta$  ring from four elements, that's a  $m\Theta$  field of four elements.

### III. CANONICAL CONSTRUCTION OF MODAL $\Theta$ -VALENT FIELDS ( $m\Theta f$ ) AND MODAL $\Theta$ -VALENT PSEUDO FIELDS( $m\Theta pf$ )

Let  $p$  be a prime number,  $k \neq 0$  a positive integer,  $q = p^k$  and  $\mathbb{F}_q$  a finite field with  $q$  elements. Two  $m\Theta f$   $K_1$  and  $K_2$  of same characteristic  $p$  and of same cardinal  $p^{2k}$  are  $m\Theta$  isomorphic.

a) *Canonical construction of modal  $\Theta$ -valent fields ( $m\Theta f$ )* [9]

Consider that  $k = 1$ , so  $q = p$ .  $\mathbb{F}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$  is the prime field of characteristic  $p$  and of  $p$  elements. The modal  $\Theta$ -valent quotient ring ( $m\Theta qr$ )  $\mathbb{F}_{p\mathbb{Z}}$  as the modal  $\Theta$ -valent quotient  $\frac{\mathbb{Z}_{p\mathbb{Z}}}{p\mathbb{Z}_{p\mathbb{Z}}}$ .

Let  $\mathbb{F}_{p\mathbb{Z}}^* = \mathbb{F}_{p\mathbb{Z}} - \{0\}$ .  $\forall x \in \mathbb{F}_{p\mathbb{Z}}^*$ ,  $\exists x' \in \mathbb{F}_{p\mathbb{Z}}^* / x \cdot x' = \frac{1_{p\mathbb{Z}}}{p\mathbb{Z}_{p\mathbb{Z}}}$ .

$\mathbb{F}_{p\mathbb{Z}}$  has  $p^2$  elements but has no proper sub  $m\Theta$  ring verifying the preceding property for  $\mathbb{F}_{p\mathbb{Z}}^*$ .

For which reason,  $\mathbb{F}_{p\mathbb{Z}}$  is the prime  $m\Theta f$  with  $p^2$  elements.  $\mathbb{F}_p$  is the prime sub field of the  $m\Theta$  invariants of  $\mathbb{F}_{p\mathbb{Z}}$ . Let  $f$  be a polynomial with coefficients in  $\mathbb{F}_p$ . Clearly, it is all the same that:

1.  $f_p(x)$  irreducible over  $\mathbb{F}_p$ .
2.  $f_{p\mathbb{Z}}(x)$  irreducible over  $\mathbb{F}_{p\mathbb{Z}}$ .

**Observations:**

Let  $\mathbb{F}(p\mathbb{Z}, r) = \frac{\mathbb{F}_{p\mathbb{Z}}[X]}{(f(X))}$  be the  $m\Theta r$  modulo  $f(x)$ , ( $m\Theta r(f)$ ).  $f(x) \in \mathbb{F}_p[X]$ .  $\deg(f) = r$ ,  $r \in \mathbb{N}^*$ ,  $f$  irreducible over  $\mathbb{F}_p$ .

$\mathbb{F}_{p\mathbb{Z}}[X] \longrightarrow \mathbb{F}(p\mathbb{Z}, r) : g \longmapsto r_g$ ;  $g = q_g \cdot f(x) + r_g$ ,  $0 \leq dg(r_g) < dg(f)$ .

$(\mathbb{F}_{p\mathbb{Z}})^r \longrightarrow \mathbb{F}(p\mathbb{Z}, r) : (a_0, \dots, a_{r-1}) \longmapsto \sum_{i=0}^{r-1} a_i x^i$  is a bijection and therefore

becomes a  $m\Theta r$  isomorphism for the  $m\Theta$  laws modulo  $f(x)$ . Since  $f$  is irreducible over  $\mathbb{F}_{p\mathbb{Z}}$ ,  $\mathbb{F}(p\mathbb{Z}, r)$  is a  $m\Theta f$ .

**Theorem 0.3.** 1.  $\mathbb{F}(p\mathbb{Z}, r)$  is a  $m\Theta f$  of cardinal  $p^{2r}$ ;

2.  $\mathbb{F}_{p\mathbb{Z}}$  is its prime sub  $m\Theta f$  of cardinal  $p^2$ ;

3.  $\mathbb{F}_{p\mathbb{Z}}$  and  $\mathbb{F}(p\mathbb{Z}, r)$  are booth of characteristic  $p$  since  $\forall i :$

$$i = 0, \dots, p-1; \quad \underbrace{1+1+\dots+1}_{i \text{ times}} + \underbrace{1_{p\mathbb{Z}}+\dots+1_{p\mathbb{Z}}}_{(p-i) \text{ times}} = 0$$

*Proof 0.4. [9]*

According to a previous notation,

$$\mathbb{F}(p\mathbb{Z}, 1) = \mathbb{F}_{p\mathbb{Z}}, \quad \mathbb{F}(p, 1) = \frac{\mathbb{Z}}{p\mathbb{Z}}, \quad \mathbb{F}(p, r) = \mathbb{G}\mathbb{F}(p, r).$$

b) *Canonical construction of modal  $\Theta$ -valent pseudo fields ( $m\Theta pf$ )*

Consider that  $k \neq 1$ , so  $q = p^k$ . Let then  $\mathbb{F}(p^k\mathbb{Z}, 1)$  denote the quotient  $m\Theta r$   $\mathbb{F}_{p^k\mathbb{Z}} = \frac{\mathbb{Z}_{p\mathbb{Z}}}{p^k\mathbb{Z}_{p\mathbb{Z}}}$  and let

$$O(p^k, 1) = O_{p^k} = \left\{ \frac{a}{p^k\mathbb{Z}_{p\mathbb{Z}}} : a \in \mathbb{Z}_{p\mathbb{Z}}, s(a)/p^k \right\} = \left\{ \frac{a}{p^k\mathbb{Z}} : a \in \mathbb{Z}, a/p^k \right\}.$$

Let  $\mathbb{F}^*(p^k\mathbb{Z}, 1) = \mathbb{F}(p^k\mathbb{Z}, 1) - O(p^k, 1)$ ;  $k \in \mathbb{N}^*$ . Then  $\forall x : x \in \mathbb{F}^*(p^k\mathbb{Z}, 1), \exists x' : x' \in \mathbb{F}^*(p^k\mathbb{Z}, 1) : x \cdot x' = \frac{1_{p\mathbb{Z}}}{p^k\mathbb{Z}_{p\mathbb{Z}}}$ .

So we call  $\mathbb{F}_{p^k\mathbb{Z}}$  a  $m\Theta$  pseudo field ( $m\Theta pf$ ).  $\mathbb{F}_{p^k\mathbb{Z}}$  has  $p^{k+1}$  elements and is of characteristic  $p^k$ . It has no proper sub  $m\Theta pf$  with the same as the preceding properties for  $\mathbb{F}^*(p^k\mathbb{Z}, 1)$ . Finally,  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is the prime  $m\Theta pf$  with  $p^{k+1}$  elements.

Let now  $f \in \mathbb{Z}_{p^k}[X] : dg(f) = r$  and  $f$  irreducible over  $\mathbb{Z}_{p^k} = \frac{\mathbb{Z}}{p^k\mathbb{Z}}$ . Let  $\mathbb{F}(p^k\mathbb{Z}, r) = \frac{\mathbb{F}(p^k\mathbb{Z}, 1)[X]}{(f(X))} m\Theta r$  modulo  $f(x)$ .  $\mathbb{F}(p^k\mathbb{Z}, r)$  is a  $m\Theta pf$ .

$(\mathbb{F}(p^k\mathbb{Z}, 1))^r \longrightarrow \mathbb{F}(p^k\mathbb{Z}, r) : (a_0, \dots, a_{r-1}) \longmapsto \sum_{i=0}^{r-1} a_i x^i$  is a bijection and

therefore a  $m\Theta$  ring modulo  $f(X)$  isomorphism. Since  $card\mathbb{F}(p^k\mathbb{Z}, 1) = p^{k+1}$ ,  $card\mathbb{F}(p^k\mathbb{Z}, r) = p^{(k+1)r}$ .

**Theorem 0.4. [9]**  $\forall k \in \mathbb{N} - \{0\}$ ,

1.  $\mathbb{F}(p^k\mathbb{Z}, r)$  is a  $m\Theta pf$  of cardinal  $p^{(k+1)r}$ .

2.  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is its prime sub  $m\Theta pf$  of  $p^{k+1}$  elements.

3.  $\mathbb{F}(p^k\mathbb{Z}, 1)$  and  $\mathbb{F}(p^k\mathbb{Z}, r)$  are booth of characteristic  $p^k$ .

*Proof 0.5. [9]*

$\mathbb{F}(p^k, r) = \mathbb{G}\mathbb{F}(p^k, r)$  is the sub pseudo field of the  $m\Theta$  invariants of the  $m\Theta pf$   $\mathbb{F}(p^k\mathbb{Z}, r)$ .  $\mathbb{F}_{p^k} = \frac{\mathbb{Z}}{p^k\mathbb{Z}}$  is the prime sub pseudo field of the  $m\Theta$  invariants of  $\mathbb{F}_{p^k\mathbb{Z}}$ ; the prime sub  $m\Theta pf$  with  $p^{k+1}$  elements.

*Theorem 0.5. [9]*

1. Any  $m\Theta f K$  of characteristic  $p$  prime and then of cardinal  $p^{2r}$ ,  $r \in \mathbb{N}^*$  is  $m\Theta$  isomorphic to the  $m\Theta f \mathbb{F}(p\mathbb{Z}, r)$ ;
2. Any  $m\Theta f K'$  of characteristic  $p^k$ ,  $p$  prime and then of cardinal  $p^{(k+1)r}$ ,  $r \in \mathbb{N}^*$  is  $m\Theta$  isomorphic to the  $m\Theta f \mathbb{F}(p^k\mathbb{Z}, r)$ .

*Proof 0.6. [9]*

#### IV. MODAL $\Theta$ -VALENT EXTENSION OF A FINITE FIELD

Note that  $K$  is a finite field of cardinal  $p^n$ ,  $p, n \in \mathbb{N}^*$  and then of characteristic  $p$  prime.  $\beta \in K$ , of minimal polynomial  $m_\beta(x) \in \mathbb{F}_p[x]$ ,  $r = \deg_{\mathbb{F}_p}(m_\beta(x)) \in \mathbb{N}^*$ ,  $m_\beta(x)$  is irreducible over  $\mathbb{F}_p$ .

*Observations:* Let  $I_\beta = \langle m_\beta(x) \rangle_{\mathbb{F}_p[x]}$  the principal ideal of  $\mathbb{F}_p[x]$  generated by  $m_\beta(x)$ . Since  $\mathbb{F}_p \subset \mathbb{F}_{p\mathbb{Z}}$ ,  $\mathbb{F}_p[x] \subset \mathbb{F}_{p\mathbb{Z}}[x]$ .

Let  $a \in \mathbb{F}_{p\mathbb{Z}}^*$ :  $\exists \mu$ ,  $F_\mu a \neq 0$ , then  $F_\mu a \in \mathbb{F}_p^*$ , thus  $m_\beta(F_\mu a) \neq 0$  and since  $F_\mu m_\beta(a) = m_\beta(F_\mu a)$ ,  $F_\mu m_\beta(a) \neq 0$ . Then  $m_\beta(a) \neq 0$ .

Therefore,  $m_\beta(x)$  is also irreducible over  $\mathbb{F}_{p\mathbb{Z}}$ . It is known that  $\frac{\mathbb{F}_{p\mathbb{Z}}[x]}{\langle m_\beta(x) \rangle}$  is a  $m\Theta$  field with  $p^{2r}$  elements and then of characteristic  $p$ .  $\frac{\mathbb{F}_p[x]}{m_\beta(x)}$  is its subfield of the  $\Theta$ -invariants who has  $p^r$  elements and characteristic  $p$ .

Let  $I_{\beta p\mathbb{Z}} = \langle m_\beta(x) \rangle_{\mathbb{F}_{p\mathbb{Z}}[x]}$  the principal  $m\Theta$  ideal of  $\mathbb{F}_{p\mathbb{Z}}[x]$  generated by  $m_\beta(x)$ .  $\forall \alpha$ ,  $F_\alpha I_{\beta p\mathbb{Z}} = I_\beta$  therefore  $I_{\beta p\mathbb{Z}}$  is a  $m\Theta$  maximal ideal of  $\mathbb{F}_{p\mathbb{Z}}[x]$ . Then define  $\Phi_{\beta p\mathbb{Z}} : \mathbb{F}_{p\mathbb{Z}}[x] \longrightarrow \mathbb{F}(p\mathbb{Z}, n)$  as follows; if  $f(x) = \sum_{i=0}^q a_i x^i \in \mathbb{F}_{p\mathbb{Z}}[x]$ ,

$$\Phi_{\beta p\mathbb{Z}}(f(x)) = f(\beta) = \sum_{i=0}^q a_i \beta^i \in \mathbb{F}(p\mathbb{Z}, n).$$

By definition  $\Phi_{\beta p\mathbb{Z}}$  is a  $m\Theta$  ring morphism since then  $\Phi_{\beta p\mathbb{Z}}(\mathbb{F}_{p\mathbb{Z}}[x]) = \{f(\beta) \mid f(x) \in \mathbb{F}_{p\mathbb{Z}}[x]\}$  is a sub  $m\Theta$  field of  $\mathbb{F}(p\mathbb{Z}, n)$ . Therefore the following diagram  $m\Theta$  commutes

$$\begin{array}{ccc} \mathbb{F}_{p\mathbb{Z}}[x] & \xrightarrow{\Phi_{\beta p\mathbb{Z}}} & \varphi_{\Phi_{\beta p\mathbb{Z}}}(\mathbb{F}_{p\mathbb{Z}}[x]) \xrightarrow{i_{p\mathbb{Z}}} \mathbb{F}(p\mathbb{Z}, n) \\ \varphi_{\Phi_{\beta p\mathbb{Z}}} \downarrow & \nearrow \Phi_{\beta p\mathbb{Z}} = \frac{\Phi_{\beta p\mathbb{Z}}}{\langle m_\beta(x) \rangle} & \\ \frac{\mathbb{F}_{p\mathbb{Z}}[x]}{I_\beta} & & \end{array}$$

- $\frac{\mathbb{F}_{p\mathbb{Z}}[x]}{I_\beta} = \frac{\mathbb{F}_{p\mathbb{Z}}[x]}{\langle m_\beta(x) \rangle}$  is a  $m\Theta$  field of cardinal  $p^{2r}$  and then of characteristic  $p$ .

- Through the  $m\Theta$  ring isomorphism  $\tilde{\Phi}_{\beta p\mathbb{Z}}$ ,  $\tilde{\Phi}_{\beta p\mathbb{Z}}(\mathbb{F}_{p\mathbb{Z}}[x])$  becomes a  $m\Theta$  subfield of  $\mathbb{F}(p\mathbb{Z}, n)$  with the  $m\Theta$  field structure of  $p^{2r}$  elements exported from  $\frac{\mathbb{F}_{p\mathbb{Z}}[x]}{\langle m_{\beta}(x) \rangle}$  by  $\tilde{\Phi}_{\beta p\mathbb{Z}}$ .

*Notation 0.1.*

$$\mathbb{F}_{p\mathbb{Z}}(\beta) = \Phi_{p\mathbb{Z}}(\beta) = \tilde{\Phi}_{\beta p\mathbb{Z}}(\mathbb{F}_{p\mathbb{Z}}[x]) = \{f(\beta) \mid f(x) \in \mathbb{F}_{p\mathbb{Z}}[x]\}$$

*Theorem 0.6.* 1.  $\mathbb{F}_{p\mathbb{Z}}[\beta]$  has  $p^{2r}$  elements and characteristic  $p$ .

2.  $\mathbb{F}_{p\mathbb{Z}}$  is the prime  $m\Theta$  subfield of  $\mathbb{F}_{p\mathbb{Z}}[\beta]$ .
3. Any sub  $m\Theta$  field of  $\mathbb{F}(p\mathbb{Z}, n)$  containing  $\mathbb{F}_{p\mathbb{Z}}$  and  $\beta$  contains  $\mathbb{F}_{p\mathbb{Z}}[\beta]$ .
4.  $\forall a; a \in \mathbb{F}_{p\mathbb{Z}}[\beta], \exists a_i, i = 0, 1, \dots, r-1 / a_i \in \mathbb{F}_{p\mathbb{Z}} : a = \sum_{i=0}^{r-1} a_i \beta^i$ .

*Definition 0.6.* Henceforth we call  $\mathbb{F}_{p\mathbb{Z}}[\beta]$  the  $m\Theta$  extension of  $\mathbb{F}_p$  and  $\mathbb{F}_{p\mathbb{Z}}$  to  $\beta$ .

*Definition 0.7.* We call a  $m\Theta$  primitive element of  $\mathbb{F}(p\mathbb{Z}, n)$  any generator if there exists one, noted  $\alpha$ , of  $\mathbb{F}(p\mathbb{Z}, n) - \mathbb{F}(p, n)$ . This meaning that  $\forall a : a \in \mathbb{F}(p\mathbb{Z}, n) - \mathbb{F}(p, n), \exists m \in \mathbb{N} : 0 \leq m \leq \omega(\mathbb{F}^*(p\mathbb{Z}, n); a = \alpha^m$ .

*Example 0.2.*  $2_{3\mathbb{Z}}$  and  $5_{3\mathbb{Z}}$  are two  $m3$  generators of  $\mathbb{F}_{3\mathbb{Z}}$ .

*Proposition 0.2.* If  $\alpha \in \mathbb{F}(p\mathbb{Z}, n)$  is a  $m\Theta$  primitive element then  $\mathbb{F}(p\mathbb{Z}, n) = \mathbb{F}_{p\mathbb{Z}}(\alpha)$ .

*Proof 0.7.* Suppose  $u \in \mathbb{F}(p\mathbb{Z}, n) - \mathbb{F}(p, n)$  and  $\alpha$  is a  $m\Theta$  primitive element:  $\exists m, m \in \mathbb{N} : 0 \leq m \leq \omega(\mathbb{F}^*(p\mathbb{Z}, r), u = \alpha^m$ . Let  $f(x) = x^m \in \mathbb{F}_{p\mathbb{Z}}[x]$ ,  $\Phi_{\beta p\mathbb{Z}}(f(x)) = f(\alpha) = x^m$ .

Therefore  $u = \alpha^m = f(\alpha) \in \mathbb{F}_{p\mathbb{Z}}(\alpha)$ . Thus  $\mathbb{F}(p\mathbb{Z}, n) = \mathbb{F}_{p\mathbb{Z}}(\alpha)$ .

## V. THE INTRINSIC POLYNOMIAL REPRESENTATION OF THE $m\Theta$ PSEUDO FIELD $\mathbb{F}(p^k\mathbb{Z}, r)$

Let  $k \in \mathbb{N}$ ,  $r, p \in \mathbb{N}^*$ ,  $p$  prime  $2 \leq p$ . It is plain in [7] that:

$$\begin{aligned} \prod_{a \in \mathbb{F}^*(p^k\mathbb{Z}, 1)} (x - a) &= \prod_{x \in \tilde{\mathbb{F}}_{p^k}^*} (x - a) \times \prod_{a \in \mathbb{F}^*(p^k\mathbb{Z}, 1) - \mathbb{F}_{p^k}^*} (x - a) \\ &= (x^{\varphi(p^k)} - 1)(x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}}). \end{aligned}$$

$$\mathbb{F}(p^k, 1) = \frac{\mathbb{Z}}{p^k\mathbb{Z}}.$$

*Proposition 0.3.* Let  $\langle x^{\varphi(p^k)} - 1 \rangle$  and  $\langle x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}} \rangle$  be the ideals of  $\mathbb{F}(p^k, 1)[x]$  respectively generated by  $x^{\varphi(p^k)} - 1$  and  $x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}}$ , then

1.  $\langle x^{\varphi(p^k)} - 1 \rangle$  is a maximal  $m\Theta$  ideal of  $\mathbb{F}(p^k, 1)[x]$ ;
2.  $\langle x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}} \rangle \subsetneq \langle x^{\varphi(p^k)} - 1 \rangle$ .

*Proof 0.8.* 1.  $\langle x^{\varphi(p^k)} - 1 \rangle$  is a  $m\Theta$  ideal since generated by the  $m\Theta\Theta$  invariant polynomial  $x^{\varphi(p^k)} - 1$ ; this  $\Theta$  ideal is a maximal since  $\langle x^{\varphi(p^k)} - 1 \rangle_{\mathbb{F}_{p^k}[x]}$  is maximal in  $\mathbb{F}_{p^k}[x]$  and  $\forall \alpha \in I_*, F_\alpha \langle x^{\varphi(p^k)} - 1 \rangle = \langle x^{\varphi(p^k)} - 1 \rangle_{\mathbb{F}_{p^k}[x]}$ . This is sufficient to claim that  $\frac{\mathbb{F}(p^k, 1)[x]}{\langle x^{\varphi(p^k)} - 1 \rangle}$  is a  $m\Theta$  pseudo field, and as such  $m\Theta$  isomorphic to the  $m\Theta$  pseudo field  $\mathbb{F}(p^k, \varphi(p^k))$ .

2.  $x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}} \in \langle x^{\varphi(p^k)} - 1 \rangle$ . Since  $\varphi(p^{k+1}) = p\varphi(p^k)$ ,  $x^{\varphi(p^{k+1})} = x^{p\varphi(p^k)}$ . Henceforth,

$$\begin{aligned} x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}} &= x^{p\varphi(p^k)} - 1_{p\mathbb{Z}} \\ &= (x^{\varphi(p^k)})^p - 1_{p\mathbb{Z}}^p \\ &= (x^{\varphi(p^k)} - 1_{p\mathbb{Z}})^p \\ &= (x^{\varphi(p^k)} - 1)(x^{\varphi(p^k)} - 1_{p\mathbb{Z}})^{p-1} \end{aligned}$$

This last expression shows that  $x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}} \in \langle x^{\varphi(p^k)} - 1 \rangle$ . Trivially,  $x^{\varphi(p^k)} - 1 \notin \langle x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}} \rangle$ . Therefore  $\langle x^{\varphi(p^{k+1})} - 1_{p\mathbb{Z}} \rangle \subsetneq \langle x^{\varphi(p^k)} - 1 \rangle$ ,  $\forall k \in \mathbb{N}^*$ . Thus  $\langle x^{p(p-1)} - 1_{p\mathbb{Z}} \rangle \subsetneq \langle x^{p-1} - 1 \rangle$ .

*Definition 0.8.* The  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, \varphi(p^k)) = \frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^{\varphi(p^k)} - 1 \rangle}$  is what we call the intrinsic polynomial representation of the  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, r)$ .

*Corollary 0.1.*  $\mathbb{F}(p\mathbb{Z}, \varphi(p)) = \frac{\mathbb{F}(p\mathbb{Z}, 1)[x]}{\langle x^{p-1} - 1 \rangle}$  is the intrinsic polynomial representation of  $\mathbb{F}(p\mathbb{Z}, r)$  with  $r = \varphi(p) = p - 1$ ,  $k = 1$ .

*Proposition 0.4.* For a finite commutative  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$  the following conditions are equivalent:

1.  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a local  $m\Theta$  pseudo field and the maximal  $m\Theta$  ideal  $M$  of  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is principal;
2.  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a local principal  $m\Theta$  ideal pseudo field;
3.  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a chain  $m\Theta$  pseudo field.

Notes

*Proof 0.9.*  $i) \implies ii)$ . Let  $I$  be an  $m\Theta$  ideal of  $\mathbb{F}(p^k\mathbb{Z}, 1)$ . If  $I = \mathbb{F}(p^k\mathbb{Z}, 1)$ , then  $I$  is generated by the identity 1. If  $I \subsetneq \mathbb{F}(p^k\mathbb{Z}, 1)$ , then  $I \subseteq M$ . By  $i$ ,  $M$  is generated by an element, say  $M = \langle a \rangle$ . Therefore,  $I = \langle a^i \rangle$ , for some integer  $k$ . Hence,  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a local principal  $m\Theta$  ideal pseudo field.

$ii) \implies iii)$ . Let  $\mathbb{F}(p^k\mathbb{Z}, 1)$  be a local principal  $m\Theta$  ideal pseudo field with the maximal ideal  $M = \langle a \rangle$ , and  $A, B$  be proper ideals of  $\mathbb{F}(p^k\mathbb{Z}, 1)$ . Then  $A, B \subseteq M$ , whence there exist integers  $l, m$  such that  $A = \langle a^l \rangle$ ,  $B = \langle a^m \rangle$  ( $l, m \leq$  the nilpotency of  $a$ ). Hence, either  $A \subseteq B$ , or  $B \subseteq A$ . Thus,  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a chain  $m\Theta$  pseudo field.

$iii) \implies i)$ . Assume  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a finite commutative chain  $m\Theta$  pseudo field, then clearly  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is local. To show the maximal  $m\Theta$  ideal  $M$  of  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is principal, suppose to the contrary that  $M$  is generated by more than one element, say  $b, c$  are in the generator set of  $M$  and  $b \notin c\mathbb{F}(p^k\mathbb{Z}, 1)$ ,  $c \notin b\mathbb{F}(p^k\mathbb{Z}, 1)$ . Then  $\langle b \rangle \not\subseteq \langle c \rangle$  and  $\langle c \rangle \not\subseteq \langle b \rangle$ , a contradiction with the assumption that  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a chain  $m\Theta$  pseudo field. Thus,  $M$  is principal, proving  $i$ .

Let  $a$  be a fixed generator of the maximal ideal  $M$ . Then  $a$  is nilpotent and we denote its nilpotency index by  $t$ . The ideals of  $\mathbb{F}(p^k\mathbb{Z}, 1)$  for a chain

$$\mathbb{F}(p^k\mathbb{Z}, 1) = \langle a^0 \rangle \supsetneq \langle a^1 \rangle \supsetneq \cdots \supsetneq \langle a^{t-1} \rangle \supsetneq \langle a^t \rangle = \langle 0 \rangle.$$

Let  $\overline{\mathbb{F}(p^k\mathbb{Z}, 1)} = \frac{\mathbb{F}(p^k\mathbb{Z}, 1)}{M}$ . By  $- : \mathbb{F}(p^k\mathbb{Z}, 1)[x] \longrightarrow \overline{\mathbb{F}(p^k\mathbb{Z}, 1)}[x]$ , we denote the natural  $m\Theta$  pseudo field homomorphism that maps  $\rho \mapsto \rho + M$  and the variable  $x$  to  $x$ .

*Proposition 0.5.* Let  $\mathbb{F}(p^k\mathbb{Z}, 1)$  be a finite commutative chain  $m\Theta$  pseudo field, with maximal ideal  $M = \langle a \rangle$ , and let  $t$  be a nilpotency  $a$ . Then we get the following statements.

1. For some prime  $p$  and positive integers  $k, l$  ( $k \geq l$ ),  $|\mathbb{F}(p^k\mathbb{Z}, 1)| = p^{k+1}$ ,  $|\mathbb{F}(p^k\mathbb{Z}, 1)| = p^{l+1}$ , and the characteristic of  $\mathbb{F}(p^k\mathbb{Z}, 1)$  and  $\overline{\mathbb{F}(p^k\mathbb{Z}, 1)}$  are powers of  $p$ .
2. For  $i = 0, \dots, t$ ,  $|\langle a^i \rangle| = |\overline{\mathbb{F}(p^k\mathbb{Z}, 1)}|^{t-i}$ . In particular,  $|\mathbb{F}(p^k\mathbb{Z}, 1)| = |\overline{\mathbb{F}(p^k\mathbb{Z}, 1)}|^t$ , so,  $k = lt$ .

Two  $m\Theta$  polynomials  $f_1, f_2 \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  are called  $m\Theta$  coprime if  $\langle f_1 \rangle + \langle f_2 \rangle = \mathbb{F}(p^k\mathbb{Z}, 1)[x]$ . A  $m\Theta$  polynomial  $f \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  is called basic  $m\Theta$  irreducible if  $\overline{f}$  is  $m\Theta$  irreducible in  $\overline{\mathbb{F}(p^k\mathbb{Z}, 1)}[x]$ . A  $m\Theta$  polynomial  $f \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  is called regular if it is not a zero divisor.

## VI. $m\Theta$ QUASI-CYCLIC CODES

For a finite  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ , consider the set  $\mathbb{F}^r(p^k\mathbb{Z}, 1)$  of  $n$ -tuples of elements from  $\mathbb{F}(p^k\mathbb{Z}, 1)$  as a module over  $\mathbb{F}(p^k\mathbb{Z}, 1)$  in the usual way. A subset  $C \subseteq \mathbb{F}^r(p^k\mathbb{Z}, 1)$  is called a linear  $m\Theta$  code of length  $r$  over  $\mathbb{F}(p^k\mathbb{Z}, 1)$  if  $C$  is an  $\mathbb{F}(p^k\mathbb{Z}, 1)$ -submodule of  $\mathbb{F}^r(p^k\mathbb{Z}, 1)$ .  $C$  is called  $m\Theta$  cyclic if, for every  $m\Theta$  codeword  $x = (x_0, x_1, \dots, x_{r-1}) \in C$ , its cyclic shift  $(x_{n-1}, x_0, x_1, \dots, x_{n-2})$  is also in  $C$ . An  $n$ -tuple  $c = (c_0, c_1, \dots, c_{r-1}) \in \mathbb{F}^r(p^k\mathbb{Z}, 1)$  is identified with the  $m\Theta$  polynomial  $c_0 + c_1x + \dots + c_{r-1}x^{r-1}$  in  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^{r-1} \rangle}$ , which is called the  $m\Theta$  polynomial representation of  $c = (c_0, c_1, \dots, c_{r-1})$ .

It is well known that a code  $C$  of length  $r$  over  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is  $m\Theta$  cyclic if and only if the  $m\Theta$  set of polynomial representations of its  $m\Theta$  codewords is an  $m\Theta$  ideal of  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^{r-1} \rangle}$ .

Given  $x = (x_0, x_1, \dots, x_{r-1})$ ,  $y = (y_0, y_1, \dots, y_{r-1}) \in \mathbb{F}^r(p^k\mathbb{Z}, 1)$ , their scalar product is

$$x \cdot y = x_0y_0 + x_1y_1 + \dots + x_{r-1}y_{r-1}.$$

(evaluated in  $\mathbb{F}(p^k\mathbb{Z}, 1)$ ). Two  $m\Theta$  words  $x, y$  are called orthogonal if  $\forall \alpha \in I_*$ ,  $F_\alpha(x) \cdot F_\alpha(y) = 0$ . For a linear  $m\Theta$  code  $C$  over  $\mathbb{F}(p^k\mathbb{Z}, 1)$ , its dual code  $C^\perp$  is the set of  $m\Theta$  words over  $\mathbb{F}(p^k\mathbb{Z}, 1)$  that are orthogonal to all  $m\Theta$  codewords of  $C$ ;

$$C^\perp = \{x \in \mathbb{F}(p^k\mathbb{Z}, 1) \mid \forall \alpha \in I_*, F_\alpha(x) \cdot F_\alpha(y) = 0, \forall y \in C\}.$$

A  $m\Theta$  code  $C$  is called self-dual if  $C = C^\perp$ . For a finite  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$  with maximal ideal  $\langle a \rangle$  and the nilpotency  $t$  of  $a$  is even, the code  $\langle a^{\frac{t}{2}} \rangle$  is self-dual and is called the trivial self-dual code.

*Proposition 0.6.* Let  $\mathbb{F}(p^k\mathbb{Z}, 1)$  be a finite commutative  $m\Theta$  pseudo field and

$$a(x) = a_0 + a_1x + \dots + a_{r-1}x^{r-1};$$

$$b(x) = b_0 + b_1x + \dots + b_{r-1}x^{r-1} \in \mathbb{F}(p^k\mathbb{Z}, 1)[x].$$

Then  $a(x)b(x) = 0$  in  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^{r-1} \rangle}$  if and only if  $(a_0, a_1, \dots, a_{r-1})$  is  $m\Theta$  orthogonal to  $(b_{r-1}, b_{r-2}, \dots, b_0)$  and all its cyclic shifts.

*Proof 0.10.* Let  $\zeta$  denote the cyclic shift for  $m\Theta$  codewords of length  $r$ , i.e., for each  $(x_0, x_1, \dots, x_{r-1}) \in \mathbb{F}^r(p^k\mathbb{Z}, 1)$ .

$$\zeta(x_0, x_1, \dots, x_{r-1}) = (x_{r-1}, x_0, \dots, x_{r-2}).$$

Thus,  $\zeta^i(b_{r-1}, b_{r-2}, \dots, b_0)$ ,  $i = 1, 2, \dots, r$  are all cyclic shifts of  $(b_{r-1}, b_{r-2}, \dots, b_0)$ .

Let  $c(x) = c_0 + c_1x + \dots + c_{r-1}x^{r-1} = a(x)b(x) \in \frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^r - 1 \rangle}$ . Then for  $k = 0, 1, \dots, r-1$ ,

$$\begin{aligned} c_k &= \sum_{i+j=k \text{ or } i+j=r-k} a_i b_j \\ &= (a_0, a_1, \dots, a_{r-1}) \cdot (b_k, b_{k-1}, \dots, b_{k+1}) \\ &= (a_0, a_1, \dots, a_{r-1}) \cdot \zeta^{k+1}(b_{r-1}, b_{r-2}, \dots, b_0). \end{aligned}$$

Therefore,  $c(x) = 0$  if and only if  $c_k = 0$  for  $k = 0, 1, \dots, r-1$  if and only if

$$(a_0, a_1, \dots, a_{r-1}) \cdot \zeta^{k+1}(b_{r-1}, b_{r-2}, \dots, b_0) = 0,$$

for  $k = 0, 1, \dots, r-1$  if and only if  $(a_0, a_1, \dots, a_{r-1})$  is orthogonal to  $(b_{r-1}, b_{r-2}, \dots, b_0)$  and all its cyclic shifts, as desired.

*Definition 0.9. (quasi-cyclic  $m\Theta$  code)*

A linear  $m\Theta$  code  $C$  of length  $r = lk$  over a finite  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is called a quasi-cyclic  $m\Theta$  code of index  $k$  if for every  $m\Theta$  codeword  $c \in C$  there exists a number  $k$  such that the  $m\Theta$  codeword obtained by  $k$  cyclic shifts is also a  $m\Theta$  codeword in  $C$ . That is,

$$c = (c_0, c_1, \dots, c_{r-1}) \in C \implies c' = \zeta^k(c) = (c_{r-k}, \dots, c_0, \dots, c_{r-k-1}) \in C.$$

In the definition  $k$  is defined as the smallest number of cyclic shifts where the  $m\Theta$  code is invariant. Quasi-cyclic  $m\Theta$  codes are a generalization of cyclic  $m\Theta$  codes.

## VII. STRUCTURE OF QUASI-CYCLIC CODE OVER FINITE CHAIN $m\Theta$ PSEUDO FIELD $\mathbb{F}(p^k\mathbb{Z}, 1)$

Let  $\mathbb{F}(p^k\mathbb{Z}, 1)$  be a finite chain  $m\Theta$  pseudo field with the maximal  $m\Theta$  ideal  $\langle a \rangle$ , and  $t$  be the nilpotency of  $a$ . There exist a prime  $p$  and an integer  $l$  such that  $|\mathbb{F}(p^k\mathbb{Z}, 1)| = p^l$ ,  $|\mathbb{F}(p^k\mathbb{Z}, 1)| = p^{lt}$ , the characteristic of  $\mathbb{F}(p^k\mathbb{Z}, 1)$  and  $\mathbb{F}(p^k\mathbb{Z}, 1)$  are powers of  $p$ . In this section, we assume  $r$  to be a positive integer which is not divisible by  $p$ ; that implies  $r$  is not divisible by the characteristic of the residue  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ , so that  $x^r - 1$  is square free in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ . Therefore,  $x^r - 1$  has a unique decomposition as a product of basic irreducible pairwise coprime  $m\Theta$  polynomials in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ .



**Lemma 0.1.** Let  $\mathbb{F}(p^k\mathbb{Z}, 1)$  be a finite chain  $m\Theta$  pseudo field with the maximal  $m\Theta$  ideal  $\langle a \rangle$ , and  $t$  be the nilpotency of  $a$ . If  $f$  is a regular basic irreducible  $m\Theta$  polynomial of the  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ , then  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f \rangle}$  is also a chain  $m\Theta$  pseudo field with precisely the following ideals:

$$\langle 0 \rangle, \langle 1 \rangle, \langle 1 + \langle f \rangle \rangle, \langle a + \langle f \rangle \rangle, \dots, \langle a^{t-1} + \langle f \rangle \rangle.$$

**Proof 0.11.** First we show that for distinct values of  $i, j \in \{0, 1, \dots, t-1\}$ ,  $\langle a^i + \langle f \rangle \rangle \neq \langle a^j + \langle f \rangle \rangle$ . Suppose  $\langle a^i + \langle f \rangle \rangle = \langle a^j + \langle f \rangle \rangle$ , for  $0 \leq i < j \leq t-1$ . Then, there exists  $g(x) \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  with  $\deg(g) < \deg(f)$  such that  $a^i + \langle f \rangle = a^j + \langle f \rangle$ . That means  $a^j g(x) - a^i \in \langle f \rangle$ . As

$$\deg(a^j g(x) - a^i) \leq \deg(g) < \deg(f)$$

it follows that  $a^j g(x) - a^i = 0$ . Multiplying by  $a^{t-j}$  gives  $a^{t+i-j} = 0$ , which is a contradiction to our hypothesis that  $a$  has nilpotency  $t$  and  $0 < t+i-j < t$ . Let  $I$  be a nonzero ideal of  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f \rangle}$  and  $h + \langle f \rangle$  a nonzero element of  $I$ . By assumption,  $f$  is a basic irreducible  $m\Theta$  polynomial in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ , hence,  $\bar{f}$  is irreducible in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ . Therefore,  $\gcd(\bar{h}, \bar{f}) = 1$ , or  $\bar{f}$ . If  $\gcd(\bar{h}, \bar{f}) = 1$ , that is,  $\bar{h}, \bar{f}$  are coprime in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ , then  $h, f$  are coprime in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ . So there exist  $u, v \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $uh + vf = 1$ . That implies

$$(u + \langle f \rangle)(h + \langle f \rangle) = 1 + \langle f \rangle$$

whence  $h + \langle f \rangle$  is invertible in  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f \rangle}$ . Therefore,

$$I = \frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f \rangle} = \langle 1 + \langle f \rangle \rangle.$$

For the case  $\gcd(\bar{h}, \bar{f}) = \bar{f}$ , for all  $h + \langle f \rangle \in I$ , which means  $\bar{f}$  divides  $\bar{h}$ , hence, there exist  $w, z \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $h = wf + az$ . Whence

$$h + \langle f \rangle \in \langle a + \langle f \rangle \rangle, \text{ for all } h + \langle f \rangle \in I$$

implying  $I \subseteq \langle a + \langle f \rangle \rangle$ . Let  $k$  be the greatest integer  $< t$  such that  $I \subseteq \langle a^k + \langle f \rangle \rangle$ . Then, as  $I \not\subseteq \langle a^{k+1} + \langle f \rangle \rangle$ , there is a (nonzero) element  $h' + \langle f \rangle \in I$  such that  $h' + \langle f \rangle \notin \langle a^{k+1} + \langle f \rangle \rangle$ . Since  $h' + \langle f \rangle \in I \subseteq \langle a^k + \langle f \rangle \rangle$ , there exist  $w', z' \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $h' = w'f + a^kz'$ . Now  $\gcd(\bar{z}', \bar{f}) = 1$ , or  $\bar{f}$ . Suppose  $\gcd(\bar{z}', \bar{f}) = \bar{f}$ , then  $\bar{f}$  divides  $\bar{z}'$  and so there exist  $w'', z'' \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $z' = w''f + az''$ . Hence,

$$\begin{aligned} h' &= w'f + a^kz' = w'f + a^k(w''f + az'') \\ &= (w' + a^kw'')f + a^{k+1}z''. \end{aligned}$$

It follows that  $h' + \langle f \rangle \in \langle a^{k+1} + \langle f \rangle \rangle$ , a contradiction. Thus,  $\gcd(\bar{z}', \bar{f}) = 1$ . The same argument as above yields that  $z' + \langle f \rangle$  invertible in  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f \rangle}$ , which means that there exists  $z_0 \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that

$$(z' + \langle f \rangle)(z_0 + \langle f \rangle) = 1 + \langle f \rangle.$$

Therefore

$$\begin{aligned} a^k + \langle f \rangle &= (z_0 + \langle f \rangle)(a^k z' + \langle f \rangle) \\ &= (z_0 + \langle f \rangle)(h' + \langle f \rangle) \in I. \end{aligned}$$

Consequently,  $I = \langle a^k + \langle f \rangle \rangle$ .

Customarily, for a  $m\Theta$  polynomial  $f$  of degree  $k$ , its reciprocal  $m\Theta$  polynomial  $x^k f(x^{-1})$  will be denoted by  $f^*$ . Thus, for example, if  $f(x) = a_0 + a_1 x + \cdots + a_{k-1} x^{k-1} + a_k x^k$ , then

$$\begin{aligned} f^*(x) &= x^k (a_0 + a_1 x^{-1} + \cdots + a_{k-1} x^{-(k-1)} + a_k x^{-k}) \\ &= a_k + a_{k-1} x + \cdots + a_1 x^{k-1} + a_0 x^k. \end{aligned}$$

Moreover, if  $f(x)$  is a factor of  $x^r - 1$ , we denote  $\hat{f}(x) = \frac{x^r - 1}{f(x)}$ .

**Theorem 0.7.** Assume  $\mathbb{F}(p^k\mathbb{Z}, 1)$  is a finite chain  $m\Theta$  pseudo field with maximal  $m\Theta$  ideal  $\langle a \rangle$ , and that  $t$  is the nilpotency of  $a$ . Let  $x^r - 1 = f_1 f_2 \cdots f_l$  be a representation of  $x^r - 1$  as a product of basic irreducible pairwise-coprime polynomials in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ . Then any ideal in  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f \rangle}$  is a sum of  $m\Theta$  ideals of the form  $\langle a^j \hat{f}_i + \langle x^r - 1 \rangle \rangle$ , where  $0 \leq j \leq t$ ,  $1 \leq i \leq r$ .

**Proof 0.12.** By the Chinese Reminder theorem, we have

$$\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^r - 1 \rangle} = \frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\cap_{i=1}^l \langle f_i \rangle} \cong \bigoplus_{i=1}^l \frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f_i \rangle}.$$

Thus, any  $m\Theta$  ideal  $I$  of  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^r - 1 \rangle}$  is of the form  $\bigoplus \sum_{i=1}^l I_i$ , where  $I_i$  is an  $m\Theta$  ideal of  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle f_i \rangle}$ . According to the previous lemma, for  $1 \leq i \leq r$ ,  $I_i = 0$  or  $I_i = \langle a_k + \langle f_i \rangle \rangle$ , for some  $k \in \{0, \dots, t-1\}$ . Then  $I_i$  correspond to  $\langle a^k \hat{f}_i + \langle x^r - 1 \rangle \rangle$  in  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^r - 1 \rangle}$ . Consequently,  $I$  is a sum of ideals of the form  $\langle a^j \hat{f}_i + \langle x^r - 1 \rangle \rangle$ .



*Corollary 0.2.* Let  $\mathbb{F}(p^k\mathbb{Z}, 1)$  be a finite  $m\Theta$  pseudo field with maximal  $m\Theta$  ideal  $\langle a \rangle$ , and  $t$  be the nilpotency of  $a$ . The numbers of quasi-cyclic  $m\Theta$  codes over  $\mathbb{F}(p^k\mathbb{Z}, 1)$  of length  $r$  is  $(t+1)^l$ , where  $l$  is the number of factors in the unique factorization of  $x^r - 1$  into a product of monic basic irreducible pairwise coprime  $m\Theta$  polynomials.

From now on, in order to simplify notation, we will just write  $l_0 + l_1x + \cdots + l_{r-1}x^{r-1}$  for the corresponding coset  $l_0 + l_1x + \cdots + l_{r-1}x^{r-1} + \langle x^r - 1 \rangle$  in  $\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^r - 1 \rangle}$

*Theorem 0.8.* Let  $C$  be a quasi-cyclic  $m\Theta$  codes of length  $r$  over a finite  $m\Theta$  pseudo field with maximal  $m\Theta$  ideal  $\langle a \rangle$ , and  $t$  be the nilpotency of  $a$ . Then there exists a unique family of pairwise coprime monic  $m\Theta$  polynomials  $F_0, F_1, \dots, F_t$  in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $F_0F_1 \cdots F_t = x^r - 1$  and  $C = \langle \widehat{F_1}, a\widehat{F_2}, \dots, a^{t-1}\widehat{F_t} \rangle$ . Moreover

$$|C| = (|\overline{\mathbb{F}(p^k\mathbb{Z}, 1)}|)^{\sum_{i=0}^{t-1} (t-i)\deg(F_{i+1})}.$$

*Proof 0.13.* Let  $x^r - 1 = f_1 \cdots f_l$  be the unique factorization of  $x^r - 1$  into a product of monic basic irreducible pairwise coprime  $m\Theta$  polynomials.  $C$  is a direct sum of ideals of the form  $\langle a^j \widehat{f_i} \rangle$ , where  $0 \leq j \leq t$ ,  $1 \leq i \leq l$ . After reordering if necessary, we can assume that

$$\begin{aligned} C = & \langle \widehat{f}_{k_1+1} \rangle \oplus \cdots \oplus \langle \widehat{f}_{k_1+k_2} \rangle \oplus \langle a\widehat{f}_{k_1+k_2+1} \rangle \oplus \cdots a\widehat{f}_{k_1+k_2+k_3} \rangle \oplus \\ & \cdots \oplus \langle a^{t-1}\widehat{f}_{k_1+\cdots+k_t+1} \rangle \oplus \cdots \oplus \langle a^{t-1}\widehat{f}_r \rangle \end{aligned}$$

where  $k_1, \dots, k_t \geq 0$  and  $k_1 + \cdots + k_t + 1 \leq r$ . Let  $k_0 = 0$ , and  $k_{t+1}$  be a nonnegative integer such that  $k_1 + \cdots + k_t + 1 \leq r$ . For  $i = 0, \dots, t$ , define

$$F_i = f_{k_0+\cdots+k_i+1} \cdots f_{k_0+\cdots+k_i+1}.$$

Then by our construction, it is clear that  $F_0, \dots, F_t$  are pairwise coprime,  $F_0 \cdots F_t = f_1 \cdots f_r = x^r - 1$ , and

$$C = \langle \widehat{F_1} \rangle \oplus \langle a\widehat{F_2} \rangle \oplus \cdots \oplus \langle a^{t-1}\widehat{F_t} \rangle.$$

To prove the uniqueness, assume  $G_0G_1 \cdots G_t = x^r - 1$  and  $C = \langle \widehat{G_1}, a\widehat{G_2}, \dots, a^{t-1}\widehat{G_t} \rangle$ . Then

$$\frac{\mathbb{F}(p^k\mathbb{Z}, 1)[x]}{\langle x^r - 1 \rangle} = \langle \widehat{G_0} \rangle \oplus \langle \widehat{G_1} \rangle \oplus \cdots \oplus \langle \widehat{G_s} \rangle$$

Notes

thus,  $C = \langle \widehat{G_1} \rangle \oplus \langle a\widehat{G_2} \rangle \oplus \cdots \oplus \langle a^{t-1}\widehat{G_s} \rangle$ . Now there exist nonnegative integers  $l_0 = 0, l_1, \dots, l_{t+1}$  with  $l_0 + l_1 + \cdots + l_{t+1} = l$ , and a permutation  $\{f'_1, \dots, f'_r\}$  of  $\{f_1, \dots, f_r\}$  such that, for  $i = 0, 1, \dots, t$

$$G_i = f'_{l_0+\dots+l_i+1} \cdots f'_{l_0+\dots+l_i+1}.$$

Hence,

$$\begin{aligned} C &= \langle \widehat{f'}_{l_1+1} \rangle \oplus \cdots \oplus \langle \widehat{f'}_{l_1+l_2} \rangle \oplus \langle a\widehat{f'}_{l_1+l_2+1} \rangle \oplus \cdots a\widehat{f'}_{l_1+l_2+l_3} \rangle \oplus \\ &\quad \cdots \oplus \langle a^{t-1}\widehat{f'}_{l_1+\dots+l_t+1} \rangle \oplus \cdots \oplus \langle a^{t-1}\widehat{f'}_r \rangle \end{aligned}$$

Now for  $i = 0, \dots, t$ , it follows that  $l_i = k_i$ , and, furthermore,  $\{f'_{l_0+\dots+l_i+1}, \dots, f'_{l_0+\dots+l_t+1}\}$  is a permutation of  $\{f_{k_0+\dots+k_i+1}, \dots, f_{k_0+\dots+k_t+1}\}$ . Therefore,  $G_i = F_i$ , for  $i = 0, \dots, t$ .

To calculate the order  $|C|$ , note that

$$C = \langle \widehat{F_1} \rangle \oplus \langle a\widehat{F_2} \rangle \oplus \cdots \oplus \langle a^{t-1}\widehat{F_t} \rangle$$

and for  $i = 0, 1, \dots, t-1$

$$\begin{aligned} |\langle a^i \widehat{F_{i+1}} \rangle| &= \left( \frac{|\mathbb{F}(p^k\mathbb{Z}, 1)|}{|\langle a^{t-i} \rangle|} \right)^{(n-\deg \widehat{F_{i+1}})} = \left( \frac{|\mathbb{F}(p^k\mathbb{Z}, 1)|^t}{|\mathbb{F}(p^k\mathbb{Z}, 1)|^i} \right)^{\deg F_{t+1}} \\ &= (|\mathbb{F}(p^k\mathbb{Z}, 1)|)^{(t-i)\deg F_{t+1}}. \end{aligned}$$

Hence,

$$\begin{aligned} |C| &= |\langle \widehat{F_1} \rangle| \cdot |\langle a\widehat{F_2} \rangle| \cdots \cdots |\langle a^{t-1}\widehat{F_t} \rangle| \\ &= (|\mathbb{F}(p^k\mathbb{Z}, 1)|)^{t\deg F_1} \cdot (|\mathbb{F}(p^k\mathbb{Z}, 1)|)^{(t-1)\deg F_2} \cdots (|\mathbb{F}(p^k\mathbb{Z}, 1)|)^{\deg F_t} \\ &= (|\mathbb{F}(p^k\mathbb{Z}, 1)|)^{\sum_{i=0}^{t-1} (t-i)\deg(F_{i+1})}. \end{aligned}$$

**Theorem 0.9.** Let  $C$  be a quasi-cyclic code of length  $r$  over a finite chain  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ , which has maximal  $m\Theta$  ideal  $\langle a \rangle$  and  $t$  is the nilpotency of  $a$ . Then there exist polynomials  $g_0, g_1, \dots, g_{t-1}$  in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $C = \langle g_0, ag_1, \dots, a^{t-1}g_{t-1} \rangle$  and  $g_{t-1}|g_{t-2}| \cdots |g_1|g_0|(x^r - 1)$ .

**Proof 0.14.** According to previous theorem, there exists a family of pairwise coprime monic  $m\Theta$  polynomials  $F_0, F_1, \dots, F_t$  in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $F_0F_1 \cdots F_t = x^r - 1$  and  $C = \langle \widehat{F_1}, a\widehat{F_2}, \dots, a^{t-1}\widehat{F_t} \rangle$ . Define

$$g_i = \begin{cases} F_0F_1 \cdots F_t, & \text{if } 0 \leq i \leq t-2 \\ F_0, & \text{if } i = t-1. \end{cases}$$

Then clearly  $g_{t-1}|g_{t-2}| \cdots |g_1|g_0|(x^r - 1)$ . Moreover, for  $0 \leq i \leq t - 1$ , we have

$$a^i \hat{F}_{i+1} = a^i F_0 \cdots F_i F_{i+2} \cdots F_t = a^i g_i F_1 \cdots F_i.$$

Therefore,  $C \subseteq \langle g_0, ag_1, \dots, a^{t-1}g_{t-1} \rangle$ . On the other hand,  $g_0 = F_0 F_1 \cdots F_t \in C$ . Since  $F_1, F_2$  are coprime  $m\Theta$  polynomials in  $\mathbb{F}(p^k\mathbb{Z}, 1)[x]$ , there exist polynomials  $u, v \in \mathbb{F}(p^k\mathbb{Z}, 1)[x]$  such that  $uF_1 + vF_2 = 1$ . It follows that

$$\begin{aligned} g_1 &= F_0 F_3 \cdots F_t = (uF_1 + vF_2) F_0 F_3 \cdots F_t \\ &= uF_0 F_1 F_3 \cdots F_t + c F_0 F_2 F_3 \cdots F_t = u\hat{F}_2 + vg_0 \end{aligned}$$

whence  $ag_1 = a\hat{F}_2 + avg_0 \in C$ . Continuing this process, we obtain  $a^i g_i \in C$  for  $0 \leq i \leq t - 1$ , which implies

$$\langle g_0, ag_1, \dots, a^{t-1}g_{t-1} \rangle \subseteq C.$$

Consequently,  $C = \langle g_0, ag_1, \dots, a^{t-1}g_{t-1} \rangle$ .

## VIII. CONCLUSION

This note studies the Quasi-Cyclic codes over a finite chain  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ , which leads to the modal structure of the notion Quasi-Cyclic codes over a finite chain pseudo field [3]. It appears that the Structures of Quasi-Cyclic codes of length  $r$  over a finite chain  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$  are established when  $r$  is not divisible by the characteristic of the residue  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ . Some cases where  $r$  divisible by the characteristic of the residue  $m\Theta$  field  $\mathbb{F}(p^k\mathbb{Z}, 1)$  are also considered.

At the end of this study, some interesting problems remain to be solved:

1. We would like to construct the  $m\Theta$  structure of cyclic dual codes and negacyclic codes over finite chain  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ .
2. We would like to define a necessary and sufficient condition for the existence of self-dual cyclic  $m\Theta$  codes over a  $m\Theta$  pseudo field  $\mathbb{F}(p^k\mathbb{Z}, 1)$ .

## REFERENCES RÉFÉRENCES REFERENCIAS

1. J. Jensen, *The concatenated structure of cyclic and abelian codes*, IEE Trans. Inform. Theory, vol.31, no 6, pp. 788 - 793, 1985.
2. V. Pless and Z. Qian, *Cyclic codes and quadratic residue codes over  $\mathbb{Z}_4$* , IEE Trans. Inform. Theory, vol.42, pp. 1594 - 1600, Sept. 1996.
3. Norton and A. Slgean-Mandache, *On the structure of linear cyclic codes over finite chain rings*, Appl. Algebra Eng. Commun. Comput., vol. 10, no. 6, pp. 489 - 506, 2000.

Ref

3. Norton and A. Slgean-Mandache, *On the structure of linear cyclic codes over finite chain rings*, Appl. Algebra Eng. Commun. Comput., vol. 10, no. 6, pp. 489 -506, 2000.

4. F.A. Eteme and J.A. Tsimi, *A  $m\Theta$  approach of the algebraic theory of linear codes*, Journal of Discrete Mathematical Sciences and Cryptography, vol.14 (2011), N°. 6, pp. 559-581
5. F.A. Eteme and J.A. Tsimi, *A modal  $\Theta$ -valent approach of the notion of code*, Journal of Discrete Mathematical Sciences and Cryptography, vol. 14, October 2011, pp. 445-473.
6. C. Gneri, B. zkaya, and P. Solé, *Quasi-cyclic complementary dual codes*, Finite Fields Appl. 42, pp. 67 - 80, 2016.
7. F. Ayissi Eteme, *Logique et algèbre de structures mathématiques modales  $\Theta$ -valentes chrysippiennes*, Hermann, Paris, 2009.
8. K. Lally. *Quasicyclic codes of index 1 over  $\mathbb{F}_q$  viewed as  $\mathbb{F}_q[x]$  - submodules of  $\frac{\mathbb{F}_{q^t}[x]}{\langle x^m - 1 \rangle}$* , in Proc. Conference on Applied Algebra and Error-correcting Codes, 2003, pp. 244 - 253.
9. F. Ayissi Eteme, *chrm  $\Theta$  introducing pure and applied mathematics*, Lambert academic publishing saarbrücken, Germany, 2015.
10. K. Lally and P. Fitzpatrick, *Algebraic structure of quasi-cyclic codes*, Discrete Appl. Math, vol. 111, no 1 - 2, pp. 157 - 175, 2001.
11. Gabriel Cedric Pemha Binyam, Laurence Um Emilie, Yves Jonathan Ndje. *The  $m\Theta$  Quadratic Character in the  $m\Theta$  Set  $\mathbb{Z}_n\mathbb{Z}$ . Mathematics and Computer Science*. Vol. 8, No. 1, 2023, pp. 11 - 18.
12. J.A. Tsimi and G. Pemha, *On the Generalized modal  $\Theta$ -valent Reed-Muller codes*, Journal of Information and Optimization Sciences (JIOS), 2021.
13. S. Ling and P. Solé, *On the algebraic structure of quasi-cyclic codes I: finite fields*, IEE Trans. Inform. Theory, vol 47, no. 7, pp. 2751 - 2760, 2001.
14. F. Ayissi Eteme, *Anneau chrysippien  $\Theta$ -valent*, CRAS, Paris 298, série 1, 1984, pp.1 - 4.
15. J.A. Tsimi and G. Pemha, *An algorithm of Decoding of  $m\Theta$  Reed-Muller codes*, Journal of Discrete Mathematical Sciences and Cryptography (JDMSC), 2021.
16. F. Ayissi Eteme, *Logique et Algèbre de structure mathématiques modales  $\Theta$ -valentes chrysippiennes*, Edition Hermann, Paris, 2009.
17. J.A. Tsimi and G. Pemha, *A  $m\Theta$  spectrum of Reed-Muller codes*, Journal of Discrete Mathematical Sciences and Cryptography (JDMSC), Vol. 25 no. 6 pp. 1791 - 1807, 2022.

