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In the classic statistical theory, the thermal radiation is thought to be the electromagnetic 
wave.  Accordingly, the thermal radiation energy in different frequency in the black-
body cavity is given. The Maxwell equations in the vacuum is written as follows,

∇ ∙ 𝐸⃗ = 0, ∇ × 𝐻⃗⃗ −
1

𝑐

𝜕𝐸⃗ 

𝜕𝑡
= 0,  (1)

∇ ∙ 𝐻⃗⃗ = 0, ∇ × 𝐸⃗ +
1

𝑐

𝜕𝐻⃗⃗ 

𝜕𝑡
= 0.  (2)

Here, 𝐸⃗ , 𝐻⃗⃗   are the electric and magnetic fields, respectively, and c  is the velocity of 
light in vacuum.
Utilizing the curl of electromagnetic fields, the above four electromagnetic field equa-
tions are combined into the following two vector-type wave equations.

∇2𝐸⃗ −
1

𝑐2
𝜕2𝐸⃗ 

𝜕𝑡2
= 0,  (3)

∇2𝐻⃗⃗ −
1

𝑐2
𝜕2𝐻⃗⃗ 

𝜕𝑡2
= 0. (4)
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a) The blackbody radiation issue in the history: Rayleigh-Jeans formula and 
oscillator model 

In total, six scalar equations are included in the above two vector wave equations, rep-
resenting the six components of electromagnetic fields, i.e., 𝐸𝑥, 𝐸𝑦, 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦, 𝐻𝑧, re-
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spectively. Correspondingly, each scalar equation can be written into one standard 
equation that is used to solve a representative variable, φ.

∇2𝜑 −
1

𝑐2
𝜕2𝜑

𝜕𝑡2
= 0.  (5)

Assume the boundaries of the cavity that surrounds the thermal radiation fields consists 
of three pairs of planar surfaces, i.e., 

x = 0, α; y = 0, β; z = 0, γ.  (6)

Then, the volume of blackbody cavity is given as

V = αβγ.  (7)

For a simple computation, the vector potential, 𝐴 , is introduced based on the Coulomb 
gauge. Then, the following formulae are obtained.

𝐻⃗⃗ = ∇ × 𝐴 , 𝐸⃗ = −
1

𝑐

𝜕𝐴 

𝜕𝑡
.  (8)

It is noted that the vector potential satisfies the wave equation as well.

∇2𝐴 −
1

𝑐2
𝜕2𝐴 

𝜕𝑡2
= 0.  (9)

Next, the electromagnetic wave is decomposed into the superposition of vibrations of 
different frequencies. Concretely, the wave equation of one component of vector poten-
tial, e.g., 𝐴𝑥, is solved by means of the method of variable separation. The vector po-
tential 𝐴𝑥 is written into the formula below based on the principle of separation.

𝐴𝑥 = 𝑓(𝑡)𝑋(𝑥)𝑌(𝑦)𝑍(𝑧).  (10)

At the separation, the following four sub- equations of 𝐴𝑥 are obtained.

1

𝑋

𝑑2𝑋

𝑑𝑥2
= −𝑝2,

1

𝑌

𝑑2𝑌

𝑑𝑦2
= −𝑞2,

1

𝑍

𝑑2𝑍

𝑑𝑧2
= −𝑟2,

1

𝑓

𝑑2𝑓

𝑑𝑡2
= −𝜔2.  (11)

And, the four separating constants satisfy the relation below.

𝑝2 + 𝑞2 + 𝑟2 =
𝜔2

𝑐2
.  (12)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Here, A, B, C are undetermined coefficients. The values of parameters, l, m, n, can only 
be positive integer or zero. Besides, the two set of parameters, p, q, r and l, m, n satisfy 
the following relation.

p =
𝑙𝜋

𝛼
, 𝑞 =

𝑚𝜋

𝛽
, 𝑟 =

𝑛𝜋

𝛾
.  (16)

Inserting Eq. (16) into Eq. (12), the below equality is obtained.

𝑙2

𝛼2
+
𝑚2

𝛽2
+
𝑛2

𝛾2
=

𝜔2

𝜋2𝑐2
=

4𝜈2

𝑐2
. (17)

The above identity is related to the ellipsoidal function. Then, according to the volume 
of ellipsoid, the freedom number of vibrations between ν and ν + dν, i.e., g(ν)dν, is 
given.

g(ν)dν =
8𝜋𝑉

𝑐3
𝜈2𝑑𝜈.  (18)

According to the classic electrodynamics, the energy of radiation field, i.e., electromag-
netic wave, which is defined as EN, is 

ΕN =
1

8𝜋
∫(𝐸⃗⃗⃗⃗ 2 + 𝐻⃗⃗ 2)𝑑𝜏.  (19)

Here, dτ = dx ∙ dy ∙ dz, is the volume element.

According to Eq. (8), the electromagnetic fields can be calculated through the vector 
potential that is expressed in Eqs. (13-15). Inserting the electromagnetic fields into the 
above integral, and after integration, the energy EN, is written as 

EN =
𝑉

64𝜋𝑐2
∑ {(

𝑑𝑓

𝑑𝑡
)
2

+𝜔2𝑓2} (𝐴2 + 𝐵2 + 𝐶2).𝑙,𝑚,𝑛  (20)
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The detail is omitted here (see Ref. [1]). Through the similar procedure, the three com-
ponents of vector potential deduced are achieved as below.

𝐴𝑥 = ∑ 𝑓(𝑡)𝐴𝑐𝑜𝑠
𝑙𝜋𝑥

𝛼
𝑠𝑖𝑛

𝑚𝜋𝑦

𝛽
𝑠𝑖𝑛

𝑛𝜋𝑧

𝛾𝑙,𝑚,𝑛 ,  (13)

𝐴𝑦 = ∑ 𝑓(𝑡)𝐵𝑠𝑖𝑛
𝑙𝜋𝑥

𝛼
𝑐𝑜𝑠

𝑚𝜋𝑦

𝛽
𝑠𝑖𝑛

𝑛𝜋𝑧

𝛾𝑙,𝑚,𝑛 ,  (14)

𝐴𝑧 = ∑ 𝑓(𝑡)𝐶𝑠𝑖𝑛
𝑙𝜋𝑥

𝛼
𝑠𝑖𝑛

𝑚𝜋𝑦

𝛽
𝑐𝑜𝑠

𝑛𝜋𝑧

𝛾
.𝑙,𝑚,𝑛  (15)

It is seen from the above formula that the energy of radiation can be expressed as the 
sum of each vibration freedom. Assume the energy of one vibration freedom is ε, and 
it equals to 
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ε =
𝑉

64𝜋𝑐2
(𝐴2 + 𝐵2 + 𝐶2) {(

𝑑𝑓

𝑑𝑡
)
2

+ 𝜔2𝑓2}.  (21)

Then, we define one new parameter, Q, and express it as follow.

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
and Qseudo-Oscillator Models

𝑄2 =
𝑉

32𝜋𝑐2
(𝐴2 + 𝐵2 + 𝐶2)𝑓2,  (22)

The following relation can be achieved. 

ε =
1

2
𝑄̇2 +

1

2
𝜔2𝑄2.  (23)

This is the same with the energy expression of linear oscillator model (with the mass of 
oscillator set as m = 1). Here, Q represents the displacement of oscillator and is one 
equivalent generalized coordinate. Correspondingly, the generalized momentum is P =
𝑄̇. As seen, the radiation field can be treated as the mechanic system that consists of 
many harmonic oscillators. So, the radiation energy in the interval between ν and ν +
dν can expressed as below.

𝐸𝜈𝑑𝜈 = 𝜀𝑔̅(𝜈)𝑑𝜈 =
8𝜋𝑉

𝑐3
𝑘𝑇𝜈2𝑑𝜈.  (24)

This is the famous Rayleigh-Jeans radiation formula. Here, 𝜀̅ = 𝑘𝑇, which represents 
the mean energy of oscillator and is given through the law of energy equipartition in 
the classic statistical mechanics. 

In plasma physics, the ionic fluid momentum equation when excluding the effects of 
magnetic field and collision can be expressed as

𝑀𝑛 [
𝜕𝑣𝑖⃗⃗  ⃗

𝜕𝑡
+ (𝑣𝑖⃗⃗⃗  ∙ ∇)𝑣𝑖⃗⃗⃗  ] = 𝑒𝑛𝐸⃗ − ∇𝑝 = −𝑒𝑛∇𝜙 − 𝛾𝑖𝐾𝑇𝑖∇𝑛.  (25)

Utilizing the linear approximation, i.e., ignoring the quadratic (nonlinear) disturbance 
of convection which is the second term of Eq. (23) left, and the planar wave of small 
disturbance, we have 

−𝑖𝜔𝑀𝑛0𝑣𝑖1 = −𝑒𝑛0𝑖𝑘𝜙1 − 𝛾𝑖𝐾𝑇𝑖𝑖𝑘𝑛1. (26)

At the assumption of electric neutrality and the Boltzmann equilibrium of electron with 
electric potential, the relation between the disturbed density and potential is obtained. 

𝑛1 = 𝑛0
𝑒𝜙1

𝐾𝑇𝑒
. (27)

Here, 𝑛0 is the undisturbed background ion density.

b) Linear fluid wave theory of plasma: continuum and “small” disturbance[2] 
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Furthermore, the continuity equation of ion fluid is expressed below.

𝜕𝑛

𝜕𝑡
+ ∇ ∙ 𝑛𝑣𝑖⃗⃗⃗  = 0.  (28)

Similarly, at the linear approximation and planar wave of small disturbance, we have

iω𝑛1 = 𝑛0𝑖𝑘𝑣𝑖1. (29)

Last, the ionic acoustic speed is achieved based on the above three disturbance formulae, 
Eqs. (24, 25, 27).

𝜔

𝑘
= (

𝐾𝑇𝑒+𝛾𝑖𝐾𝑇𝑖

𝑀
)
1/2

≡ 𝑣𝑠 .  (30)

The electric neutrality assumption is discarded, and the Poisson’s equation at the linear 
and small wave approximations is considered as below.   

𝜀0∇ ∙ 𝐸1⃗⃗⃗⃗ = 𝜀0𝑘
2𝜙1 = 𝑒(𝑛𝑖1 − 𝑛𝑒1).  (31)

Here, the disturbed electron density is still given by the Boltzmann relation, i.e., 

𝑛𝑒1 =
𝑒𝜙1

𝐾𝑇𝑒
𝑛0. (32)

The disturbed ion density is still given by its continuity equation, which couples the 
disturbed ion velocity.  

iω𝑛𝑖1 = 𝑛0𝑖𝑘𝑣𝑖1.  (33)

And, the disturbance relation given by the momentum equation is still existed, i.e.,

−𝑖𝜔𝑀𝑛0𝑣𝑖1 = −𝑒𝑛0𝑖𝑘𝜙1 − 𝛾𝑖𝐾𝑇𝑖𝑖𝑘𝑛𝑖1.  (34)

Accordingly, the above four disturbance relations at the more exact condition, i.e., the 
quasi-neutrality of plasma is not applied, cooperatively give rise to the dispersion of 
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ionic wave.

𝜔

𝑘
= (

𝐾𝑇𝑒

𝑀

1

1+𝑘2𝜆𝐷
2 +

𝛾𝑖𝐾𝑇𝑖

𝑀
)
1/2

.  (35)

Here, 𝜆𝐷 = (
𝜀0𝐾𝑇𝑒

𝑛0𝑒2
)
1/2

 and is the famous Debye constant of plasma that shields the non-
neutral region in plasma. 

c) The dispersion relation of ionic acoustic wave[2] 
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𝑣𝑖1⃗⃗⃗⃗  ⃗ = 𝑣𝑖1 exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡) 𝑥 ̂,  (36)

𝑛1 = 𝑛1 exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡),  (37)

𝐸1⃗⃗⃗⃗ = 𝐸1 exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡) 𝑥 ̂.  (38)

As seen, the planar wave of small disturbance can be treated as oscillator.
All the above contents summarize the wave characteristic of mass. Namely, it fluctuates 
at small disturbance. This is caused by the oscillator model at the continuum, or more 
precisely when the interaction of mass is continuative.  

It is well-known that the prediction of Rayleigh-Jeans formula for the blackbody radi-
ation is in good agreement with experimental measurement at low frequency terminal 
but fails at the high frequency terminal, even diverging. To solve this so- called ultra-
violet disaster, Planck put forward to the idea that the energy of oscillator in the black-
body cavity is quantized, i.e., the energy of each oscillator can only be the integer times 
of one minimum, which is expressed as

ε = ℎν.  (39)

Here, the parameter h is thereby called the Planck’s constant. 
Then, at certain temperature 𝑇 and the Boltzmann distribution, the appearing probabil-
ity of modulus with the energy, 𝜀𝑛 = 𝑛ℎ𝜈, is expressed as 

𝑝𝑛 =
exp⁡(−𝛽𝜀𝑛)

∑ exp⁡(−𝛽𝜀𝑛)
∞
𝑛=0

, 𝛽 =
1

𝑘𝑇
.   (40)

At the proposal of energy quantization, the mean energy of oscillators now becomes 

𝜀̅ = ∑ 𝑝𝑛𝜀𝑛
∞
𝑛=0 =

𝜀

exp(𝛽𝜀)−1
=

ℎ𝜈

exp(
ℎ𝜈

𝑘𝑇
)−1
.  (41)

Replacing the old mean energy formula of oscillator in the Rayleigh-Jeans formula with 
the above new one, we get the Planck’s formula below, which is in accord to the exper-
iments at both the low- and high- frequency terminals. 

𝐸𝜈 =
8𝜋𝑉𝜈2

𝑐3
ℎ𝜈

exp(
ℎ𝜈

𝑘𝑇
)−1
. (42)   

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
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It is noted that the Planck’s formula can return to the Rayleigh-Jeans formula at the 
limit of high temperature or equivalently at the limit of low frequency, i.e., when KT ≫
hν, the quantized mean energy of oscillator approximates to the continuum one, as il-
lustrated below.

d) Planar wave and oscillator at small disturbance 

II. Innovation and Breakthrough

a) The blackbody radiation: The Planck’s formula 
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𝜀̅ =
ℎ𝜈

𝑒𝑥𝑝(
ℎ𝜈

𝐾𝑇
)−1

≈
ℎ𝜈

0+
ℎ𝜈

𝐾𝑇
+
1

2!
(
ℎ𝜈

𝐾𝑇
)
2
+⋯

≈ 𝐾𝑇 (
1

1+
1

2!

ℎ𝜈

𝐾𝑇

) ≈ 𝐾𝑇 [1 −
1

2!
(
ℎ𝜈

𝐾𝑇
) + ⋯ ] ≈ 𝐾𝑇.  (43)

According to Eq. (43), it can be concluded that the blackbody radiation at the low fre-
quency limit that is presented by the Rayleigh-Jeans formula exhibits the wave charac-
teristic while at high frequency limit, it behaves more like particles. 

Considering the continuity and momentum equations of ion fluid that couple the non-
linear terms, the Poisson’s equation and the Boltzmann distribution of electron fluid, 
we have the following partial differential equation set.

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
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𝜕𝑛

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑛𝑢) = 0, (44)

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= −

𝑒

𝑀

𝜕𝜙

𝜕𝑥
, (45)

k𝑇𝑒
𝜕𝑛𝑒

𝜕𝑥
= 𝑒𝑛𝑒

𝜕𝜙

𝜕𝑥
,  (46)

𝜀0
𝜕2𝜙

𝜕𝑥2
= 𝑒(𝑛𝑒 − 𝑛). (47)

For the convenience of derivation of the formula, the non-dimensional process toward 
the above equation set is needed, by means of the below characteristic quantities, i.e., 
the normalized undisturbed density 𝑛0, normalized ionic acoustic speed, (𝑘𝑇𝑒/𝑀)1/2, 

normalized plasma Debye length, 𝜆𝐷 = √
𝜀0𝑘𝑇𝑒

𝑒2𝑛0
, normalized electric potential, 𝑘𝑇𝑒

𝑒
, and 

the normalized plasma collective vibration time scale, 𝜔𝑝,𝑖−1 = √
𝜀0𝑀

𝑒2𝑛0
. After this pro-

cess, we obtain the normalized fluid model below. 

𝜕𝑛′

𝜕𝑡′
+

𝜕

𝜕𝑥′
(𝑛′𝑢′) = 0, (48)

𝜕𝑢′

𝜕𝑡′
+ 𝑢′

𝜕𝑢′

𝜕𝑥′
= −

𝜕𝜙′

𝜕𝑥′
, (49)

𝜕𝑛𝑒
′

𝜕𝑥′
= 𝑛𝑒

′ 𝜕𝜙
′

𝜕𝑥′
,  (50)

𝜕2𝜙′

𝜕𝑥′
2 = (𝑛𝑒

′ − 𝑛′).  (51)

Utilize the stretched coordinate, i.e., ξ = 𝜀1/2(𝑥′ − 𝑡′), τ = 𝜀3/2𝑡′. Here, ε is the small 
magnitude expanding parameter of all normalized quantities. Next, we rewrite the 
above fluid equations in the (𝜉, 𝜏) coordinate space, by means of the following deriv-
ative relations, 

b) Nonlinear solitary wave theory of plasma, i.e., KdV equation[3]        
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𝜕

𝜕𝑡′
=

𝜕

𝜕𝜉

𝜕𝜉

𝜕𝑡′
+

𝜕

𝜕𝜏

𝜕𝜏

𝜕𝑡′
= −𝜀

1

2
𝜕

𝜕𝜉
+ 𝜀

3

2
𝜕

𝜕𝜏
,  (52)

𝜕

𝜕𝑥′
=

𝜕

𝜕𝜉

𝜕𝜉

𝜕𝑥′
+

𝜕

𝜕𝜏

𝜕𝜏

𝜕𝑥′
= 𝜀1/2

𝜕

𝜕𝜉
.  (53)

The new fluid model equation after the space transformation is 

−
𝜕𝑛′

𝜕𝜉
+ ε

𝜕𝑛′

𝜕𝜏
+

𝜕

𝜕𝜉
(𝑛′𝑢′) = 0,  (54)

−
𝜕𝑢′

𝜕𝜉
+ 𝜀

𝜕𝑢′

𝜕𝜏
+ 𝑢′

𝜕𝑢′

𝜕𝜉
= −

𝜕𝜙′

𝜕𝜉
,  (55)

𝜕𝑛𝑒
′

𝜕𝜉
= 𝑛𝑒

′ 𝜕𝜙
′

𝜕𝜉
,  (56)

ε
𝜕2𝜙′

𝜕𝜉2
= (𝑛𝑒

′ − 𝑛′).  (57)

Utilize the reduced disturbance method, and expand the normalized variables, such as 
density, velocity and potential at their equilibrium state with respect to the small quan-
tity, ε, as illustrated below. 

𝑛′ = 1 + ε𝑛′1 + 𝜀
2𝑛′2 +⋯,  (58)

𝑢′ = 𝜀𝑢′1 + 𝜀
2𝑢′2 +⋯,  (59)

𝑛𝑒
′ = 1 + 𝜀𝑛𝑒1

′ + 𝜀2𝑛𝑒2
′ +⋯,  (60)

𝜙′ = 𝜀𝜙′
1
+ 𝜀2𝜙′

2
+⋯.  (61)

As seen further, after the expansion, each disturbed quantity is balanced by their re-
spective nonlinear terms and the dispersion term. 

Applying the boundary condition, i.e., ξ → ∞, 𝑛𝑒
′ = 𝑛′ = 1, 𝜙′ = 𝑢′ = 0, we can get 

the below famous Korteweg-de Vries Equation, abbreviated as KdV equation, by means 
of both the first and second order approximations of fluid model.

𝑛1
′ = 𝑛𝑒1

′ = 𝑢1
′ = 𝜙1

′,  (62)

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
and Qseudo-Oscillator Models

𝜕𝜙1
′

𝜕𝜏
+ 𝜙1

′ 𝜕𝜙1
′

𝜕𝜉
+
1

2

𝜕3𝜙1
′

𝜕𝜉3
= 0.  (63)

In the above Eq. (63), the second term is nonlinear, which is arisen from the nonlinear 
terms of fluid model, such as the convection and drift etc. The third term, i.e., the three-
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Doing the Taylor’s expansion to the right side of Eq. (64), we have the following rela-
tion, Eq. (65), which can explain why the three- order derivative term of KdV equation 
represents the dispersion term. 

ω = k𝑐𝑠 −
1

2
𝑘3𝑐𝑠𝜆𝐷

2.  (65)

Here, 𝑐𝑠 = √
𝐾𝑇𝑒

𝑀
, and is the ionic acoustic speed. 

The KdV equation can be used to describe the soliton, which is one impulse and can 
propagate in continuum medium at fixed velocity and meanwhile sustain its shape and 
magnitude[2]. Correspondingly, a new variable, ζ = ξ − cτ, is introduced and a new 
derivative relation, 𝜕

𝜕𝜏
= −𝑐

𝑑

𝑑𝜁
,
𝜕

𝜕𝜉
=

𝑑

𝑑𝜁
, is obtained. Here, c is the propagating velocity 

of soliton. It is because the dependent variable that is used to describes the soliton (as-
suming it is now represented by a new symbol, e.g., U) only depends on such a type of 
independent variable, ζ. Accordingly, the KdV equation in Eq. (63), after the variable 
𝜙1 replaced by U, is reformed into 

−c
𝑑𝑈

𝑑𝜁
+ 𝑈

𝑑𝑈

𝑑𝜁
+
1

2

𝑑3𝑈

𝑑𝜁3
= 0.  (66)

Similarly, at the boundary condition that U,𝑈𝜁′both vanish when ⌈𝜁⌉ → ∞, we get the 
solution of Eq. (66), i.e., 

U(𝜁) = 3𝑐𝑠𝑒𝑐ℎ2[(𝑐/2)1/2𝜁].  (67)

As seen, this analytic solution characterizes the propagating soliton, e.g., its velocity is 
c, height magnitude is 3c, and its full width at half maximum (FWHM) is (2/𝑐)1/2. It 
is noticed that the KdV equation describes a stable soliton propagating process. Namely, 
after the new round of coordinate transformation, the KdV equation does not contain 
the time variable anymore and the equation becomes the stationary problem now.  So, 
it is said that the initial disturbance at proper phase condition, which defines the bound-
ary, determines the soliton properties, such as its shape, velocity and kinetic energy etc., 
through the introduced parameter, c. 

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
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order derivative, represents the dispersion relation of ion acoustic wave. In the section 
(1.3), when the ion temperature is zero the dispersion relation of ion acoustic wave 
becomes  

𝜔

𝑘
= 𝑐𝑠 (

1

1+𝑘2𝜆𝐷
2)
1/2

.  (64)

In our opinion, the wave characteristics of quantum world are exhibited when the inter-
action in the continuum is continuative or more directly when the medium is continua-

c) Solitary wave analysis: novel quantum prototype concept 
i. Initial destructive and large magnitude disturbance, also called impulse 
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tive. It is like exerting small external force to one spring oscillator. Fix the initial dis-
placement of it to a small value and so the elasticity of spring is not broken. As known, 
this is the oscillator model and in the proper continuum, the disturbance given by the 
oscillator can induce wave. For the particle property of quantum world, we propose to 
define it by means of the soliton model, or solitary wave. It is a very new concept to 
the quantum mechanics and is also very prototype. The soliton, as mentioned above, is 
arisen from the initial disturbance as well. Nevertheless, this disturbance needs to be 
very large and is destructive, i.e., it can cut off the connection of interaction or more 
directly the mass connection. Or more concretely, it exceeds over the elasticity of spring. 

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
and Qseudo-Oscillator Models

We can furthermore envisage, did the soliton represent the particle property of quantum 
world, the collision or impulse concepts from the classic mechanics can be immigrated 
into the quantum mechanics to describe the soliton. The physics picture is that an im-
pulse, i.e., destructive disturbance, is suddenly imposed onto a wave that is normally 
propagating in the continuum. It cuts offs the interaction of vibration and furthermore, 
at the balance of nonlinear term, such as advection or drift, and the dispersion of wave, 
the continuative wave is evolved into one soliton, i.e., one discrete particle that propa-
gates alone. The impulse that gives rise to soliton can be often felt in our normal life, 
e.g., the strike of large ship onto the dam that causes the water solitary wave. The soliton 
propagating along the rope is triggered by a successive motion, i.e., first the swift lifting 
of our hand and then the sharp halting of hand. The swift lift creates the intense advec-
tion which is nonlinear term and the sharp halt creates the impulse. As seen further, this 
impulse of soliton that is destructive disturbance and the origin of the particle property 
of quantum world, can be described via a pseudo- oscillator model. This is closely re-
lated to the wave characteristic of quantum world that is given by the small disturbance 
at the normal oscillator model, which does not damage the background environment.  

First consider the normal oscillator model expressed below, 

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘′𝑥,  (68)

Here, 𝑘′ is defined as the elastic coefficient of oscillator. The above equation can be 
reformed into 

𝑑2𝑥

𝑑𝑡2
= −𝜔2𝑥,  (69)

among which, ω = √
𝑘′

𝑚
 and is the angular frequency of harmonic vibration. The gen-

eral solution of Eq. (51) can be expressed as

𝑥(𝑡) = 𝐴′𝑐𝑜𝑠𝜔𝑡 + 𝐵′𝑠𝑖𝑛𝜔𝑡.  (70)

As seen, it is a typical vibration solution. In the continuum, this vibration caused by the 
small disturbance can excite the trigonometric wave. As analyzed above, it exhibits the 
wave characteristics. 

ii. Pseudo- oscillator model[4] 
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The pseudo- oscillator we designed is evolved from the normal one, written as

𝑚
𝑑2𝑥

𝑑𝑡2
= 𝑘𝑥.  (71)

It is seen that the only difference between the normal and pseudo- oscillators, i.e., the 
Eqs. (68) and (71), is one sign. In the oscillator model of Eq. (68), the right side is called 
the restoring force, in which the direction of force is opposite to the displacement di-
rection. Correspondingly, in the pseudo- oscillator model of Eq. (71), the right side is 
called as dispersing force, in which the direction of force is the same with the displace-
ment. It implies that once a small displacement (disturbance) is created in the pseudo- 
oscillator, it grows up fast at the function of dispersing force, which is clearly a positive-
feedback process (different to the restoring force which is a negative-feedback process). 
As seen, if the pseudo- oscillator model is imposed onto a system, it creates the destruc-
tive disturbance, which is essentially distinct to the oscillator model that creates small 
disturbance. Nevertheless, the Eqs. (68) and (71) are similar (except for one sign) and 
that’s why the Eq. (71) is called pseudo- oscillator. Correspondingly, the parameter, 𝑘, 
in Eq. (71) is defined as dispersing ability coefficient. We next solve this equation and 
reform it into

𝑑2𝑥

𝑑𝑡2
= 𝛾2𝑥.  (72)

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
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Here, γ = √𝑘

𝑚
 is defined as growing factor of system disturbance. The general solution 

of Eq. (72) is 

𝑥(𝑡) = 𝐴𝑒𝑥𝑝(𝛾𝑡) + 𝐵𝑒𝑥𝑝(−𝛾𝑡).  (73)

Furthermore, assume the two undetermined constants equal and moderately adjust the 
general solution expression in Eq. (73) as follow

𝑥(𝑡) = 𝛽 cosh(𝛾𝑡).  (74)

This is due to the definition of hyperbolic cosine function, cosh(𝑥) = exp(𝑥)+exp⁡(−𝑥)

2
. 

At proper selection of β, γ values, we can obtain one infinite potential well model when 
fixing the range of time variable into a very small interval, i.e.,  |𝑡| < 𝜀. Here, ε is set 
as a small quantity, which embodies the instantaneous characteristics of impulse. For 
instance, we set β = 1, γ = 100, ε = 0.1139, and obtain the picture of x(𝑡) in Fig. 1. 
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 The infinite potential well obtained by the pseudo- oscillator model solution 
at proper parameter conditions, e.g., β = 1, γ = 100, ε = 0.1139.
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Figure 1: 
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The infinitely high potential barrier obtained from the infinite potential well, 
by means of the linear combination, y(𝑡) = 𝑉𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑥(𝑡). It is noted that the ground 
of the potential barrier here is the real ground, i.e., 𝑦′(𝑡) = 0. 

Figure 2: 

It is seen from Fig. 1 the ground of the infinite potential well is determined by the 
parameter equation, 𝑥′(𝑡) = 𝑉𝑔𝑟𝑜𝑢𝑛𝑑. At the present conditions set,  𝑉𝑔𝑟𝑜𝑢𝑛𝑑 = 44200. 
The prime here in the parameter equation, which just represents a different function, is 
not a derivative operation, the same as in the Figs. 2 and 3. Besides, it is noticed that 
the infinite potential well obtained by the pseudo- oscillator (at a moment) needs to be 
observed in the whole-time domain, i.e., it is a truncated solution. This is logic and 
understandable, since the impulse or quasi- impulse behaviors embody their instanta-
neous characteristics only when they are seen in the whole time and space. By means 
of special linear combination, e.g., y(𝑡) = 𝑉𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑥(𝑡), we can turn the infinite po-
tential well into an infinitely high potential barrier, as shown in Fig. 2.    



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Both the infinite potential well and barrier are quasi- impulse behavior, which can be 
described by an instant force of either pull or push. These behaviors cut off the connec-
tion of interaction and can be uniformly defined as one impulse, 𝐹 𝑝𝑢𝑙𝑙⁡𝑜𝑟⁡𝑝𝑢𝑠ℎ𝛿(𝑡 − 𝑡0). 
The potential well and barrier can both shift along the time axis. At the fixed β, γ values, 
reform the original function, Eq. (74), into x(𝑡 − 𝑡0) = 𝛽𝑐𝑜𝑠ℎ[𝛾(𝑡 − 𝑡0)], and draw its 
picture in a new interval, |𝑡 − 𝑡0| < 𝜀. Meanwhile, observe it in the whole-time domain 
and we obtain a shifted potential well in Fig. 3, at the selected parameter value, 𝑡0 = 5. 
Considering the shift property, the Delta function we introduced in the above impulse 
formula is general, i.e., 𝛿(𝑡 − 𝑡0), other than 𝛿(𝑡).

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
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In Fig. 4, the one-dimensional infinite potential well with a finite width, which is the 
classical bound of particle in the present quantum mechanics textbook, is shown. The 
potential is written in Eq. (75) below. 

𝑉(𝑥) = {
0, |𝑥| ≤

𝑎

2
,

∞, |𝑥| >
𝑎

2
.

 (75)

Substitute the above potential expression into the famous Schrodinger’s Equation in Eq. 
(76) and we get the discrete eigen functions of the particle in Eq. (77), as well as its 
eigen energy set in Eq. (78).

III. Insights on the Development of Present
Quantum Mechanics Framework

a) New concepts: discrete quantum, precise quantum, and nonlinear quantum
i. Loose- bound of particle by potential and discrete quantum
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The general infinite potential well scheme. It shifts the original function along 
the time axis to the right side about a distance of 𝑡0 = 5. Correspondingly, draw the 
new potential well in a new infinitely small interval, |𝑡 − 𝑡0| < 𝜀, and meanwhile dis-
play it in a large time scale, e.g., t ∈ [−10, 10]. 

Figure 3:



 
 

 
 

 
 
 
 
 
 
 
 
 
 

𝑑2𝜓(𝑥)

𝑑𝑥2
+
2𝑚

ℏ2
[𝐸 − 𝑉(𝑥)]𝜓(𝑥) = 0.  (76)

𝜓𝑛(𝑥) = {
√𝑎/2𝑠𝑖𝑛

𝑛𝜋𝑥

𝑎
(𝑛 = 2,4,6… ),

√𝑎/2𝑐𝑜𝑠
𝑛𝜋𝑥

𝑎
(𝑛 = 1,3,5… ).

(77)

𝐸𝑛 =
ℏ2𝜋2𝑛2

2𝑚𝑎2
,⁡⁡⁡(𝑛 = 1,2,3,4, … ). (78)

The one-dimensional infinite potential well model, which has a finite width 
characterized by the parameter, 𝑎.

As seen further, we call the bound of particle by means of infinite potential well with 
finite width as loose bound, since the particle has limited free space given by the pa-
rameter, 𝑎, and accordingly the solution of Schrodinger equation at the potential of Fig. 
1 is called as discrete quantum. 

In our understanding, the reason why the solution of Schrodinger equation is discrete 
is because the space is discretized by the wide potential well. It can be imagined that 
the whole space is cut into a set of discrete regions by the well, which implicitly repre-
sents the spatial periodicity and hence the solution is discretized into the sum of trigo-
nometric functions. This is very like the expansion of a sawtooth wave, which is shown 
in Fig. 5 and expressed in Eq. (79), into the Fourier series in Eq. (80). The correlation 
of solving the Schrodinger’s equation at bound potential to the Fourier’s series expan-
sion, we discovered, inspires us to put forward to the novel concept, discrete quantum. 
It is noted that at discrete quantum, i.e., in the limited real space, the abstract Hilbert’s 

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
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space is established based on the eigen vectors. As seen next, this is different with the 
case of tight bound of particle, where only one eigen state is existed. 

Figure 4:

ii. Equivalent spatial periodicity and the Fourier’s series expansion
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The picture of sawtooth wave, which represents the spatial periodicity. As 
known, it can be expanded into the Fourier’s series, which is essentially discrete and 
thereby related to the definition of discrete quantum.  

f(𝑥) = {
−
𝑥

𝑙
, −𝑙 ≤ 𝑥 ≤ 𝑙

𝑓(𝑥 + 2𝑙)
.  (79)

f(𝑥) = ∑
2(−1)𝑛

𝑛𝜋
∞
𝑛=1 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
),⁡⁡⁡(−𝑙 ≤ 𝑥 ≤ 𝑙).  (80)

The picture of one-dimensional delta potential well, one example of tight 
bound of particle.

In this section, the one-dimensional delta potential well is plotted in Fig. 6 and written 
in Eq. (81). It represents the example of tight bound of particle. It is seen from Fig. 6 
that the particle is so tightly bounded that it does not have any free space anymore. So, 
the solution of the Schrodinger’s equation of Eq. (82) at the delta potential is only one 
eigen function, illustrated in Eq. (83). The only eigen energy is given in Eq. (84). Since 
the single eigen state is obtained at the tight bound of potential, the Hilbert space cannot 
be constructed. 

V(𝑥) = −𝑉0𝛿(𝑥), 𝑉0 > 0.  (81)

𝑑2𝜓(𝑥)

𝑑𝑥2
+
2𝑚

ℏ2
[𝐸 + 𝑉0𝛿(𝑥)]𝜓(𝑥) = 0.  (82)

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
and Qseudo-Oscillator Models

Figure 5:

iii. Tight- bound of particle by potential and Single eigen state

Figure 6:
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We plot, in Fig. 7, the wave function of the Schrodinger’s equation at the delta potential 
bound, i.e., Eq. (83), against the parameter, k, which determines the eigen value, and 
the soliton solution of KdV equation, i.e., Eq. (67), against the parameter, c, which de-
termines the eigen value as well. It is seen that with the increase of the parameter value, 
both the wave and soliton functions tend to exhibiting the delta shape, which represents 

{
ψ(𝑥) = √𝑘𝑒𝑥𝑝(−𝑘|𝑥|)

𝑘 =
𝑚𝑉0

ℏ2

.  (83)

E = −
𝑚𝑉0

2

2ℏ2
.  (84)

Thinking about the Wave-Particle Duality with Plasma Theory and Explaining it based on the Oscillator 
and Qseudo-Oscillator Models

the precise quantum, as we defined, since only one eigen state is existed. Regarding to 
the similarity between them, the wave function can be called as the quasi- soliton. Note 
that the soliton shown in Fig. 7(d-f) is a moving soliton, with the constant velocity, c. 

iv. Precise quantum and quasi- soliton
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Comparison and the similarity between the solutions of Schrodinger’s equa-
tion and KdV equation, at the different eigen values, respectively. The former is there-
fore called as precise quantum, or quasi- soliton, which is determined by the eigen value 
k⁡or⁡𝑉0, more precisely. While the latter is the realistic moving soliton, which is deter-
mined by its eigen value, 𝑐.

In the section, we demonstrate that with a set of pseudo- oscillators, a stationary soliton 
can be constructed, which behaves more like a wave function of delta type. With the 
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model that consists of a set of pseudo- oscillators, the general reason for the quantiza-
tion is revealed, e.g., the normal Coulomb force, gravitation force, and the chemical 
force, etc. The detail of this process is illustrated through the Eqs. (85-91) and the Figs. 

Figure 7: 

v. Stationary soliton and pseudo-oscillator set
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8-9. Concretely, in the Eqs. (88-90) set, both the Coulomb and gravitation forces are 
expanded into the Taylor’s series, and furthermore in the Eq. (91) set, each power term 
of the Taylor’s expansion can be treated as a quasi- pseudo- oscillator. Correspondingly, 
all expanded terms of the two types of force are transformed into a sum of different 
pseudo- oscillators, which comprises the pseudo- oscillator set. 

m
𝑑2𝑥

𝑑𝑡2
= 𝑘𝑥.  (85)

∑ 𝑚𝑖
𝑑2𝑟𝑖⃗⃗⃗  

𝑑𝑡2𝑖 = 𝑘𝑖𝑟𝑖⃗⃗ ,  (86)

𝑎 𝜏𝑖 = 0⁡(𝑇𝑎𝑛𝑔𝑒𝑡𝑖𝑎𝑙⁡𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)  (87)

The stationary soliton given by the set of pseudo- oscillators

The transformation of Coulomb, gravitation, and chemistry forces into the 
pseudo- oscillator model
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Figure 9:

Figure 8:
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( ) ( )
1

12 2 2
1 11

1~ ~ ,0 1,
11

constAGMm
R r RrR R




 
− − − 

 

 (88)

( ) ( ) 22 2 2
0 2 22

1~ ~ ,0 1,
4 11

constBqQ
R r RrR R


 

 
− − − 

 

 (89)

( )
( )2 3

2

2 1

1 1 / 1 ... ... /
11

1 2 3 ... ... .

n

n

d d d d

n

     


   −

 
= = + + + + + + −−  

= + + + + +

(90)

2

2

2
2

2

2
1

2

2 , Pseudooscillator,

3 , Quasi pseudo oscillator,

...

,Quasi pseudo oscillator.n

dm k
dt

dm k
dt

dm nk
dt








 −


=




=





=


 (91)

U(𝜁) = 3𝑐𝑠𝑒𝑐ℎ2[(𝑐/2)1/2𝜁]~𝑐~𝐹 𝛿(𝑡 − 𝑡0) = Δ𝑃 = 𝑚𝑐 (The momentum law). (92)
As seen from the Eq. (92), the moving soliton given by Eq. (67) is determined by the 
value of parameter, c. Furthermore, the constant velocity of soliton, i.e., the parameter 
c, is again determined by the impulse given by the single pseudo- oscillator as shown 
in Fig. 3, through the momentum law. So, the moving soliton and the single pseudo- 
oscillator that represents the impulse are essentially the same. 

Next, we solve the normal and pseudo- oscillators in the complex domain. In the Eq. 
(93), the complex solution of normal oscillator is given as a vibration solution. While 
in the Eq. (94), the complex solution of pseudo- oscillator is a type of instability, as 
defined in Eq. (95) by means of the planar wave theory of plasma.  
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{
 
 

 
 𝑚

𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥,

𝑑2𝑥

𝑑𝑡2
= −𝜔2𝑥,

𝑥 = 𝑥0exp(𝑖𝜔𝑡).

 (93)

vi. Homogeneity between the moving soliton and single pseudo- oscillator that re
-lates the impulse

vii. A pair of conjugate complex solutions for the oscillator and pseudo-
[5, 6]

oscillator
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Here, ω = √
𝑘

𝑚
, and is one real number.

{
 
 

 
 𝑚

𝑑2𝑥

𝑑𝑡2
= 𝑘𝑥,

𝑑2𝑥

𝑑𝑡2
= −𝜔′

2
𝑥,

𝑥 = 𝑥0exp(𝑖𝜔
′𝑡).

 (94)

Here, 𝜔′ = 𝑖𝜔, and is one pure imaginary number. 

{

𝑥 = 𝑥0 exp[𝑖(𝑘𝑥 − 𝜔𝑡)] ,
𝐼𝑓⁡𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖, 𝑡ℎ𝑒𝑛

𝑥 = 𝑥0 exp[𝑖(𝑘𝑥 − 𝜔𝑟𝑡)]𝑒𝑥𝑝(𝜔𝑖𝑡) .
 (95)
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Here, 𝑥0 is the vibration amplitude and is one real number. In Eq. (95), the planar wave 
is expressed. Once the angular frequency is a complex number, it is seen that the vibra-
tion amplitude will be changed by means of the term, exp(𝜔𝑖𝑡). And if the imaginary 
part of angular frequency is positive, the vibration amplitude, 𝑥0𝑒𝑥𝑝(𝜔𝑖𝑡), diverges. 
This is called the instability of wave, according to the plasma theory. Moreover, the 
plasma theory still predicts that once an instability is occurred, the free energy is applied 
onto the system. Here, in the discussion of the origin of quantization, we propose the 
free energy is meant either the limited bound potential, which induces the discrete quan-
tum, or the impulse (strong bound potential) that induces the precise quantum. Both the 
two types of free energy lead the system to form the self-organized structure that dissi-
pates the free energy applied, which might be the deep meaning of quantization. Note 
that the angular frequency of pseudo- oscillator is a pure and positive imaginary number. 
It implies none of a little vibration is happened in the pseudo- oscillator, which de-
scribes well the meaning of quantization that is against the vibration. 

In Fig. 10, one discrete eigen sine function versus the time variable, given by the loose 
bound of potential, is plotted. As seen, it is near the linear regions, represented by the 
set of red dash lines. This is different with the case of Figs. 1-3 and 7, where the pseudo- 
oscillator is plotted, which is far away from the linear region. This fact is supported by 
the function expansion of them, as illustrated in the Eqs. (96, 97). Regarding to this 
point, the quantum dynamics can be divided into the linear and nonlinear types, which 
are determined by the Schrodinger Equation and the KdV equation, respectively. As 
seen from the Sec. (f), the KdV equation is essentially the same as the pseudo- oscillator 
model that predicts the impulse. Note that the near linear property is also applied to 
other discrete eigen wave functions, such as the Hermite’s polynomial, since they can 
be expanded into the Fourier’s series. 

viii. Linear and nonlinear quantum dynamics VS. Schrodinger equation and KdV -
oscillator model) equation (or pseudo
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sin(𝑡) = ∑
(−1)𝑛𝑡2𝑛+1

(2𝑛+1)!
∞
𝑛=0 = 𝑡 −

𝑡3

3!
+
𝑡5

5!
−
𝑡7

7!
+⋯  (96)

{
 
 

 
 exp(𝑡) = ∑

𝑡𝑛

𝑛!
∞
𝑛=0 = 1 + 𝑡 +

𝑡2

2!
+
𝑡3

3!
+⋯⁡(𝑡 > 0),

exp(−𝑡) = ∑
(−𝑡)𝑛

𝑛!
∞
𝑛=0 = 1 − 𝑡 +

𝑡2

2!
−
𝑡3

3!
+⋯⁡(𝑡 < 0),

exp(𝑡) = ∑
|𝑡|𝑛

𝑛!
∞
𝑛=0 = 1 + |𝑡| +

|𝑡|2

2!
+
|𝑡|3

3!
+⋯⁡(𝑓𝑜𝑟⁡𝑎𝑛𝑦⁡𝑡).

 (97)
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The picture of one discrete eigen sine function. As seen, it is near the linear 
region, which is represented by the set of red dash lines. 

We have mentioned this point in the Sec. 2. Here, we want to stress that in all the ex-
amples of quantum mechanics listed in the Sec. 3, the bound significance is just to cut 
off the connection of interaction. 

The Einstein-Podolsky-Rosen (abbreviated as EPR) paradox discussed the quantum en-
tanglement issue and the non-local property of quantum mechanics. Although it is 
proven by the Bell inequality experiment and has been applied in the field of quantum 
communication, the physics behind is not revealed yet. With the idea we presented in 
this article, i.e., the quantization is originated from the action that cuts off the connec-
tion of interaction, the non-local property of quantum entanglement can be easily ex-
plained. After the action of truncation, all the interaction is localized into one small 
region that is characterized by the bound potential and so the space out of this region 
has no meaning onto the quantum event that is happened inside the region. Here, we 
are talking about the completeness of quantum mechanics. As seen, it is complete only 
when we further consider the influence of outside environment. Namely, the quantum 
mechanics are not always the unitary transformation that is reversible. It can be inversi-
ble, especially when it is measured by introducing disturbance. 

Figure 10:

ix. New recognition on the bound significance of quantum mechanics, i.e.,
cutting off the connection

b) Discussion on the completeness of quantum mechanics
i. About the EPR paradox[7] and non-local property
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In our understanding, when measuring the discrete quantum states, the destructive dis-
turbance is introduced into the Hilbert space. If one eigen state is probed, it means that 
the particle is trapped into one delta type potential. According to the content of Sec. 
(3.1c), at delta potential bound, only one eigen state is existed. This means that the 
Hilbert space must collapse due to the disturbance of this delta potential. As seen, our 
ideas about the quantization, i.e., destructive disturbance and impulse, underlines the 
physical basis for the important measurement assumption of quantum mechanics. 

By means of the disturbance theory, we can explain well the experiment trends of black-
body radiation. At the low frequency limit, ℎ𝜈 ≪ 𝑘𝑇 , the radiation energy is small and 
it can be treated as small disturbance to the air molecule in the blackbody cavity. It 
behaves more like a wave. While at high frequency limit,  ℎ𝜈 ≫ 𝑘𝑇, the radiation is so 
strong that it now becomes destructive disturbance. The air molecules are now more 
like transparent to the radiation, and so the radiation can penetrate through the air back-
ground and interact directly with the inner boundary of cavity. So, the cavity is now the 
bound potential to the radiation, and that’s why it exhibits the quantum characteristic 
at high frequency limit. 

In this article, the pseudo- oscillator model is introduced. Together with the normal 
oscillator model, the wave and particle duality of quantum mechanics is interpreted, 
based on the wave theory of plasma, e.g., planar wave, solitary wave and the instability. 
Many new concepts, such as discrete quantum, precise quantum and nonlinear quantum 
are introduced, which paves the way of development of quantum mechanics. The dis-
turbance theory is first correlated to the quantum mechanics, which can be classified 
into the small and destructive types. The origin of quantization is revealed, i.e., by 
means of introducing the destructive disturbance that discretizes the space and cuts off 
the connection of interaction, which forms either the loose or tight bound. At loose 
bound, the discrete eigen states are obtained and the Hilbert space is established, which 
is essentially the Fourier’s series expansion. While at tight bound, the single eigen state 
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is obtained, which can be well described by the concepts such as soliton, whether mov-
ing or stationary, and the impulse. In our opinion, the discrete quantum is near linear 
region, which can be described by the Schrodinger’s equation, while the precise quan-
tum is far away from the linear region, which is therefore more suitable to be described 
by either the KdV equation or the single pseudo- oscillator, i.e., the impulse. In the last, 
the completeness of quantum mechanics is discussed based on the PRE’s paradox and 
the assumption with respect to the measurement principle of quantum states, through 
our new opinion on the origin of quantization, i.e., cutting off the connection of inter-
action or, equivalently, introducing destructive disturbance. 
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ii. About one underlying assumption of quantum mechanics, measurement principle

iii. Reconsider the blackbody radiation issue of history

IV. Conclusion
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