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Thinking about the Wave-Particle Duality with
Plasma Theory and Explaining it based on the

Oscillator and Qseudo-Oscillator Models

Shuxia Zhao

Abstract- It is the first time for us to observe the quantum world with the plasma theory. Mean-while, many
new concepts, such as the discrete quantum, precise quantum and the non-linear quantum, etc., and new
horizons, i.e., cutting off the connection of interaction, or equivalently introducing destructive disturbance,
are supposed into the quantum mechanics at the first. The normal and pseudo- oscillator models are
introduced and used to explain the wave and particle duality of quantum field. By adding such new
content, it is hoped that people can understand the physics behind the quantum mechanics, rather than
recognizing it with the pure mathematic knowledge. It is suggested that the quantum world is better to
consider the influence of outside environment, and then the quantum mechanics is turned into the
quantum dynamics. The establishment of quantum dynamics is helpful for people better understand and
hence utilize the quantum mechanics, such as the quantum optics, quantum communication and quantum
computer, etc.

L. RESEARCH BACKGROUND

a) The blackbody radiation issue in the history: Rayleigh-Jeans formula and
oscillator model

In the classic statistical theory, the thermal radiation is thought to be the electromagnetic
wave. Accordingly, the thermal radiation energy in different frequency in the black-
body cavity is given. The Maxwell equations in the vacuum is written as follows,

= = 10E

V.E_O’VXH_ZE_O' (1)
- =  10H

V'H—O,VXE'{'EE—O. (2)

Here, E, H are the electric and magnetic fields, respectively, and c is the velocity of
light in vacuum.

Utilizing the curl of electromagnetic fields, the above four electromagnetic field equa-
tions are combined into the following two vector-type wave equations.

= 1 0%

VZE - C—zm = O, (3)
— 1 0%H

VZH - c_zﬁ = O (4)

In total, six scalar equations are included in the above two vector wave equations, rep-
resenting the six components of electromagnetic fields, i.e., Ey, E,, E,, Hy, H,, H,, re-
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spectively. Correspondingly, each scalar equation can be written into one standard
equation that is used to solve a representative variable, .

2
V2o —~22 -, (5)

c? 9t2

Assume the boundaries of the cavity that surrounds the thermal radiation fields consists
of three pairs of planar surfaces, i.e.,

x=0,6y=0,B,2z=0,v. (6)

Then, the volume of blackbody cavity is given as
V = aBy. (7)

For a simple computation, the vector potential, ff, is introduced based on the Coulomb
gauge. Then, the following formulae are obtained.

H=VxAE=--2 (8)

It is noted that the vector potential satisfies the wave equation as well.

- 24
vzZA-124- 9)

c2 gt?

Next, the electromagnetic wave is decomposed into the superposition of vibrations of
different frequencies. Concretely, the wave equation of one component of vector poten-
tial, e.g., A,, is solved by means of the method of variable separation. The vector po-
tential A, is written into the formula below based on the principle of separation.

A = FOX)Y(Z(2). (10)

At the separation, the following four sub- equations of A, are obtained.

1d’x _ _p2 l"z_":_qz 14’z o 1d* o
X dx? 'Y dy? ' Z dz? " f dt?

—w?, (11)

And, the four separating constants satisfy the relation below.

2

pP+qt+ri==, (12)

c?
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The detail is omitted here (see Ref. [1]). Through the similar procedure, the three com-
ponents of vector potential deduced are achieved as below.

mmy nnz

Zlmnf(t)Acos sstm - (13)
Ay = Simn f(t)Bsin“TTxcos%sin % (14)
Zlmnf(t)Csm sm%cos VZ (15)

Here, A, B, C are undetermined coefficients. The values of parameters, 1, m, n, can only
be positive integer or zero. Besides, the two set of parameters, p, g, r and |, m, n satisfy
the following relation.

p=_q=—>,r="" (16)
Inserting Eq. (16) into Eq. (12), the below equality is obtained.

2om n_ e 4 (17)

a 32 VZ m2c2 c2

The above identity is related to the ellipsoidal function. Then, according to the volume
of ellipsoid, the freedom number of vibrations between v and v + dv, i.e., g(v)dyv, is
given.

g(v)dv = 8:—3vvzdv. (18)

According to the classic electrodynamics, the energy of radiation field, i.e., electromag-
netic wave, which is defined as EN, is

EN = — [(E2 + H?)dr. (19)

Here, dt = dx - dy - dz, is the volume element.

According to Eq. (8), the electromagnetic fields can be calculated through the vector
potential that is expressed in Egs. (13-15). Inserting the electromagnetic fields into the
above integral, and after integration, the energy EN, is written as

EN 64nczzlmn{(‘;—’;)2 + wzfz} (42 + B2 + C2). (20)

It is seen from the above formula that the energy of radiation can be expressed as the
sum of each vibration freedom. Assume the energy of one vibration freedom is €, and
it equals to
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e=—"— (A2 + B% +C?) {(ﬁ)2 + wzfz}. 1)

6472 dt

Then, we define one new parameter, Q, and express it as follow.
2 __V 2 2 2 £2
Q _32nc2(A + B* 4+ C°)f*, (22)
The following relation can be achieved.
132, 1 2n2
SZEQ +Ea)Q. (23)

This is the same with the energy expression of linear oscillator model (with the mass of
oscillator set as m = 1). Here, Q represents the displacement of oscillator and is one
equivalent generalized coordinate. Correspondingly, the generalized momentum is P =
Q. As seen, the radiation field can be treated as the mechanic system that consists of
many harmonic oscillators. So, the radiation energy in the interval between v and v +
dv can expressed as below.

E,dv = ég(v)dv = 8Zr—gvavzdv. (24)

This is the famous Rayleigh-Jeans radiation formula. Here, & = kT, which represents
the mean energy of oscillator and is given through the law of energy equipartition in
the classic statistical mechanics.

b) Linear fluid wave theory of plasma: continuum and ““small”” disturbance[2]

In plasma physics, the ionic fluid momentum equation when excluding the effects of
magnetic field and collision can be expressed as

Mn [%’ + (@ v)ﬁ] = enE — Vp = —enV¢ — y,KT,Vn, (25)

Utilizing the linear approximation, i.e., ignoring the quadratic (nonlinear) disturbance
of convection which is the second term of Eq. (23) left, and the planar wave of small
disturbance, we have

—iwMnyv;; = —enyik¢p, — v;KT;ikn,. (26)

At the assumption of electric neutrality and the Boltzmann equilibrium of electron with
electric potential, the relation between the disturbed density and potential is obtained.

n, = ng %. 27)

Here, ng is the undisturbed background ion density.
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Furthermore, the continuity equation of ion fluid is expressed below.

on —

E+V-nvl=0. (28)
Similarly, at the linear approximation and planar wave of small disturbance, we have

i(,l)nl = noikVil. (29)

Last, the ionic acoustic speed is achieved based on the above three disturbance formulae,
Egs. (24, 25, 27).

KTo+y;KT\ Y2 _
s (e, o

c) The dispersion relation of ionic acoustic wave[2]

The electric neutrality assumption is discarded, and the Poisson’s equation at the linear
and small wave approximations is considered as below.

&V- E) = gok? P, = e(niy — ney). (€2)
Here, the disturbed electron density is still given by the Boltzmann relation, i.e.,

Ny = %no. (32)

The disturbed ion density is still given by its continuity equation, which couples the
disturbed ion velocity.

ion;; = nyikv;;. (33)
And, the disturbance relation given by the momentum equation is still existed, i.e.,
—iwMnyv;; = —enyikd; — y;KT;ikn;;. (34)

Accordingly, the above four disturbance relations at the more exact condition, i.e., the
quasi-neutrality of plasma is not applied, cooperatively give rise to the dispersion of
ionic wave.

©_ (Kle__ 1 yikry)!/?
Kk (M 1+k27p2 M ) ' (35)
eoKT,\1/2 ) )
Here, Ap = ( —— ) and is the famous Debye constant of plasma that shields the non-
0

neutral region in plasma.
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d) Planar wave and oscillator at small disturbance

T, = vy exp(ikx — iwt) X, (36)
n, = n, exp(ikx — iwt), (37)
E, =E, exp(ikx — iwt) X. (38)

As seen, the planar wave of small disturbance can be treated as oscillator.

All the above contents summarize the wave characteristic of mass. Namely, it fluctuates
at small disturbance. This is caused by the oscillator model at the continuum, or more
precisely when the interaction of mass is continuative.

1. [NNOVATION AND BREAKTHROUGH

a) The blackbody radiation: The Planck’s formula

It is well-known that the prediction of Rayleigh-Jeans formula for the blackbody radi-
ation is in good agreement with experimental measurement at low frequency terminal
but fails at the high frequency terminal, even diverging. To solve this so- called ultra-
violet disaster, Planck put forward to the idea that the energy of oscillator in the black-
body cavity is quantized, i.¢e., the energy of each oscillator can only be the integer times
of one minimum, which is expressed as

€ = hv. (39)

Here, the parameter h is thereby called the Planck’s constant.

Then, at certain temperature T and the Boltzmann distribution, the appearing probabil-
ity of modulus with the energy, €, = nhv, is expressed as

_ _ exp(-Ben) — 1
Pn = E?lo=0 exp(—Ben) ’ ﬁ kT (40)

At the proposal of energy quantization, the mean energy of oscillators now becomes

hv

€ —
exp(fe)-1 exp(};—;)—l.

(41)

&= Z?Lo=0 Pnén =

Replacing the old mean energy formula of oscillator in the Rayleigh-Jeans formula with
the above new one, we get the Planck’s formula below, which is in accord to the exper-
iments at both the low- and high- frequency terminals.

2
E, =¥ % (42)

c3 exp (ﬁ

It is noted that the Planck’s formula can return to the Rayleigh-Jeans formula at the
limit of high temperature or equivalently at the limit of low frequency, i.e., when KT >>
hv, the quantized mean energy of oscillator approximates to the continuum one, as il-
lustrated below.
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hv hv

gzexp(%)—lz hV+1(hv) +“'~KT<1+1hv> KT[l_—(—;)-I----] ~ KT. (43)

KT ' 2I\KT. 2!KT

According to Eq. (43), it can be concluded that the blackbody radiation at the low fre-
quency limit that is presented by the Rayleigh-Jeans formula exhibits the wave charac-
teristic while at high frequency limit, it behaves more like particles.

b) Nonlinear solitary wave theory of plasma, i.e., KdV equation[3]

Considering the continuity and momentum equations of ion fluid that couple the non-
linear terms, the Poisson’s equation and the Boltzmann distribution of electron fluid,
we have the following partial differential equation set.

2+ () =0, (44)
KT, 6ne = en, %, (46)
& 227(2 =e(n, —n). 47)

For the convenience of derivation of the formula, the non-dimensional process toward
the above equation set is needed, by means of the below characteristic quantities, i.e.,
the normalized undisturbed density n,, normalized ionic acoustic speed, (kT /M )2,

normalized plasma Debye length, Ap = /?k normalized electric potentlal £, and

the normalized plasma collective vibration time scale, a)p,l-‘l = / “oM After this pro-

cess, we obtain the normalized fluid model below.

6t’ + —(n’u’) =0, (48)
R )
P = n,' 22, (50)
a%¢’ ' ,

a97=(ne —n'). (51

Utilize the stretched coordinate, i.e., £ = e/2(x’ — t"), T = £3/2t’. Here, ¢ is the small
magnitude expanding parameter of all normalized quantities. Next, we rewrite the
above fluid equations in the (¢, 7) coordinate space, by means of the following deriv-
ative relations,
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o _00¢ oot _ 2o 2o
at’ ~ afat’  arar’ & 9& + € at’ (52)
0 _008 00t _ apd
ax'  9fox'  odrox' € a¢ (53)
The new fluid model equation after the space transformation is
an' on' 8 ., N _
—a—s ¥+§(nu)—0, (54)
_ow o o o!
a$+£ar+u 9~ 9&’ (55)
one’ _ . 19¢
e =n o (56)
624), _ ! ’ 57
Eagz_(ne —-n'). (57)

Utilize the reduced disturbance method, and expand the normalized variables, such as
density, velocity and potential at their equilibrium state with respect to the small quan-
tity, €, as illustrated below.

n'=1+en'; +&%n', + -, (58)
u' =eu'y + &%, + (59)
ne' =1+ en,, +¢e%ng,’ + -, (60)
' =ep' +e¥P, + (61)

As seen further, after the expansion, each disturbed quantity is balanced by their re-
spective nonlinear terms and the dispersion term.

Applying the boundary condition, i.e.,§ = co,n,’ =n' =1,¢" =u’ =0, we can get
the below famous Korteweg-de Vries Equation, abbreviated as KdV equation, by means
of both the first and second order approximations of fluid model.

n' =ng =u' = ¢1,1 (62)
99" | 4109y | 19%¢) _
po + ¢4 T: +2 PrE = 0. (63)

In the above Eq. (63), the second term is nonlinear, which is arisen from the nonlinear
terms of fluid model, such as the convection and drift etc. The third term, i.e., the three-
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order derivative, represents the dispersion relation of ion acoustic wave. In the section
(1.3), when the ion temperature is zero the dispersion relation of ion acoustic wave
becomes

@ 1 1/2
X Cs (1+k2/1D2) ' (64)

Doing the Taylor’s expansion to the right side of Eq. (64), we have the following rela-
tion, Eq. (65), which can explain why the three- order derivative term of KdV equation
represents the dispersion term.

w = keg — %k3cS/1D2. (65)

,KT . .. .
Here, ¢, = 7‘5, and 1s the 1onic acoustic speed.

The KdV equation can be used to describe the soliton, which is one impulse and can
propagate in continuum medium at fixed velocity and meanwhile sustain its shape and
magnitude[2]. Correspondingly, a new variable, { = § — ct, is introduced and a new

derivative relation, % = —c d%, rri d%, is obtained. Here, c is the propagating velocity
of soliton. It is because the dependent variable that is used to describes the soliton (as-
suming it is now represented by a new symbol, e.g., U) only depends on such a type of
independent variable, {. Accordingly, the KdV equation in Eq. (63), after the variable

¢ replaced by U, is reformed into
—Cc—+U—=+-—=0. (66)

Similarly, at the boundary condition that U, Ug'both vanish when [{] = oo, we get the
solution of Eq. (66), i.e.,

U({) = 3csech?[(c/2)Y%]. (67)

As seen, this analytic solution characterizes the propagating soliton, e.g., its velocity is
¢, height magnitude is 3c, and its full width at half maximum (FWHM) is (2/c)/2. It
is noticed that the KdV equation describes a stable soliton propagating process. Namely,
after the new round of coordinate transformation, the KdV equation does not contain
the time variable anymore and the equation becomes the stationary problem now. So,
it is said that the initial disturbance at proper phase condition, which defines the bound-
ary, determines the soliton properties, such as its shape, velocity and kinetic energy etc.,
through the introduced parameter, c.

c) Solitary wave analysis: novel quantum prototype concept

i. Initial destructive and large magnitude disturbance, also called impulse
In our opinion, the wave characteristics of quantum world are exhibited when the inter-
action in the continuum is continuative or more directly when the medium is continua-
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tive. It is like exerting small external force to one spring oscillator. Fix the initial dis-
placement of it to a small value and so the elasticity of spring is not broken. As known,
this is the oscillator model and in the proper continuum, the disturbance given by the
oscillator can induce wave. For the particle property of quantum world, we propose to
define it by means of the soliton model, or solitary wave. It is a very new concept to
the quantum mechanics and is also very prototype. The soliton, as mentioned above, is
arisen from the initial disturbance as well. Nevertheless, this disturbance needs to be
very large and is destructive, i.e., it can cut off the connection of interaction or more
directly the mass connection. Or more concretely, it exceeds over the elasticity of spring.
We can furthermore envisage, did the soliton represent the particle property of quantum
world, the collision or impulse concepts from the classic mechanics can be immigrated
into the quantum mechanics to describe the soliton. The physics picture is that an im-
pulse, i.e., destructive disturbance, is suddenly imposed onto a wave that is normally
propagating in the continuum. It cuts offs the interaction of vibration and furthermore,
at the balance of nonlinear term, such as advection or drift, and the dispersion of wave,
the continuative wave is evolved into one soliton, i.e., one discrete particle that propa-
gates alone. The impulse that gives rise to soliton can be often felt in our normal life,
e.g., the strike of large ship onto the dam that causes the water solitary wave. The soliton
propagating along the rope is triggered by a successive motion, i.e., first the swift lifting
of our hand and then the sharp halting of hand. The swift lift creates the intense advec-
tion which is nonlinear term and the sharp halt creates the impulse. As seen further, this
impulse of soliton that is destructive disturbance and the origin of the particle property
of quantum world, can be described via a pseudo- oscillator model. This is closely re-
lated to the wave characteristic of quantum world that is given by the small disturbance
at the normal oscillator model, which does not damage the background environment.

ii. Pseudo- oscillator model[4]
First consider the normal oscillator model expressed below,

d%x
dt?

= —k'x, (68)

Here, k' is defined as the elastic coefficient of oscillator. The above equation can be
reformed into

dzx — 2
F = —w"X, (69)

among which, w = \/% and is the angular frequency of harmonic vibration. The gen-

eral solution of Eq. (51) can be expressed as

x(t) = A'coswt + B'sinwt. (70)

As seen, it is a typical vibration solution. In the continuum, this vibration caused by the
small disturbance can excite the trigonometric wave. As analyzed above, it exhibits the
wave characteristics.
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The pseudo- oscillator we designed is evolved from the normal one, written as

2
= k. (71)
It is seen that the only difference between the normal and pseudo- oscillators, i.e., the
Egs. (68) and (71), is one sign. In the oscillator model of Eq. (68), the right side is called
the restoring force, in which the direction of force is opposite to the displacement di-
rection. Correspondingly, in the pseudo- oscillator model of Eq. (71), the right side is
called as dispersing force, in which the direction of force is the same with the displace-
ment. It implies that once a small displacement (disturbance) is created in the pseudo-
oscillator, it grows up fast at the function of dispersing force, which is clearly a positive-
feedback process (different to the restoring force which is a negative-feedback process).
As seen, if the pseudo- oscillator model is imposed onto a system, it creates the destruc-
tive disturbance, which is essentially distinct to the oscillator model that creates small
disturbance. Nevertheless, the Eqgs. (68) and (71) are similar (except for one sign) and
that’s why the Eq. (71) is called pseudo- oscillator. Correspondingly, the parameter, k,
in Eq. (71) is defined as dispersing ability coefficient. We next solve this equation and
reform it into

dZ
— =vx (72)

Here, y = \/g is defined as growing factor of system disturbance. The general solution
of Eq. (72) 1s

x(t) = Aexp(yt) + Bexp(—yt). (73)

Furthermore, assume the two undetermined constants equal and moderately adjust the
general solution expression in Eq. (73) as follow

x(t) = B cosh(yt). (74)

exp(x)+exp(—x)
B —
At proper selection of 3,y values, we can obtain one infinite potential well model when

fixing the range of time variable into a very small interval, i.e., |t| < €. Here, € is set
as a small quantity, which embodies the instantaneous characteristics of impulse. For
instance, we set = 1,y = 100, & = 0.1139, and obtain the picture of x(t) in Fig. 1.

This is due to the definition of hyperbolic cosine function, cosh(x) =
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x(t)=feosh(y), |t|<e

50000 X (l) = I/gr'(iund

40000 +

30000 +

x(t)

20000 —

10000 -

Figure 1: The infinite potential well obtained by the pseudo- oscillator model solution
at proper parameter conditions, e.g., = 1,y = 100, = 0.1139.

It is seen from Fig. 1 the ground of the infinite potential well is determined by the
parameter equation, x'(t) = Vyyounq- At the present conditions set, Vgroung = 44200.
The prime here in the parameter equation, which just represents a different function, is
not a derivative operation, the same as in the Figs. 2 and 3. Besides, it is noticed that
the infinite potential well obtained by the pseudo- oscillator (at a moment) needs to be
observed in the whole-time domain, i.e., it is a truncated solution. This is logic and
understandable, since the impulse or quasi- impulse behaviors embody their instanta-
neous characteristics only when they are seen in the whole time and space. By means
of special linear combination, e.g., y(t) = Vyouna — x(t), we can turn the infinite po-
tential well into an infinitely high potential barrier, as shown in Fig. 2.

— ¥y=Y,

Broun

— =0

x(1), [t|<e
50000 4

40000

30000

»y)

20000 H

10000

Figure 2: The infinitely high potential barrier obtained from the infinite potential well,
by means of the linear combination, y(t) = Vyyouna — x(t). It is noted that the ground
of the potential barrier here is the real ground, i.e., y'(t) = 0.
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Both the infinite potential well and barrier are quasi- impulse behavior, which can be
described by an instant force of either pull or push. These behaviors cut off the connec-
tion of interaction and can be uniformly defined as one impulse, ﬁpu” or pusnO (t — to).
The potential well and barrier can both shift along the time axis. At the fixed 3,y values,
reform the original function, Eq. (74), into x(t — ty) = Bcosh[y(t — t,)], and draw its
picture in a new interval, |t — t,| < &. Meanwhile, observe it in the whole-time domain
and we obtain a shifted potential well in Fig. 3, at the selected parameter value, t, = 5.
Considering the shift property, the Delta function we introduced in the above impulse
formula is general, i.e., §(t — t,), other than 6(t).

x(t-ty)=peosh(pi-ty)], |t-1,|<¢

50000 - XO=V

ground
40000
30000
=
<
"
20000 —
10000
0 -
T T T T T
10 5 0 5 10

Figure 3: The general infinite potential well scheme. It shifts the original function along
the time axis to the right side about a distance of t, = 5. Correspondingly, draw the
new potential well in a new infinitely small interval, |t — ty| < &, and meanwhile dis-
play it in a large time scale, e.g., t € [—10, 10].

[1I. INSIGHTS ON THE DEVELOPMENT OF PRESENT
QUANTUM MECHANICS FRAMEWORK

a) New concepts: discrete quantum, precise quantum, and nonlinear quantum
i. Loose- bound of particle by potential and discrete quantum

In Fig. 4, the one-dimensional infinite potential well with a finite width, which is the
classical bound of particle in the present quantum mechanics textbook, is shown. The
potential is written in Eq. (75) below.

0,|x| <=,

a
V(x) = 2 (75)
0, |x| > >

Substitute the above potential expression into the famous Schrodinger’s Equation in Eq.
(76) and we get the discrete eigen functions of the particle in Eq. (77), as well as its
eigen energy set in Eq. (78).
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d? 2
LD 4 22 E — V()Tp(x) = 0. (76)
0 a/ZsinnaLx(n =2,46..),
Yn(x) = (77)
" ,/a/Zcos%(n =1,3,5...).
h2m2n?
En = W’ (Tl = 1,2,3,4, ) (78)
V(x)
1 t 1
| o0 e
[ ] X
a o Ta
2 2

Figure 4: The one-dimensional infinite potential well model, which has a finite width
characterized by the parameter, a.

As seen further, we call the bound of particle by means of infinite potential well with
finite width as loose bound, since the particle has limited free space given by the pa-
rameter, a, and accordingly the solution of Schrodinger equation at the potential of Fig.
1 is called as discrete quantum.

ii. Equivalent spatial periodicity and the Fourier’s series expansion

In our understanding, the reason why the solution of Schrodinger equation is discrete
is because the space is discretized by the wide potential well. It can be imagined that
the whole space is cut into a set of discrete regions by the well, which implicitly repre-
sents the spatial periodicity and hence the solution is discretized into the sum of trigo-
nometric functions. This is very like the expansion of a sawtooth wave, which is shown
in Fig. 5 and expressed in Eq. (79), into the Fourier series in Eq. (80). The correlation
of solving the Schrodinger’s equation at bound potential to the Fourier’s series expan-
sion, we discovered, inspires us to put forward to the novel concept, discrete quantum.
It is noted that at discrete quantum, i.e., in the limited real space, the abstract Hilbert’s
space is established based on the eigen vectors. As seen next, this is different with the
case of tight bound of particle, where only one eigen state is existed.
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Figure 5: The picture of sawtooth wave, which represents the spatial periodicity. As
known, it can be expanded into the Fourier’s series, which is essentially discrete and
thereby related to the definition of discrete quantum.

I l<x<l
f(x) = { lf(x e (79)
() = ¥y X5 sin (™), (-1=x=D. (80)

iii. Tight- bound of particle by potential and Single eigen state

V() x

Figure 6: The picture of one-dimensional delta potential well, one example of tight
bound of particle.

In this section, the one-dimensional delta potential well is plotted in Fig. 6 and written
in Eq. (81). It represents the example of tight bound of particle. It is seen from Fig. 6
that the particle is so tightly bounded that it does not have any free space anymore. So,
the solution of the Schrodinger’s equation of Eq. (82) at the delta potential is only one
eigen function, illustrated in Eq. (83). The only eigen energy is given in Eq. (84). Since
the single eigen state is obtained at the tight bound of potential, the Hilbert space cannot
be constructed.

V(x) = —Vo8(x), Vo > 0. (81)
LD L 2R E + Vps(Ip(x) = 0. (82)
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P(x) = Vkexp(=kl|x|)

mv, . (83)
k= h_zo
mvy?
E = - Zh(; ) (84)

iv. Precise quantum and quasi- soliton

We plot, in Fig. 7, the wave function of the Schrodinger’s equation at the delta potential
bound, i.e., Eq. (83), against the parameter, k, which determines the eigen value, and
the soliton solution of KdV equation, i.e., Eq. (67), against the parameter, c, which de-
termines the eigen value as well. It is seen that with the increase of the parameter value,
both the wave and soliton functions tend to exhibiting the delta shape, which represents
the precise quantum, as we defined, since only one eigen state is existed. Regarding to
the similarity between them, the wave function can be called as the quasi- soliton. Note
that the soliton shown in Fig. 7(d-f) is a moving soliton, with the constant velocity, c.
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Figure 7: Comparison and the similarity between the solutions of Schrodinger’s equa-
tion and KdV equation, at the different eigen values, respectively. The former is there-
fore called as precise quantum, or quasi- soliton, which is determined by the eigen value
k or V,, more precisely. While the latter is the realistic moving soliton, which is deter-
mined by its eigen value, c.

v. Stationary soliton and pseudo-oscillator set
In the section, we demonstrate that with a set of pseudo- oscillators, a stationary soliton
can be constructed, which behaves more like a wave function of delta type. With the
model that consists of a set of pseudo- oscillators, the general reason for the quantiza-
tion is revealed, e.g., the normal Coulomb force, gravitation force, and the chemical
force, etc. The detail of this process is illustrated through the Egs. (85-91) and the Figs.
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8-9. Concretely, in the Egs. (88-90) set, both the Coulomb and gravitation forces are
expanded into the Taylor’s series, and furthermore in the Eq. (91) set, each power term
of the Taylor’s expansion can be treated as a quasi- pseudo- oscillator. Correspondingly,
all expanded terms of the two types of force are transformed into a sum of different
pseudo- oscillators, which comprises the pseudo- oscillator set.

d?x
%7 -
Yim—2 = ki, (86)
d,; = 0 (Tangetial acceleration) (87)

d’r,  GMm,
m1 2 = 2>
- (R-r)
LB a0
*df’  Ams,(R-7)*
& ..
m3 d[2 =Ar,

Figure 9: The transformation of Coulomb, gravitation, and chemistry forces into the
pseudo- oscillator model
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(R-n)’ R(l_%)z R(1-¢)

qQ BCO)‘IS 1
~ L~ -,0<& <1, (89)

47z<90(R—r2)2 R(l—%)z R(1-¢&,)

! =d[ ! }/d§=d(l+§+§2+§3+...+§"+...)/d§

(-¢y |1-¢ (90)

=14+2E43E + .. +nE" 4.

dzf 3
dt*

m

2ké, Pseudo oscillator,

2
m C:;f =3ké&?, Quasi pseudo oscillator,

1)

2
m % =nk&", Quasi pseudo oscillator.

vi. Homogeneity between the moving soliton and single pseudo- oscillator that re
-lates the impulse

U(Q) = 3csech?[(c/2)Y?¢|~c~F&(t — t;) = AP = mc (The momentum law). (92)
As seen from the Eq. (92), the moving soliton given by Eq. (67) is determined by the
value of parameter, c. Furthermore, the constant velocity of soliton, i.e., the parameter
c, is again determined by the impulse given by the single pseudo- oscillator as shown
in Fig. 3, through the momentum law. So, the moving soliton and the single pseudo-
oscillator that represents the impulse are essentially the same.

vii. A pair of conjugate complex solutions for the oscillator and pseudo-oscillator
[5, 6]
Next, we solve the normal and pseudo- oscillators in the complex domain. In the Eq.
(93), the complex solution of normal oscillator is given as a vibration solution. While
in the Eq. (94), the complex solution of pseudo- oscillator is a type of instability, as
defined in Eq. (95) by means of the planar wave theory of plasma.

d?x

atz

d?x
at?
kx = xgexp(iwt).

= —kx,

= —w?x, (93)
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,k .
Here, w = — and is one real number.

dt2
X = xoexp(lw t).

! dt2 X
| 2y (94)
\

Here, o' = iw, and is one pure imaginary number.

x = xq expli(kx — wt)],
If w=w, +iw; then (95)
x = xg expli(kx — w,t)]exp(w;t).

Here, x, is the vibration amplitude and is one real number. In Eq. (95), the planar wave
is expressed. Once the angular frequency is a complex number, it is seen that the vibra-
tion amplitude will be changed by means of the term, exp(w;t). And if the imaginary
part of angular frequency is positive, the vibration amplitude, xyexp(w;t), diverges.
This is called the instability of wave, according to the plasma theory. Moreover, the
plasma theory still predicts that once an instability is occurred, the free energy is applied
onto the system. Here, in the discussion of the origin of quantization, we propose the
free energy is meant either the limited bound potential, which induces the discrete quan-
tum, or the impulse (strong bound potential) that induces the precise quantum. Both the
two types of free energy lead the system to form the self-organized structure that dissi-
pates the free energy applied, which might be the deep meaning of quantization. Note
that the angular frequency of pseudo- oscillator is a pure and positive imaginary number.
It implies none of a little vibration is happened in the pseudo- oscillator, which de-
scribes well the meaning of quantization that is against the vibration.

viii. Linear and nonlinear quantum dynamics VS. Schrodinger equation and KdV
equation (or pseudo oscillator model)

In Fig. 10, one discrete eigen sine function versus the time variable, given by the loose
bound of potential, is plotted. As seen, it is near the linear regions, represented by the
set of red dash lines. This is different with the case of Figs. 1-3 and 7, where the pseudo-
oscillator is plotted, which is far away from the linear region. This fact is supported by
the function expansion of them, as illustrated in the Egs. (96, 97). Regarding to this
point, the quantum dynamics can be divided into the linear and nonlinear types, which
are determined by the Schrodinger Equation and the KdV equation, respectively. As
seen from the Sec. (f), the KAV equation is essentially the same as the pseudo- oscillator
model that predicts the impulse. Note that the near linear property is also applied to
other discrete eigen wave functions, such as the Hermite’s polynomial, since they can
be expanded into the Fourier’s series.
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Figure 10: The picture of one discrete eigen sine function. As seen, it is near the linear
region, which is represented by the set of red dash lines.

(-pne2ntt nrentl i B i
@2n+1)! ,+ ! 71 +- (96)

sin(t) = Xnzo

( exp(t)—zno —1+t+ + + - (t>0),

| exp(—t) = %2 & n! =1-t +———!+ - (£ <0), 97)
\exp(t) =Yz 0';' =1+ |t] +£+£+ - (for any t).

iX. New recognition on the bound significance of quantum mechanics, i.e.,
cutting off the connection

We have mentioned this point in the Sec. 2. Here, we want to stress that in all the ex-
amples of quantum mechanics listed in the Sec. 3, the bound significance is just to cut
off the connection of interaction.

b) Discussion on the completeness of quantum mechanics
i. About the EPR paradox[7] and non-local property

The Einstein-Podolsky-Rosen (abbreviated as EPR) paradox discussed the quantum en-
tanglement issue and the non-local property of quantum mechanics. Although it is
proven by the Bell inequality experiment and has been applied in the field of quantum
communication, the physics behind is not revealed yet. With the idea we presented in
this article, i.e., the quantization is originated from the action that cuts off the connec-
tion of interaction, the non-local property of quantum entanglement can be easily ex-
plained. After the action of truncation, all the interaction is localized into one small
region that is characterized by the bound potential and so the space out of this region
has no meaning onto the quantum event that is happened inside the region. Here, we
are talking about the completeness of quantum mechanics. As seen, it is complete only
when we further consider the influence of outside environment. Namely, the quantum
mechanics are not always the unitary transformation that is reversible. It can be inversi-
ble, especially when it is measured by introducing disturbance.
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ii. About one underlying assumption of quantum mechanics, measurement principle

In our understanding, when measuring the discrete quantum states, the destructive dis-
turbance is introduced into the Hilbert space. If one eigen state is probed, it means that
the particle is trapped into one delta type potential. According to the content of Sec.
(3.1c), at delta potential bound, only one eigen state is existed. This means that the
Hilbert space must collapse due to the disturbance of this delta potential. As seen, our
ideas about the quantization, i.e., destructive disturbance and impulse, underlines the
physical basis for the important measurement assumption of quantum mechanics.

iii. Reconsider the blackbody radiation issue of history

By means of the disturbance theory, we can explain well the experiment trends of black-
body radiation. At the low frequency limit, hv < kT , the radiation energy is small and
it can be treated as small disturbance to the air molecule in the blackbody cavity. It
behaves more like a wave. While at high frequency limit, hv > kT, the radiation is so
strong that it now becomes destructive disturbance. The air molecules are now more
like transparent to the radiation, and so the radiation can penetrate through the air back-
ground and interact directly with the inner boundary of cavity. So, the cavity is now the
bound potential to the radiation, and that’s why it exhibits the quantum characteristic
at high frequency limit.

IV. CONCLUSION

In this article, the pseudo- oscillator model is introduced. Together with the normal
oscillator model, the wave and particle duality of quantum mechanics is interpreted,
based on the wave theory of plasma, e.g., planar wave, solitary wave and the instability.
Many new concepts, such as discrete quantum, precise quantum and nonlinear quantum
are introduced, which paves the way of development of quantum mechanics. The dis-
turbance theory is first correlated to the quantum mechanics, which can be classified
into the small and destructive types. The origin of quantization is revealed, i.e., by
means of introducing the destructive disturbance that discretizes the space and cuts off
the connection of interaction, which forms either the loose or tight bound. At loose
bound, the discrete eigen states are obtained and the Hilbert space is established, which
is essentially the Fourier’s series expansion. While at tight bound, the single eigen state
is obtained, which can be well described by the concepts such as soliton, whether mov-
ing or stationary, and the impulse. In our opinion, the discrete quantum is near linear
region, which can be described by the Schrodinger’s equation, while the precise quan-
tum is far away from the linear region, which is therefore more suitable to be described
by either the KdV equation or the single pseudo- oscillator, i.e., the impulse. In the last,
the completeness of quantum mechanics is discussed based on the PRE’s paradox and
the assumption with respect to the measurement principle of quantum states, through
our new opinion on the origin of quantization, i.e., cutting off the connection of inter-
action or, equivalently, introducing destructive disturbance.
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