

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A

Physics and Space Science

Enhancing Farm Productivity

The Heat Transfer by Radiation

Highlights

Fine-Structure of the Electron

Non-Equilibrium Thermodynamics

Discovering Thoughts, Inventing Future

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS & SPACE SCIENCE

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS & SPACE SCIENCE

VOLUME 23 ISSUE 1 (VER. 1.0)

OPEN ASSOCIATION OF RESEARCH SOCIETY

© Global Journal of Science
Frontier Research. 2023.

All rights reserved.

This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website <http://globaljournals.us/terms-and-condition/menu-id-1463/>

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374
Import-Export Code: 1109007027
Employer Identification Number (EIN):
USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; **Reg. Number: 0423089**)
Sponsors: [Open Association of Research Society](#)
[Open Scientific Standards](#)

Publisher's Headquarters office

Global Journals® Headquarters
945th Concord Streets,
Framingham Massachusetts Pin: 01701,
United States of America
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Journals Incorporated
2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey,
Pin: CR9 2ER, United Kingdom

Packaging & Continental Dispatching

Global Journals Pvt Ltd
E-3130 Sudama Nagar, Near Gopur Square,
Indore, M.P., Pin:452009, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org
Investor Inquiries: investors@globaljournals.org
Technical Support: technology@globaljournals.org
Media & Releases: media@globaljournals.org

Pricing (Excluding Air Parcel Charges):

Yearly Subscription (Personal & Institutional)
250 USD (B/W) & 350 USD (Color)

EDITORIAL BOARD

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Dr. John Korstad

Ph.D., M.S. at Michigan University, Professor of Biology, Department of Biology Oral Roberts University, United States

Dr. Sahraoui Chaieb

Ph.D. Physics and Chemical Physics, M.S. Theoretical Physics, B.S. Physics, cole Normale Suprieure, Paris, Associate Professor, Bioscience, King Abdullah University of Science and Technology United States

Andreas Maletzky

Zoologist University of Salzburg, Department of Ecology and Evolution Hellbrunnerstraße Salzburg Austria, Universitat Salzburg, Austria

Dr. Mazeyar Parvinzadeh Gashti

Ph.D., M.Sc., B.Sc. Science and Research Branch of Islamic Azad University, Tehran, Iran Department of Chemistry & Biochemistry, University of Bern, Bern, Switzerland

Dr. Richard B Coffin

Ph.D., in Chemical Oceanography, Department of Physical and Environmental, Texas A&M University United States

Dr. Xianghong Qi

University of Tennessee, Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge National Laboratory, Knoxville, TN 37922, United States

Dr. Shyny Koshy

Ph.D. in Cell and Molecular Biology, Kent State University, United States

Dr. Alicia Esther Ares

Ph.D. in Science and Technology, University of General San Martin, Argentina State University of Misiones, United States

Tuncel M. Yegulalp

Professor of Mining, Emeritus, Earth & Environmental Engineering, Henry Krumb School of Mines, Columbia University Director, New York Mining and Mineral, Resources Research Institute, United States

Dr. Gerard G. Dumancas

Postdoctoral Research Fellow, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK United States

Dr. Indranil Sen Gupta

Ph.D., Mathematics, Texas A & M University, Department of Mathematics, North Dakota State University, North Dakota, United States

Dr. A. Heidari

Ph.D., D.Sc, Faculty of Chemistry, California South University (CSU), United States

Dr. Vladimir Burtman

Research Scientist, The University of Utah, Geophysics Frederick Albert Sutton Building 115 S 1460 E Room 383, Salt Lake City, UT 84112, United States

Dr. Gayle Calverley

Ph.D. in Applied Physics, University of Loughborough, United Kingdom

Dr. Bingyun Li

Ph.D. Fellow, IAES, Guest Researcher, NIOSH, CDC, Morgantown, WV Institute of Nano and Biotechnologies West Virginia University, United States

Dr. Matheos Santamouris

Prof. Department of Physics, Ph.D., on Energy Physics, Physics Department, University of Patras, Greece

Dr. Fedor F. Mende

Ph.D. in Applied Physics, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

Dr. Yaping Ren

School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China

Dr. T. David A. Forbes

Associate Professor and Range Nutritionist Ph.D. Edinburgh University - Animal Nutrition, M.S. Aberdeen University - Animal Nutrition B.A. University of Dublin-Zoology

Dr. Moaed Almeselmani

Ph.D in Plant Physiology, Molecular Biology, Biotechnology and Biochemistry, M. Sc. in Plant Physiology, Damascus University, Syria

Dr. Eman M. Gouda

Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

Dr. Arshak Poghossian

Ph.D. Solid-State Physics, Leningrad Electrotechnical Institute, Russia Institute of Nano and Biotechnologies Aachen University of Applied Sciences, Germany

Dr. Baziotis Ioannis

Ph.D. in Petrology-Geochemistry-Mineralogy Lipson, Athens, Greece

Dr. Vyacheslav Abramov

Ph.D in Mathematics, BA, M.Sc, Monash University, Australia

Dr. Moustafa Mohamed Saleh Abbassy

Ph.D., B.Sc, M.Sc in Pesticides Chemistry, Department of Environmental Studies, Institute of Graduate Studies & Research (IGSR), Alexandria University, Egypt

Dr. Yihun Shang

Ph.d in Applied Mathematics, Shanghai Jiao Tong University, China

Dr. Bing-Fang Hwang

Department of Occupational, Safety and Health, College of Public Health, China Medical University, Taiwan Ph.D., in Environmental and Occupational Epidemiology, Department of Epidemiology, Johns Hopkins University, USA Taiwan

Dr. Giuseppe A Provenzano

Irrigation and Water Management, Soil Science, Water Science Hydraulic Engineering , Dept. of Agricultural and Forest Sciences Universita di Palermo, Italy

Dr. Claudio Cuevas

Department of Mathematics, Universidade Federal de Pernambuco, Recife PE, Brazil

Dr. Qiang Wu

Ph.D. University of Technology, Sydney, Department of Mathematics, Physics and Electrical Engineering, Northumbria University

Dr. Lev V. Eppelbaum

Ph.D. Institute of Geophysics, Georgian Academy of Sciences, Tbilisi Assistant Professor Dept Geophys & Planetary Science, Tel Aviv University Israel

Prof. Jordi Sort

ICREA Researcher Professor, Faculty, School or Institute of Sciences, Ph.D., in Materials Science Autonomous, University of Barcelona Spain

Dr. Eugene A. Permyakov

Institute for Biological Instrumentation Russian Academy of Sciences, Director Pushchino State Institute of Natural Science, Department of Biomedical Engineering, Ph.D., in Biophysics Moscow Institute of Physics and Technology, Russia

Prof. Dr. Zhang Lifei

Dean, School of Earth and Space Sciences, Ph.D., Peking University, Beijing, China

Dr. Hai-Linh Tran

Ph.D. in Biological Engineering, Department of Biological Engineering, College of Engineering, Inha University, Incheon, Korea

Dr. Yap Yee Jiun

B.Sc.(Manchester), Ph.D.(Brunel), M.Inst.P.(UK)
Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia

Dr. Shengbing Deng

Departamento de Ingeniera Matemtica, Universidad de Chile. Facultad de Ciencias Fsicas y Matemticas. Blanco Encalada 2120, Piso 4., Chile

Dr. Linda Gao

Ph.D. in Analytical Chemistry, Texas Tech University, Lubbock, Associate Professor of Chemistry, University of Mary Hardin-Baylor, United States

Angelo Basile

Professor, Institute of Membrane Technology (ITM) Italian National Research Council (CNR) Italy

Dr. Bingsuo Zou

Ph.D. in Photochemistry and Photophysics of Condensed Matter, Department of Chemistry, Jilin University, Director of Micro- and Nano- technology Center, China

Dr. Bondage Devanand Dhondiram

Ph.D. No. 8, Alley 2, Lane 9, Hongdao station, Xizhi district, New Taipei city 221, Taiwan (ROC)

Dr. Latifa Oubedda

National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco, Lotissement Elkhier N66, Bettana Sal Marocco

Dr. Lucian Baia

Ph.D. Julius-Maximilians, Associate professor, Department of Condensed Matter Physics and Advanced Technologies, Department of Condensed Matter Physics and Advanced Technologies, University Wrzburg, Germany

Dr. Maria Gullo

Ph.D., Food Science and Technology Department of Agricultural and Food Sciences, University of Modena and Reggio Emilia, Italy

Dr. Fabiana Barbi

B.Sc., M.Sc., Ph.D., Environment, and Society, State University of Campinas, Brazil Center for Environmental Studies and Research, State University of Campinas, Brazil

Dr. Yiping Li

Ph.D. in Molecular Genetics, Shanghai Institute of Biochemistry, The Academy of Sciences of China Senior Vice Director, UAB Center for Metabolic Bone Disease

Nora Fung-yee TAM

DPhil University of York, UK, Department of Biology and Chemistry, MPhil (Chinese University of Hong Kong)

Dr. Sarad Kumar Mishra

Ph.D in Biotechnology, M.Sc in Biotechnology, B.Sc in Botany, Zoology and Chemistry, Gorakhpur University, India

Dr. Ferit Gurbuz

Ph.D., M.SC, B.S. in Mathematics, Faculty of Education, Department of Mathematics Education, Hakkari 30000, Turkey

Prof. Ulrich A. Glasmacher

Institute of Earth Sciences, Director of the Steinbeis Transfer Center, TERRA-Explore, University Heidelberg, Germany

Prof. Philippe Dubois

Ph.D. in Sciences, Scientific director of NCC-L, Luxembourg, Full professor, University of Mons UMONS Belgium

Dr. Rafael Gutirrez Aguilar

Ph.D., M.Sc., B.Sc., Psychology (Physiological), National Autonomous, University of Mexico

Ashish Kumar Singh

Applied Science, Bharati Vidyapeeth's College of Engineering, New Delhi, India

Dr. Maria Kuman

Ph.D, Holistic Research Institute, Department of Physics and Space, United States

CONTENTS OF THE ISSUE

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Contents of the Issue

- 1. The Toroidal Fine-Structure of the Electron. **1-8**
- 2. New Applications of Non-Equilibrium Thermodynamics. **9-16**
- 3. Data-Driven Knowledge Agriculture: A Paradigm Shift for Enhancing Farm Productivity & Global Food Security. **17-27**
- 4. The Heat Transfer by Radiation under Relativistic Conditions. **29-39**
- 5. The New View at the Physics of the Planet Earth. **41-60**

- v. Fellows
- vi. Auxiliary Memberships
- vii. Preferred Author Guidelines
- viii. Index

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

The Toroidal Fine-Structure of the Electron

By Gene Gryziecki

Abstract- Developments in physics in the past two decades have expanded the well-known mass-energy equation into a rigorous set of relations that provide the electric and magnetic fine-structure and the volumetric structure of the electron as a closed-flux torus, all in agreement with 2018 Codata values. In light of these developments, the present communication questions the physical meaning of the Bohr radius and its implications – the Bohr-Heisenberg theory of the hydrogen atom and its description of an electron as a point-mass particle that only exists when its probability wave collapses.

Keywords: energy, electron, mass-energy, bohr radius, torus, wavelength, wavefunction.

GJSFR-A Classification: DDC Code: 530.141 LCC Code: QA935

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

The Toroidal Fine-Structure of the Electron

Gene Gryziecki

Abstract- Developments in physics in the past two decades have expanded the well-known mass-energy equation into a rigorous set of relations that provide the electric and magnetic fine-structure and the volumetric structure of the electron as a closed-flux torus, all in agreement with 2018 Codata values. In light of these developments, the present communication questions the physical meaning of the Bohr radius and its implications – the Bohr-Heisenberg theory of the hydrogen atom and its description of an electron as a point-mass particle that only exists when its probability wave collapses.

Keywords: energy, electron, mass-energy, bohr radius, torus, wavelength, wavefunction.

I. INTRODUCTION

The Bohr theory of the hydrogen atom, theorized by Niels Bohr (1885-1962), includes a negatively charged point-mass electron that travels in a circular orbit about a positively charged nucleus. In the atom's lowest energy (or ground) state, the distance between the two particles is called the Bohr radius and is equal to 0.529×10^{-10} m. Since then, further investigation indicated that sometimes the electron behaves like a wave and sometimes like a particle [1]. Thus, the Bohr-Heisenberg model of the atom arose where the electron exists only as a cloud or fuzzy cavity about the nucleus and measurements are based upon the probability of a point particle being found at a certain location in the cloud.

Recently, there has been some rather meticulous scientific research work by Dr. Paulo Correa and his team that has put forth a novel description of the electron as a torus ring, and a heuristic understanding of the Bohr radius and the Bohr-Heisenberg model of the atom. This paper is intended to provide an introduction to, and overview of, an important aspect of this work.

II. METHODS AND RESULTS

Building upon the work of Wilhelm Reich (1897-1957) and his research on gravitational pendulums, it became possible to decipher his formula for determining the functional equivalence between mass and length [2]. Reich's work supported the idea that "atomic weights are gravitational functions that can be functionally replaced by pendulum lengths." He selected pendulum lengths, in centimeters (cm), such that they were numerically equal to the gram-molar masses, and thus to the atomic weights, of various elements, while keeping the actual weight of the pendulum constant at 1 gram. For example, the length of gravitational pendulums for Hydrogen, Helium and Oxygen would be 1, 4 and 16 cm, respectively [3]. His process transforms "inertial mass into the rotary or pendular wavelength of the linear free fall motion" understood as weight [4].

In the case of the electron (the entirety of this paper applies to the electron and all reference values have been taken from a single source, CODATA 2018 [5]), this gravitational wavelength is resonant with the "wavelength of the energy circularized as mass-energy (see below) and on which the inertia of a state of rest is anchored as a reaction of that inert mass or of that mass-energy," referred to as the mass-equivalent or amplitude [6] wavelength [7]. In fact, for the electron, these two wavelengths, gravitational and mass-equivalent, are numerically equal, and the wavelength of concern in this paper is the electron mass-equivalent wavelength. The equation for the mass to length transformation for the electron can be shown as:

$$\text{Length} = \lambda_e = m_e N_A 10^{-2} \text{ in meters} \quad (1)$$

where λ_e is the mass-equivalent wavelength of the inert mass of the electron, m_e is the electron mass (in grams), and N_A is Avogadro's number:

$$\lambda_e = (9.109 \times 10^{-31} \text{ kg}) (10^3 \text{ gm} / 1\text{kg}) (6.022 \times 10^{23} / \text{mole}) (10^{-2}) (\text{m}) = 5.486 \times 10^{-6} \text{ m} \quad (2)$$

Using this tremendous insight and the famous equation for calculating rest energy or mass-energy, where energy E equals the product of mass m times the speed of light squared c^2 , $E = mc^2$, one can determine a functional equivalent to the mass-energy of an electron using two physical quantities rather than three, incorporating length and time instead of mass, length, and time. Accordingly,

$$E = m_e c^2 = \lambda_e c^2 \quad (3)$$

with c designating the speed of light and the symbol $=\int=$ indicating a functional transformation that involves both dimensional conversion and an equivalence between two different physical systems of measurement [8]:

$$E = (9.109 \times 10^{-31} \text{ kg}) (2.998 \times 10^8 \text{ m s}^{-1})^2 = 8.187 \times 10^{-14} \text{ Joules} = \int = (5.486 \times 10^{-6} \text{ m}) (2.998 \times 10^8 \text{ m s}^{-1})^2 = 4.930 \times 10^{11} \text{ m}^3 \text{ s}^{-2} \quad (4)$$

For electromagnetic (photon) energy consisting of oscillating electric and magnetic fields, where the maximum wave velocity is restricted to the speed of light, the well-known Compton electron wavelength ($\lambda_{ce} = 2.426 \times 10^{-12} \text{ m}$) can be used to determine the Compton electron frequency:

$$v_{ce} = c / \lambda_{ce} = (2.998 \times 10^8 \text{ m s}^{-1}) / (2.426 \times 10^{-12} \text{ m}) = 1.236 \times 10^{20} \text{ s}^{-1} \quad (5)$$

When energy is quantized, it can be calculated by the product of Planck's constant ($h = 6.626 \times 10^{-34} \text{ J s}$) and frequency. If the frequency happens to be the Compton electron frequency, then the result is equivalent to the mass-energy of the electron or to the low-energy limit of a gamma ray photon. Modern science shows this calculation as

$$E = hv_{ce} = (6.626 \times 10^{-34} \text{ J s}) (1.236 \times 10^{20} \text{ s}^{-1}) = 8.187 \times 10^{-14} \text{ Joules} \quad (6)$$

matching the results of the $E = m_e c^2$ calculation shown above in equation (4).

Now, it also becomes apparent that a functionally equivalent Planck's constant h , in meter and second units of measure, can be determined by rearranging the above equation as

$$h = E / v_{ce} = (4.930 \times 10^{11} \text{ m}^3 \text{ s}^{-2}) / (1.236 \times 10^{20} \text{ s}^{-1}) = 3.990 \times 10^{-9} \text{ m}^3 \text{ s}^{-1} \quad (7)$$

Our limited understanding of charge has confused the issue of the fine-structure of the mass-energy of a mass-bearing charge more than necessary. If we go back to James Maxwell's (1831-79) theory, charge, or as he stated, "a [fundamental] quantity of electricity", could be represented using three physical quantities and dimensions, as [9]

$$q = M^{0.5} L^{1.5} T^{-1} (M = \text{mass}, L = \text{length}, T = \text{time}) \quad (8)$$

This is in agreement with the physical quantities for charge in the Electrostatic System of Units (ESU) [10], and also as proposed in the work of Harold Aspden (1927-2011) [11]. If the mass to length transformation is applied to this definition of charge it can be seen that the property of charge is equivalent to a function of linear momentum that is treated as being massfree -

$$q = M^{0.5} L^{1.5} T^{-1} = \int = L^2 T^{-1} = p_e \quad (9)$$

- where p_e symbolizes charge, with massfree dimensionality, as an electric linear momentum vector function [11]. Charge is a special type of linear momentum function that can be expressed inertially or electromagnetically in mass dependent systems of units (as q or e , see below) or electrically in the meters and seconds massfree system of units as p_e [11]. As shown below in equations (15) and (17), this linear momentum charge function is inherent to the mass-energy of the electron and every massbound charge. The functional equivalences of charge in three different systems of units (ESUs, Coulombs, and meters squared per seconds) are

$$"q = 4.830 \times 10^{-10} \text{ ESU} = \int = e = 1.611 \times 10^{-19} \text{ C} = \int = p_e = 13.970 \text{ m}^2 \text{ s}^{-1}" \quad [12] \quad (10)$$

In addition to being expressed in joules, per equation (4) above, the electron mass-energy can also be expressed as charge, represented by "e," multiplied by voltage, found to be equal to 510,998.950 electron volts (eV), per Codata 2018:

$$E = m_e c^2 = (e)(511 \text{ kV}) = hv_{ce} = \int = (p_e) (h / p_e) (v_{ce}) \quad (11)$$

The Duane-Hunt Law states that the maximum frequency of X-rays emitted from a tube, resulting from electrons that are accelerated by an applied voltage strike a metal anode, is proportional to the applied voltage and is quantized by Planck's quantum of action h , per the equation:

$$v_{\max} = V e / h = K / h \quad (12)$$

where v_{\max} is the maximum frequency, V is the voltage applied to the tube, e is charge, and K is equal to the kinetic energy of the accelerated electron. Notice that if the terms are rearranged to solve for energy and if the maximum frequency happens to be the Compton electron frequency (v_{ce}), then the kinetic energy would have the same magnitude as the mass-energy of the electron:

$$K = h v_{ce} = V e = E = (e)(511\text{kV}) = p_e (h / p_e) v_{ce} \quad (13)$$

In the meter and second system of units, the term (h/p_e) has the physical dimensionality of length which is expressed in meters and is a wavelength. Under the above condition, this wavelength may be determined for the electric equivalent of the electron mass-energy as the quantum of action h divided by the quantum of charge p_e ; it is, therefore, a constant:

$$\lambda_x = h / p_e = (3.990 \times 10^{-9} \text{ m}^3 \text{ s}^{-1}) / (13.970 \text{ m}^2 \text{ s}^{-1}) = 2.856 \times 10^{-10} \text{ m} \quad (14)$$

Expanding the electron mass-energy equation to include both inertial and electric linear momentum functions results in

$$E = m_e c^2 = p_{Ae} c = h v_{ce} = \lambda_e c^2 = p_e W_x = h v_{ce} \quad (15)$$

where p_{Ae} is the (photo)inertial linear momentum $m_e c$, p_e is the electric linear momentum, and W_x is the electric wavefunction corresponding to the intrinsic voltage (511kV) of the electron mass-energy. The function W_x is called "the voltage equivalent electric wave speed of the electron mass-energy" [13] and it can be directly expressed by its equivalent electromagnetic form as a function of the Compton frequency and the Duane-Hunt wavelength – thus, as a function of two constants:

$$511\text{kV} = W_x = \lambda_x v_{ce} = (2.856 \times 10^{-10} \text{ m}) (1.236 \times 10^{20} \text{ s}^{-1}) = 3.529 \times 10^{10} \text{ m s}^{-1} \quad (16)$$

This confirms that

$$E = 511\text{keV} = \lambda_e c^2 = p_e W_x = 4.930 \times 10^{11} \text{ m}^3 \text{ s}^{-2} = (13.970 \text{ m}^2 \text{ s}^{-1}) (3.529 \times 10^{10} \text{ m s}^{-1}) = 4.930 \times 10^{11} \text{ m}^3 \text{ s}^{-2} \quad (17)$$

and it expands the electron mass-energy expression to include W_x and its constituents. It results in

$$E = m_e c^2 = p_{Ae} c = h v_{ce} = \lambda_e c^2 = p_e W_x = \lambda_e W_k W_x = \lambda_e W_k (\lambda_x v_{ce}) \quad (18)$$

Note that the Compton electron frequency v_{ce} of the electromagnetic equivalent of the electron mass-energy, $p_{Ae} c = h v_{ce}$, is shared with the actual electric structure of that mass-energy ($W_x = \lambda_x v_{ce}$) [14].

Equation (18) requires another wave speed function, namely W_k , which is the magnetic wave speed characteristic of the electron charge. As shown by that equation, there is a fundamental equivalence of $c^2 = W_k W_x$. The product of these two wavefunctions, W_k and W_x , represents a superimposition, where the two separate wavefunctions are superimposed nearly perpendicularly to one another. Since c and W_x are known, it is a simple matter to solve for W_k :

$$W_k = c^2 / W_x = (2.998 \times 10^8 \text{ m s}^{-1})^2 / (3.529 \times 10^{10} \text{ m s}^{-1}) = 2.547 \times 10^6 \text{ m s}^{-1} \quad (19)$$

Besides being intrinsic to the electric equivalent of the electron mass-energy, the wave speed W_k is actually the magnetic wave speed "intrinsic to the elementary charge of the electron" [15]:

$$p_e = \lambda_e W_k \quad (20)$$

Rearranging the above terms permits the confirmation of the value of W_k . An interesting sidebar to the main purpose of this paper is an insight into the meaning of the charge to mass ratio. It can be seen below that this ratio results in a wave speed that is exactly equal to W_k , the magnetic wave speed intrinsic to charge [6, 15]:

$$W_k = p_e / \lambda_e = (13.970 \text{ m}^2 \text{ s}^{-1}) / (5.486 \times 10^{-6} \text{ m}) = 2.547 \times 10^6 \text{ m s}^{-1} \quad (21)$$

This can be verified by performing the transformation process on the 2018 Codata value of the electron charge to mass ratio of $1.758 \times 10^{11} \text{ C} / \text{kg}$, as follows. Rearranging a portion of equation 10 and substituting the Codata 2018 value for the electron charge "e" gives

$$p_e / e = (13.97 \text{ m}^2 \text{ s}^{-1}) / (1.602 \times 10^{-19} \text{ C}) = 8.72 \times 10^{19} \text{ m}^2 \text{ s}^{-1} \text{ C}^{-1} \quad (21A)$$

and from equation (1)

$$1 \text{ kg} = \int = 1 \text{ kg} (10^3 \text{ gm} / 1 \text{ kg}) (6.022 \times 10^{23} / \text{mole}) (10^{-2} \text{ m gm}^{-1}) = 6.02 \times 10^{24} \text{ m} \quad (21B)$$

then,

$$1.758 \times 10^{11} \text{ C m}^{-1} = \int = [(1.758 \times 10^{11} \text{ C}) (8.72 \times 10^{19} \text{ m}^2 \text{ s}^{-1} \text{ C}^{-1})] / (6.02 \times 10^{24} \text{ m}) = 2.546 \times 10^6 \text{ m s}^{-1} \quad (21C)$$

showing the enduring value of the process and confirmation of the value of the charge to mass ratio and thus of the magnetic wave speed intrinsic to charge, W_k , per equation 21.

Returning to the Electrostatic System of Units of charge as mentioned above in equation (9) and repeated here for reference,

$$q = M^{0.5} L^{1.5} T^{-1} = \int = L^2 T^{-1} = p_e \quad (9)$$

squaring both sides

$$q^2 = M L^3 T^{-2} = \int = L^4 T^{-2} = p_e^2 \quad (22)$$

and solving for M results in

$$M = q^2 / L^3 T^{-2} = \int = p_e^2 / L^3 T^{-2} = L \quad (23)$$

Whereas, as we have seen from equation 21, the electron mass is part not only of the mass-energy of the electron, but of its very charge structure ($p_e = \lambda_e W_k$), it can also be obtained from dimensional equation 22 (and the squared superimposition of charges) by invoking the proportionality of the fine structure constant, if the term ($L^3 T^{-2}$) is made to equal the electron mass-energy

$$\lambda_e = (100 \alpha^{-1}) p_e^2 / E = (W_x / W_k) p_e^2 / E \quad (24)$$

But in the absence of such a proportionality invocation, what results is the very wavelength characteristic of the electron's magnetic wavefunction W_k :

$$\lambda_h = p_e^2 / E = (13.970 \text{ m}^2 \text{ s}^{-1})^2 / (4.930 \times 10^{11} \text{ m}^3 \text{ s}^{-2}) = 3.958 \times 10^{-10} \text{ m} \quad (25)$$

This immediately allows the determination of the magnetic wavefunction frequency [6] specifically characteristic of the electron:

$$v_k = W_k / \lambda_h = (2.547 \times 10^6 \text{ m s}^{-1}) / (3.958 \times 10^{-10} \text{ m}) = 6.433 \times 10^{15} \text{ s}^{-1} \quad (26)$$

This analytical methodology leads to a totally new and strictly electric expression of the electron mass-energy, where basic components and their functions define its fine structure:

$$\begin{aligned} E = m_e c^2 = \int = \lambda_e c^2 = p_e W_x = \lambda_e W_k W_x = \lambda_e (\lambda_h v_k) (\lambda_x v_{ce}) &= (5.486 \times 10^{-6} \text{ m}) [(3.958 \times 10^{-10} \text{ m})(6.433 \times 10^{15} \text{ s}^{-1})] \\ &\times [(2.856 \times 10^{-10} \text{ m})(1.236 \times 10^{20} \text{ s}^{-1})] = 4.930 \times 10^{11} \text{ m}^3 \text{ s}^{-2} \end{aligned} \quad (27)$$

Evidently, the wavefunctions W_k and W_x are not electromagnetic, since the W_x wave speed exceeds the speed of light [6]. In effect, it describes the wave speed of the flux in each of the rings of a torus, just as the magnetic wave speed describes the equatorial velocity of the rings with respect to the center of the torus. As such, the radii of the two circular wavelengths are calculated in the normal manner:

$$r = \lambda / 2\pi \quad (28)$$

$$r_h = \lambda_h / 2\pi = (3.958 \times 10^{-10} \text{ m}) / 6.283 = 6.30 \times 10^{-11} \text{ m} \quad (29)$$

$$r_x = \lambda_x / 2\pi = (2.856 \times 10^{-10} \text{ m}) / 6.283 = 4.456 \times 10^{-11} \text{ m} \quad (30)$$

resulting in the fine geometry of the electron mass-energy torus:

$$E = m_e c^2 = \int = \lambda_e c^2 = p_e W_x = \lambda_e W_k W_x = \lambda_e (2\pi r_h v_k) (2\pi r_x v_{ce}) \quad (31)$$

The structure of the electron mass-energy, broken down this way into its basic constituents, presents itself as a flux of electric energy shaped as a torus due to the superimposed wavefunctions W_k and W_x . When the geometric mean of the two wavefunction radii is calculated, the result is the Bohr radius which compares favorably with the CODATA 2018 value of $0.529 \times 10^{-10} \text{ m}$:

$$(r_h r_x)^{0.5} = [(6.30 \times 10^{-11} \text{ m}) (4.456 \times 10^{-11} \text{ m})]^{0.5} = 0.535 \times 10^{-10} \text{ m} \quad (32)$$

The implication is that the Bohr radius is not really the radius of a spherical cavity, or of a quasi-spherical cloud where a point-mass may locate once the probability wave collapses, but merely the geometric mean of the two radii of the electron mass-energy torus. The latter has the "normal" volume given by [6]:

$$V = 2\pi^2 r_h r_x^2 \quad (33)$$

III. CONCLUSIONS

The proposed model is a much more satisfactory and rigorous description of the electron and explanation of the phenomenological nature of the Bohr radius. Rather than leading a nebulous existence as a supposed particle, wave, cloud, cavity, or "point particle in a cloud of probable locations", it is best understood as a "precise toroidal volumetric flux structure" of electric energy resulting from two longitudinal waves being superimposed upon and trapped with each other, "that occupies the location of the entire 'cloud' [16]."

The torus model also rejoins the problematics of "the ring electron" originally proposed in 1915 by Alfred Parson [17], and taken up during 1917-1921 by others, in particular by Arthur Compton [18, 19] and H. Stanley Allen [20]. However, unlike the ring electron model, the model proposed by the Correas does not invoke for the electron a vortical ring structure, but rather that of a closed torus composed by a large number of continuous rings. The two models share many of the features that overcome the present-day conceptualization and treatment of the electron. Loss of energy by radiation of the closed-loop mass-energy is done away simply by assuming rotation of a ring-shaped charge, and the virtually impossible complications raised by independent orbitals required to explain diamagnetic atoms melt away, given that it is the electron mass-energy itself that has a diamagnetic moment [6]. Likewise, paramagnetism and X-ray diffraction patterns are explained by the tilting of the toroidal ring, confirming the contention of the above three physicists that the elementary magnet is not the atom, but the electron itself. The magnetic susceptibility of paramagnetic substances flows directly from the electron retaining its magnetic properties at low temperatures. Asymmetric scatter of X-radiation is explained by the striking of distinct loops of the torus. Runge's rule that abstrusely related variable magnetic effects to the ratio e/m [20] is replaced by the elegant and eloquent result of equations 21, 25 and 26:

$$W_k = \lambda_h v_k = p_e / \lambda_e = \int = e / m_e \quad (34)$$

Well beyond what the ring electron model could provide, the Correa model of the electron torus addresses other features still. In effect, the number of toroidal loops is directly obtained by the relation that accounts for both the composite nature of the mass of the electron and the proportionality role played by the reciprocal of the fine structure constant – whose actual value is thereby revised [21] – in the topogeometry of the electron:

$$\text{No. loops} = \lambda_e / \lambda_x = \alpha^2 = 19,205.9 = (138.5853745)^2 \quad (35)$$

The very fact that the number of loops is very nearly an integer may suggest that it is simply 19,206 or, instead, that the fractional value actually indicates a kink in the toroidal structure (the shorter loop), one that may have phenomenologically induced existing physics into believing that the electron is a point-mass engaged in orbital

motion, since the kink will rotate with the magnetic wave speed of the torus. Communication from the Correas suggested they incline to the latter case, as if the torus contained a beat – in perfect agreement with Allen's notion of a pulse travelling around the ring-shaped electron as a "small hump" [20].

While the energy stored in the rotating torus is in a non-radiating form, absorption of kinetic energy by the torus will, under specific conditions (collision, field deceleration), originate radiating energy in the form of photons emitted 1:1 by the loops, such that Planck's radiation law stands explained by

$$K = \alpha^2 (h\nu_p) \quad (36)$$

where ν_p is the frequency of the emitted photons.

This suggests that the real measure of angular momentum is simply

$$h / 2\pi = p_e r_x \quad (37)$$

Further development of the toroidal model of the electron has led the Correas to analyze dynamic changes in the radial dimensions of the toroidal loops and the magnetic wave speed [6]. It permitted identification of the photoinertial (a.k.a. "spin state") configuration as a limiting one, where the angular momentum conforms to Compton's notion of a wavelength maximum, the Compton wavelength λ_{ce} :

$$h / 2\pi = p_{Ae} (\lambda_{ce} / 2\pi) = p_{Ae} r_o \quad (38)$$

where r_o is the radius of the wavelength of the wave speed of the flux in each of the rings of the electron torus while in the (photo)inertial configuration.

Such limit is reached when pair annihilation occurs. The same approach also permitted a full understanding of the anomalous gyromagnetic ratio and the Landé factor [6].

Unlike the present explanation for orbital jumps, the torus model of the electron indicates that elastic variation in its volumetric and winding features is not to be assimilated to the fine structure of added kinetic energy. Addition of extra energy does not accelerate the ring rotation – as the ring model held – since the magnetic wave speed of the torus is a conserved characteristic. It is only the loop flux that accelerates to a maximum fixed by the electron mass-energy itself. So-called orbital jumps, then, merely abide by equation 36, as successive kinetic energy states result in emission of resonant photon frequencies. Likewise, the Zeeman effect first observed in 1896 stems from the same resonant process being split by an applied magnetic field.

All the consequences of the Correa model of the electron torus cannot possibly be discussed in the scope of the present paper. They range widely, from a better understanding of thermoelectric effects and the quantum nature of the temperature scale, to a thorough revision of Louis de Broglie's (1892-1987) theory of matter/particle waves, a totally new treatment of the fine structure of nucleons and, most importantly, the discovery of *massfree* (ambipolar) electricity in induction devices, ambipolar plasmas and nuclear fusion. This complex dramatic breakthrough has been ignored for nearly two decades just as the work that started it all 75 years ago - Reich's mass to length transformation technique.

For those further interested in this earth-shaking science, in-depth learning can only be accomplished by reading the monographs, books and other publications generated by the Correas and their research associates (Dr. Gene Mallove, Dr. Malgosia Askanas, Dr. Harold Aspden, to name a few) at the Aurora Biophysics Research Institute. The Correas have provided various proof of concept machines based on their research – demonstrating the utility and correctness of the theories - some of which may be commercialized. Descriptions of these technologies can be found at www.aetherenergy.com. The monographs, meticulously describing the experiments, thought processes and conclusions can be found at www.aetherometry.com.

ACKNOWLEDGEMENT

The author would like to thank Dr. Paulo Correa, Alexandra Correa and Dr. Malgosia Askanas, for their suggestions and support.

This research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

The author declares no competing interests.

REFERENCES

1. Pauling, Linus (1988) "General Chemistry", Dover Publications, Inc., New York, p. 81. ISBN 0-486-65622-5 (pbk.).
2. Correa PN & Correa AN (1997, 2001) "Non-Equivalence Between Work Performed by Charge Against Gravity and the Electric Energy of the Same 'Charge Gas' Quantum", Akronos Publishing, Concord, Canada, ABRI monograph S2-01, p. 13 and 14. <https://www.aetherometry.com/publications/free/AS2-01.pdf>
3. Correa PN & Correa AN (1998, 2003) "The Gravitational Aether, Part I: Gravitational Orgonometry", Aetherometric Theory of Synchronicity (AToS), Volume II, , Akronos Publishing, Canada, ABRI Monograph AS3-II.1, p. 3 and 6. <https://www.aetherometry.com/DISPLAY/AS3-II.1>
4. Ibid., p. 4.
5. National Institute of Standards and Technology (2018) Fundamental Physical Constants from <http://physics.nist.gov.constants>, complete listing CODATA 2018.
6. Correa PN & Correa AN (1998, 2011) "The Electron Mass-Energy as a Deformable Nanometric Torus – Fine and Hyperfine Structures and Flux Topogeometries", Volume III of the Aetherometric Theory of Synchronicity (AToS), Akronos Publishing, Concord, Canada, ABRI monograph AS3-III.4. For citation see p. 37. <https://www.aetherometry.com/DISPLAY/AS3-III.4>
7. Correa PN & Correa AN (1998, 2003) "The Gravitational Aether, Part II: Gravitational Aetherometry (1)", Aetherometric Theory of Synchronicity (AToS), Volume II, Akronos Publishing, Canada, ABRI Monograph AS3-II.3, p. 80 and 81. <https://www.aetherometry.com/DISPLAY/AS3-II.3>
8. Correa PN & Correa AN (1998, 2003) "The Gravitational Aether, Part I: Gravitational Orgonometry", Aetherometric Theory of Synchronicity (AToS), Volume II, Akronos Publishing, Canada, ABRI Monograph AS3-II.1, p. 39. <https://www.aetherometry.com/DISPLAY/AS3-II.1>
9. Maxwell JC (1891) "A Treatise on Electricity and Magnetism", Vol.2, republished in 1954 by Dover Publications Inc., New York, p. 153, referred to in Correa PN & Correa AN (1998, 2010) "The Physical Nature of Electric Charge, Massbound and Massfree", Volume III of the Aetherometric Theory of Synchronicity (AToS), Akronos Publishing, Concord, Canada, ABRI monograph AS3-III.2, p. 18 equation 185. <https://www.aetherometry.com/DISPLAY/AS3-III.2>
10. Correa PN & Correa AN (1998, 2010) "The Physical Nature of Electric Charge, Massbound and Massfree", Volume III of the Aetherometric Theory of Synchronicity (AToS), Akronos Publishing, Concord, Canada, ABRI monograph AS3-III.2, p. 5 equation 120. <https://www.aetherometry.com/DISPLAY/AS3-III.2>
11. Ibid, p. 18 and 19.
12. Ibid., p. 23 equation 213.
13. Ibid., p. 34.
14. Correa PN & Correa AN (1998, 2001) "The Volt and the Electron-Volt: An Aetherometric Perspective on Longitudinal Electric Massfree Waves", Akronos Publishing, Concord, Canada, ABRI monograph S2-12, p. 10. <https://www.aetherometry.com/DISPLAY/AS2-12>
15. Correa PN & Correa AN (1998, 2010) "The Physical Nature of Electric Charge, Massbound and Massfree", Volume III of the Aetherometric Theory of Synchronicity (AToS), Akronos Publishing, Concord, Canada, ABRI monograph AS3-III.2, p. 35. <https://www.aetherometry.com/DISPLAY/AS3-III.2>
16. Correa PN & Correa AN (2002) "Aether Power from Pulsed Plasmas", Labofex Experimental and Applied Plasma Physics, Toronto, Canada, p. 3 and 4. <https://www.aetherometry.com/DISPLAY/LS1-25>
17. Parson AL (1915) "A Magneton Theory of the Structure of the Atom", Philo Mag, Smithsonian Miscellaneous Collection, Pub 2371, 1-80. University of Michigan Library, OCLC Number 4089357, ASIN – B002IC0O8G <https://search.lib.umich.edu/catalog/record/990014788390106381>
18. Compton, Arthur H (1918) "The Size and Shape of the Electron." Journal of the Washington Academy of Sciences, vol. 8, no. 1, 1918, pp. 1–11. JSTOR, <http://www.jstor.org/stable/24521544>.
19. Compton, Arthur H (1921) "The Magnetic Electron", Journal of the Franklin Institute, Vol. 192, Issue 2 pages 145-155, ISSN 0016-0032, [https://doi.org/10.1016/S0016-0032\(21\)90917-7](https://doi.org/10.1016/S0016-0032(21)90917-7) (<https://www.sciencedirect.com/science/article/pii/S0016003221909177>)
20. Allen, HS (1918) "The Case for a Ring Electron", Proc Phys Soc London, Vol. 31, 1:49. DOI 10.1088/1478-7814/31/1/303.
21. Correa PN & Correa AN (2009) "On the Determination and Value of the Fine Structure Constant", Journal of Aetherometric Research, Vol. 2, 5:1. <https://www.aetherometry.com/publications/direct/JAethRes/JAR02-05-01.pdf>

This page is intentionally left blank

New Applications of Non-Equilibrium Thermodynamics

By V. A. Etkin

Togliatti State University

Abstract- We propose to extend the existing theory of irreversible processes (TIP) to include reversible real processes associated with the performance of useful work. This is achieved by the fact that the main quantities used by this theory, thermodynamic forces and fluxes, are derived not from the principle of increasing entropy, but rather from the law of the conservation of energy. This way of constructing TIP prevents the occurrence of thermodynamic inequalities and allows one to substantiate all its provisions without invoking the postulates and considerations of a molecular-kinetic and statistical-mechanical nature. This opens up the possibility of further reducing the number of empirical coefficients and expanding the scope of TIP applicability to nonlinear systems and states that are far from equilibrium, as well as to energy conversion processes which are primarily of interest to power engineers, technologists, biophysicists and astro-physicists. At the same time, the unity of the laws of transformation of all forms of energy and the difference between their equations, reciprocity relations and efficiency criteria from the generally accepted ones are proved.

Keywords: *thermodynamics, irreversibility, transfer and transformation, interrelation and similarity of processes, effects of superposition.*

GJSFR-A Classification: DDC Code: 536.7 LCC Code: QD504

Strictly as per the compliance and regulations of:

New Applications of Non-Equilibrium Thermodynamics

V. A. Etkin

Abstract- We propose to extend the existing theory of irreversible processes (TIP) to include reversible real processes associated with the performance of useful work. This is achieved by the fact that the main quantities used by this theory, thermodynamic forces and fluxes, are derived not from the principle of increasing entropy, but rather from the law of the conservation of energy. This way of constructing TIP prevents the occurrence of thermodynamic inequalities and allows one to substantiate all its provisions without invoking the postulates and considerations of a molecular-kinetic and statistical-mechanical nature. This opens up the possibility of further reducing the number of empirical coefficients and expanding the scope of TIP applicability to nonlinear systems and states that are far from equilibrium, as well as to energy conversion processes which are primarily of interest to power engineers, technologists, biophysicists and astro-physicists. At the same time, the unity of the laws of transformation of all forms of energy and the difference between their equations, reciprocity relations and efficiency criteria from the generally accepted ones are proved. On this basis, a theory of similarity of power plants is proposed and their universal load characteristics are constructed, which make it possible to take the next step towards bringing the results of the thermodynamic analysis of their efficiency closer to reality.

Keywords: *thermodynamics, irreversibility, transfer and transformation, interrelation and similarity of processes, effects of superposition.*

I. INTRODUCTION

In the history of science there are frequent cases when a new theory brought in significant change in the natural science paradigm. The last part of the twentieth century was no exception; as this paradigm shift occurred in the fundamental theories of the thermodynamics of irreversible processes (TIP). Researchers from many countries contributed to its creation [1-11]. It enriched the theoretical thought of the twentieth century with the "principle of reciprocity" of heterogeneous phenomena, sometimes called the "fourth law of thermodynamics", and explained the many effects that arise at the junctions of fundamental disciplines due to the simultaneous occurrence of several non-static processes. However, later on, interest in this theory began to fade. To a large extent this is due, in our opinion, to the fact that the basic quantities underlying this theory, thermodynamic forces X_i and fluxes J_i , are included on the basis of the principle of entropy increase, which exclude from consideration the

reversible component of real processes. Yet it is precisely this component, connected to the execution of useful external work W^e which is of interest primarily in fields related to energy, technology, biophysics and astrophysics. This drawback can be eliminated by switching to finding these forces and fluxes on a basis of a more general law of conservation of energy. We shall consider the advantages that non equilibrium thermodynamics gains as a result.

II. PREVENTING THE TRANSFORMATION OF EQUATIONS OF THERMODYNAMICS INTO INEQUALITIES

It is known that the equations of the 1st and 2nd laws of classical thermodynamics of open systems are combined in the form of the Gibbs relation[12]:

$$dU = TdS - pdV + \sum_k \mu_k dN_k \quad (1)$$

This relation connects the internal energy U of the object (or system) under study with its entropy S , volume V and the number N_k of moles of the k^{th} substances, as well as with the generalized potentials ψ , conjugated with them (the chemical potentials of these substances is represented by μ_k , absolute temperature by T and pressure p by.). This then becomes the inequalities:

$$\delta Q \neq TdS; \delta W_p \neq pdV; \delta W_k \neq \mu_k dN_k \quad (2)$$

This happens because in non-equilibrium systems the parameters S , V , N_k change not only as a result of external energy exchange, but also as a result of internal relaxation processes (the number of moles N_k is due to chemical reactions; the volume V corresponds to the expanded form in a vacuum while not performing work; the entropy S is due to friction and other irreversible processes.) As a result, the energy exchange of the system with the environment can no longer be found on the basis of changes in these parameters, and the mathematical apparatus of thermodynamics based on equation (1) turns out to be inapplicable. This disadvantage can be eliminated by going directly to the fluxes of these energy carriers across the boundaries of the system. For this we use the law of conservation of energy in the form proposed by N. Umov (1873) [13]:

$$dU/dt = - \oint j_u \cdot df, \quad (3)$$

where j_u ($\text{W}\cdot\text{m}^{-2}$) is the internal energy flux density through the vector element $d\mathbf{f}$ of the closed surface f of the system of constant volume V in the direction of the external normal n (Figure 1).

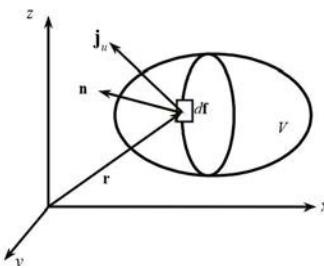


Figure 1: Energy flux through the boundary of the system

Unlike the later equation of J. Poynting (1884), this form of the energy conservation law takes into account the kinetics of real processes, without making any assumptions about the mechanism of energy transfer in a solid media or about the internal structure of the system.

According to this equation about short-range effects, energy U does not simply disappear at some points of space and arise in others, but rather carries the i^{th} energy carrier Θ_i (with the number of moles k of the substance N_k , their corresponding charges Q_k , their entropies S_k , the impulses P_k , etc.) through the fixed boundaries of the system. Let us now find the expanded form of this law, which is valid for any i^{th} material carrier of energy. For this, we will take into account that the energy flux j_u is the sum of the fluxes j_{ui} carried by each of them. These fluxes, in turn, are expressed by the product of the flux density of the i^{th} energy carrier $j_i = \rho_i v_i$ by its potential $\psi_i \equiv dU/d\Theta_i$, where $\rho_k = d\Theta/dV$ and $v_i = dr_i/dt$ are the density of the i^{th} energy carrier and the rate of its transfer across fixed boundaries systems, resp., i.e. $j_{ui} = \psi_i j_i$, so that

$$j_u = \sum j_{ui} = \sum_i \psi_i j_i, \quad (4)$$

Using the Gauss-Ostrogradsky theorem, we transform the integral $\oint j_u \cdot d\mathbf{f}$ into a volume integral $\int \nabla \cdot j_u dV$. Then, after decomposing $\nabla j_u = \nabla(\psi_i j_i)$ into independent components $\sum_i \psi_i \nabla \cdot j_i + \sum_i j_i \cdot \nabla \psi_i$, the energy conservation law (3) takes the form:

$$dU/dt + \sum_i \int \psi_i \nabla \cdot j_i dV + \sum_i j_i \cdot \nabla \psi_i dV = 0 \quad (5)$$

If we take the average value Ψ_i of the potential ψ_i and the average value X_i of the potential gradient $\nabla \psi_i$, both from under the integral sign, then equation (5) can be expressed in terms of the parameters of the system as a whole, as is customary in classical thermodynamics:

$$dU/dt + \sum_i \Psi_i j_i + \sum_i X_i \cdot j_i = 0. \quad (6)$$

Here $J_i = \int \nabla \cdot j_i dV = \oint j_i \cdot d\mathbf{f}$ is the scalar flux of the i^{th} energy carrier through the boundaries of the system; $J_i = \int \rho_i v_i dV = \Theta_i \bar{v}_i$ is its vector flux (impulse).

Unlike the Gibbs relation, Equation (6) contains 2 terms ($i=1, 2, \dots, n$) and describes not only the processes of introducing the k^{th} substance N_k into the system as well as the series Q_k , the entropy S_k , the momentum P_k , etc. in the homogenous system being investigated, but also the processes of redistribution of the system volume of overcoming the forces of the X_i and the performance of work "against equilibrium" in it. Therefore, it is applicable to a wide class of open ($N_k = \text{var}$), non-closed ($X_i = \text{var}$) and non-isolated systems ($U = \text{var}$), which are the object of study in other fundamental disciplines. At the same time, it allows the irreversibility of the above processes. Indeed, considering (6) together with the integral equation of the energy carrier balance Θ_i ,

$$d\Theta_i/dt + \int \nabla \cdot j_i dV = \int \sigma_i dV. \quad (7)$$

In this case, the densities of local and substantial fluxes j_u coincide. We find that, besides the energy carrier Θ_i appearing in the Gibbs ratio, it takes into account the presence of these internal sources of density σ_i . It is easy to see that under the conditions of local equilibrium ($X_i = 0$), Eq. (6) takes the form

$$dU/dt = \sum_i \Psi_i d\Theta_i/dt - \sum_i \Psi_i \int \sigma_i dV, \quad (8)$$

i.e., it transforms into a generalized Gibbs ratio for complex multivariable systems $dU = \sum_i \Psi_i d\Theta_i$ only when the internal sources of entropy $d_u S/dt = \int \sigma_s dV$ and other energy carriers $d_u \Theta_i/dt = \int \sigma_i dV$ (including products of chemical reactions $d_u N_k/dt$) disappear. This testifies to the inconsistency of the hypothesis of local equilibrium, according to which the state of an element of the inhomogeneous continuum of the system is characterized by the same set of variables as in equilibrium. This follows from the fact that this assumption also means the absence of "production of entropy" ($d_u S/dt > 0$). The latter makes it necessary to introduce the parameters of inhomogeneity X_i and the fluxes J_i associated with them into the equations of nonequilibrium thermodynamics.

It is remarkable that Equation (6) does not become an inequality despite the obvious inclusion of the dynamic (irreversible) processes under consideration. This solves a major "problem of thermodynamic inequalities" which until now has prevented any application of the mathematical apparatus of nonequilibrium thermodynamics to real processes (i.e., those with fluxes at finite speeds).

It is also important that our derivation of an expanded form of the law of conservation of energy (6)

contains definite forces X_i and fluxes J_i . This bestows it with a definite sense corresponding to an energy field strength Θ_{ik} and averaged pulse k^{th} energy source $P_i = \Theta_{ik}v_i$. Furthermore, it does not require a compilation of complex and cumbersome equations for the balance of matter, charge, momentum, energy and entropy. This dramatically simplifies the ability for thermodynamics to solve certain problems.

III. THERMODYNAMIC DERIVATION OF THE ONSAGER RECIPROCAL RELATIONS

One of the most important provisions of the theory of irreversible processes is the "reciprocity relation" $L_{ij} = L_{ji}$ between the off-diagonal coefficients L_{ij} and L_{ji} in the "phenomenological" laws postulated by L. Onsager:

$$J_i = \sum_j L_{ij} X_j \quad (9)$$

These ratios establish the relationship between dissimilar fluxes J_i and forces X_j and reduce the number of proportionality coefficients between them to be experimentally determined from n^2 to $n(n+1)/2$. To prove these relations, the future Nobel laureate L. Onsager had to use the theory of fluctuations, the principle of microscopic reversibility and an additional postulate about the linear nature of the laws of decay of fluctuations [1]. All three of these assumptions are somewhat outside of classical thermodynamics; therefore, he rightly called his theory "quasi-thermodynamics".

Meanwhile, it can be shown that these relations gain support from the law of the conservation of energy (6). From that law, based on the independence of the mixed derivative from the order of differentiation with respect to the variables X_i and X_j ($i, j = 1, 2, \dots, n$), it follows:

$$\partial^2 U / \partial X_i \partial X_j = \partial^2 U / \partial X_j \partial X_i \quad (10)$$

This directly implies the relationship between unlike fluxes and forces, which we term *differential reciprocal relations*[13] :

$$(\partial J_i / \partial X_j) = (\partial J_j / \partial X_i). \quad (11)$$

These relations are applicable to both linear and nonlinear transport laws and allow any dependence of the coefficients L_{ij} on the parameters of the equilibrium state ψ and Θ . Application to the linear laws (9) directly leads to the symmetry of the matrix of phenomenological coefficients $L_{ij} = L_{ji}$:

$$(\partial J_i / \partial X_j) = L_{ij} = (\partial J_j / \partial X_i) = L_{ji} \quad (12)$$

Their derivation shows that these relationships are a consequence of more general reasons than the reversibility in time of micro processes. This explains

why these relationships have often turned out to be valid far in domains far beyond the above conditions.

IV. FINDING "SUPERPOSITION EFFECTS" WITHOUT USING ONSAGER RELATIONS

In isolated systems, the sum of internal forces $\sum_i F_i$ ($i = 1, 2, \dots, n$) is always zero. This means that, in accordance with Newton's 3rd law, any one of them can be expressed as the sum of $n-1$ different forces of the j^{th} kind: $F_i = -\sum_{i \neq j} F_j$. The relationship of these forces to thermodynamic forces X_i is easy to construct. From the expression for power $dW/dt = X_i J_i = F_i \bar{v}_i$ it follows that $X_i = F_i / \Theta_i$, i.e., it represents the precise meaning of force in its more general physical interpretation. Taking this into account, laws (17) can be represented in a form closer to (9):

$$J_i = L_i \sum_j \Theta_j X_j, \quad (13)$$

Such a form of the laws of transfer and relaxation does not require the empirical coefficients L_i to be constant; this expands the scope of these equations' applicability to nonlinear systems and states far from equilibrium. In addition, it allows to propose a new method for finding the "superposition effects" of irreversible process which are due to "partial" (incomplete) equilibria of the i^{th} kind ($J_i = 0$). The specificity of this method is easier to understand with the example of the diffusion of the k^{th} substance in a continuous heterogeneous composition (with the concentration of components c_j , temperature T and pressure p). According to laws (13), this process has the form:

$$J_k = -D_k \nabla \mu_k, \quad (14)$$

where D_k is the diffusion coefficient of the k^{th} substance; μ_k is its chemical potential.

If we represent $\nabla \mu_k$ through its derivatives with respect to the concentrations c_j of its independent components, their temperature and pressure, then equation (14) can take the form:

$$J_k = -D_k (\sum_j \mu_{kj}^* \nabla c_j + s_k^* \nabla T + v_k^* \nabla p). \quad (15)$$

where $\mu_{kj}^* \equiv (\partial \mu_k / \partial c_j)$, $s_k^* \equiv (\partial \mu_k / \partial T)$, $v_k^* \equiv (\partial \mu_k / \partial p)$.

Three components of the resulting force F_k on the right side of this expression handle the usual (concentration) diffusion $F_{kc} = \sum_j \mu_{kj}^* \nabla c_j$, thermal diffusion $F_{kT} = s_k^* \nabla T$ and baro diffusion $F_{kp} = v_k^* \nabla p$. This allows one to separate the thermodynamic factors μ_{kj}^*, s_k^*, v_k^* and the kinetic factors D_k of multi component diffusion and establish a number of empirically established relationships between them[15]. Given the existing experimental means, it was mathematically unsound to

obtain such results via the Onsager diffusion equation $J_k = -\Sigma D_k \nabla \mu_k$ [1].

As another example, consider an inhomogeneous system divided into two parts by a porous partition. If a temperature difference ($\Delta T \neq 0$) is created in it, then a gas or liquid flux $J_k = D_k (s_k \nabla T - v_k \nabla p)$ occurs through the partition, leading, under conditions of incomplete equilibrium ($J_k = 0$), to the occurrence of a pressure difference on both sides of the partition (Feddersen effect, 1873) :

$$(\Delta p / \Delta T)_{st} = -q_k^* / T v_k^*, \quad (16)$$

where $q_k^* = T s_k^*$ represents the heat transfer of the k^{th} substance.

This phenomenon is now called thermoosmosis. The opposite phenomenon has also been seen: the appearance of a temperature difference on both sides of the partition when air or other gas is forced through it. Both of these effects are of the same nature as the Knudsen effect (1910) - the appearance of a pressure difference in vessels connected by a capillary or a narrow slit and filled with gas of different temperatures. They are also of the same effect as the Allen and Jones "fountain effect" (1938), consisting of liquid helium II flowing out, at the slightest heating, from a vessel closed with a porous stopper. The opposite phenomenon - the occurrence of a temperature difference when a pressure difference is created on both sides of the partition - is called the *mechanocaloric effect* (Daunt-Mendelsohn).

In the case of systems that initially have the same pressure on both sides of the porous partition ($\Delta p = 0$) and initially the same concentration of the k^{th} substance ($\Delta c_k = 0$), when a temperature difference ΔT is created, a concentration difference occurs on both sides of it (the Soret effect, 1881):

$$(\Delta c_k / \Delta T)_{ct} = -q_k^* / T \mu_{kk}. \quad (17)$$

The opposite phenomenon, the appearance of temperature gradients during diffusion mixing of components, was discovered by Dufour in 1872 and bears his name. In isothermal systems ($\Delta T = 0$) for creating pressure differential across the membrane Δp occurs via reverse osmosis, i.e., the separation of a binary solution with separation from the k^{th} component (usually a solvent). This phenomenon is widely used in water treatment plants. This occurs when the concentration difference k^{th} part is given by the expression:

$$(\Delta c_k / \Delta p)_{st} = -v_k / \mu_{kk}. \quad (18)$$

These results are consistent with those obtained in the framework of TIP [6,8]. However, for this it was not

necessary to assume the linearity of phenomenological laws, postulate the constancy of the phenomenological coefficients L_i or D_k and resort to Onsager's reciprocity relations. At the same time, it becomes clear that these effects arise due to the onset of states of partial (incomplete) equilibrium; any multivariable system passes through such states on its way to full equilibrium. In this case, the "effects of superposition" are the result of superposition not of fluxes J_i , but rather of forces F_i in full accordance with the principles of mechanics. The advantages of this method consist not only in the further number of phenomenological coefficients from $n(n+1)/2$ in TIP to n [14], but also in the possibility of finding superposition effects in nonlinear systems far from equilibrium. In this case, the TIP itself becomes free from any postulates expressing the coefficients L_i as a function of the parameters of the system.

V. ESTABLISHING THE FUNDAMENTAL DIFFERENCE BETWEEN THE LAWS OF RELAXATION AND ENERGY CONVERSION

Consider an isolated system ($dU/dt = 0$; $J_i = 0$) in which energy is converted from one form to another. For such a system, from (6) at once follows:

$$\Sigma_k X_k J_k = 0. \quad (19)$$

For the process of converting some i^{th} form of energy into j^{th} , this expression can be given the form:

$$J_i X_j = -J_j X_i. \quad (20)$$

According to this expression, the direction of the internal flux J_i of the i^{th} energy carrier, induced by the "exterior" force X_j , is opposed to the direction of the "exterior" flux J_j , induced by the driving force X_i . If we denote the ratio J_i / X_i by L_{ij} , and the ratio J_j / X_j by L_{ji} , then we come to the antisymmetric Onsager-Casimir reciprocity relations [6, 8]:

$$L_{ij} = -L_{ji}. \quad (21)$$

This provision keeps the opposing direction of diverse forces; fluxes in the processes of energy conversion and possesses a general physical status. In particular, Faraday's law of induction follows from it, if by J_i we mean the flux of magnetic coupling (expressed by the number of lines of force), and by X_j , the resulting voltage.

However, these conditions of anti symmetric matrices with "phenomenological" coefficients indicates also that for the processes of interconversion of ordered forms of energy, in the law (9) of Onsager, the coefficients L_{ij} and L_{ji} must be modified by the opposite signs:

$$J_i = L_{ij} X_j - L_{ji} X_i. \quad (22)$$

$$J_i = L_i X_i - L_j X_j \quad (23)$$

In particular, as is well known from the practice of working with a welding transformer, an increase in the voltage in the secondary circuit X_j (approaching the "no-load" mode) causes a decrease in the current in the primary circuit J_i , and the "short circuit" mode ($X_j = 0$) on the contrary, increases it. Thus, Equations (22, 23) are more consistent with the phenomenological status (based on experience) than is Equation (9).

It is no less important that the condition of interconnection of forces and fluxes (19) is a consequence of the law of conservation of energy (6). Under conditions of system relaxation, these conditions of counter-directional flux are absent, so that the fluxes J_i and J_j become independent. In this case, the reciprocity relations $L_{ij} = L_{ji}$ are fulfilled trivially (they vanish), and the equations of transfer and relaxation take the form of equations of heat conduction, electrical conductivity, diffusion, etc., in which the flux J_i becomes a unique (eponymous) function of the thermodynamic force X_i . This independence was also assumed in the theory of L. Onsager, since he defined the scalar fluxes J_i as time derivatives of the independent parameters of the system. Therefore, strictly speaking, he did not have sufficient grounds for postulating rules (9), in which each of the fluxes depends on all forces acting in the system.

VI. DEVELOPMENT OF A UNIVERSAL CRITERION FOR THE EFFICIENCY OF ENERGY CONVERTERS

It is generally accepted that the energy conversion efficiency of any reversible non-thermal machine is equal to unity, while for a heat engine it is limited by the thermal efficiency of an ideal Carnot machine [15]:

$$\eta_t = 1 - T_2/T_1 < 1, \quad (24)$$

where T_1 , T_2 are constant temperatures of supply and removal of heat in the heat engine cycle, equal to the absolute temperatures of the heat source and sink.

This "discrimination" of heat engines is based on the firm belief that "heat and work are, in principle, unequal" [15]. In fact, a closer look reveals that this reflects a misunderstanding of the concepts of absolute and relative efficiency. Thermal efficiency η_t , like its analogs for ordered forms of energy, characterize the ratio of the work W_i performed by the converter to the energy U_i supplied from the source of the i^{th} form of energy. Such efficiencies are usually called *absolute*.

According to the theorem of Carnot efficiency, an ideal cycle of the heat engine does not depend on the properties of its working body, nor on the design features of the machine or the mode of operation. Therefore, such "efficiency" more likely characterizes not

its coefficient of performance, but rather the possibilities offered by nature thanks to its inherent spatial inhomogeneity (difference of temperatures of the hot and cold heat sources). Strictly speaking, this figure should not have been called "machine efficiency" because this figure is characterized more by the "degree of instability" of the heat source.

The concept of efficiency of electric and other motors has a different meaning. Such efficiencies characterize the ratio of the work W_i actually performed by the engine to the theoretically possible work W_i^t . They take into account the losses in the machine itself and are ideally equal to one. Such efficiencies are called *relative internal* η_{oi} . In thermodynamics such efficiency η_{oi} is an evaluation of the performance of the processes of compression or expansion of a body upon which work is done. Naturally, the application of the same term "efficiency" to these two fundamentally different concepts causes non-specialists to misunderstand the inefficiency of heat engines.

In this respect, it is very useful to represent the efficiency through energy fluxes. Non equilibrium thermodynamics allows us to express the efficiency ratio in terms of the output power N_j and the input transforming device N_i [16]:

$$\eta_N = N_j/N_i = X_j \cdot J_j / X_i \cdot J_i \leq 1. \quad (25)$$

This efficiency, which we term "power-based energy conversion efficiency", or henceforth "power efficiency" for short, is equally applicable to thermal and nonthermal, cyclic and acyclic, straight and reversed machines, including the "direct energy conversion" machines. It takes into account both the kinetics of the energy conversion process and all types of losses associated with both the delivery of energy to the energy converter and the energy conversion process itself. It also depends on the operating mode of the installation, twice turning to zero: in "idle" ($J_i = 0$) and in "short circuit" modes ($X_i = 0$). This also distinguishes it from the "exergy" efficiency, which is expressed by the ratio of free energies at the outlet and inlet of the installation. In a word, this efficiency most fully reflects the thermodynamic performance of the installation and the degree to which it realizes the possibilities that the source of ordered energy provides. Moreover, such an efficiency is the only possible indicator of the performance of an installation in those cases when the concept of absolute efficiency becomes inapplicable due to the impossibility of separating energy sources and receivers in a continuous medium. Examples include force fields, chemically reactive environments, polarized or magnetized bodies, or dissociated or ionized gases. All this makes it an irreplaceable tool for analyzing the efficiency of not only energy, but also technological installations, as well as energy converters

created by nature itself. This is especially important due to the fact that many non-experts confuse efficiency with the heat transfer coefficient or the coefficient of performance, which may be distinguished by their units. Therefore, the use of power efficiency (24) not only reveals the unity of the laws of transformation of any forms of energy, but also allows us to propose a theory of the similarity of power plants of various types.

VII. CONSTRUCTION OF A THEORY OF SIMILARITY OF POWER PLANTS

A proper generalization of TIP to the processes of useful energy conversion in various machines allows us to propose a theory of the similarity of power plants [16]. This would complement the classical theory of heat engines by analyzing the relationship of thermodynamic efficiency (energy conversion efficiency) with productivity (based on power N) and the operating mode of power and technological plants. As in the theory of similarity of heat transfer processes, the mathematical model of such systems includes, along with equations (22,23), the conditions for the uniqueness of the object of study. The latter contain *boundary conditions* determined in the case under consideration by the magnitude of the driving forces at the border with the energy source or object of work X_i, X_j , or by the magnitude of the fluxes J_i, J_j at these boundaries, and by the initial conditions. These latter are set by the magnitude of these forces X_{jo} or fluxes J_j in the initial mode, for example, at the "idle" of the installation (at $J_j = 0$), or in the "short circuit" mode J_{jk} (at $X_j = 0$), as well as the coefficients L_{ij} ($i, j = 1, 2$) characterizing the transport properties of the system. These conditions make it possible to give the transport equations (22, 23) a dimensionless form

$$X_j/X_{jo} + J_j/J_{jk} = 1. \quad (26)$$

and on its basis, propose a number of similarity criteria for power plants. One of them, which we called the load criterion, is composed of the boundary conditions set by the value of the forces X_j, X_{jo} or fluxes J_j, J_{jk}

$$B = J_j/J_{jk} = 1 - X_j/X_{jo}. \quad (27)$$

This criterion depends solely on the load of the installation and varies from zero in no-load mode ($J_j = 0$) to one in the "short circuit" mode ($X_j = 0$)

Another criterion consists of the resistance coefficients R_{ij} , the reciprocal of the conductivity coefficients L_{ij} :

$$\Phi = R_{ij}R_{ji}/R_{ii}R_{jj} \quad (28)$$

This formula is similar in meaning to the ratio of reactive and active resistances, known in radio

engineering as the "quality factor", or "Q-factor" for short, of the circuit, and therefore is called the "criterion of the Q-factor" of the installation. Its value fluctuates from zero to infinity ($0 < \Phi < \infty$), increasing as the "active" resistances (from the side of scattering forces) R_{ii} and R_{jj} decrease and the "reactive" resistances R_{ij} (from the side of "heterogeneous" forces) increase. Like thermal resistances in the theory of heat transfer, they depend on the transport properties of the system, i.e., ultimately, on the design performance of the installation.

Using these criteria in the expression for the power efficiency (24), it can be given the form of a *criterial equation for the energy conversion process*:

$$\eta_N = (1 - B) / (1 + 1/B\Phi). \quad (29)$$

Consequently, the *efficiency of any energy converter under similar conditions (B, Φ as above) is the same*. It is expedient to call this provision the *principle of similarity of power plants*)[16].

This principle allows one to build a universal load characteristic of linear energy - converting systems (Figure 2) [16]. Solid lines in the diagram show the dependence of the power efficiency η_N of the installation on the load criterion B at different values of the quality factor Φ , and the dash-dotted line shows the dependence on the load of its output power N_j .

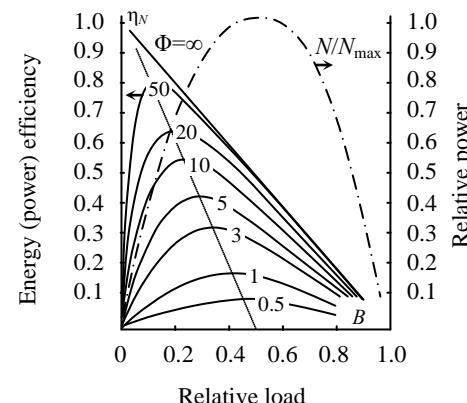


Fig. 2: Universal load characteristics of energy converters

As can be seen in Fig. 2, in the absence of energy losses ($\Phi = \infty$) and the steady state of the process of its conversion ($B \rightarrow 0$), the efficiency of the installation reaches, as expected, unity. However, in all other cases the value of the power-based efficiency becomes zero twice, once in "idle" setting ($B = 0, J_j = 0$) and once in the "short-circuit" setting ($B = 1, X_j = 0$). This result is obtained by taking into account the energy consumption for the installation's own needs, as well as losses from irreversible energy exchange (including heat exchange) between the energy source and the working

fluid of the installation, friction in pipelines and all kinds of energy "leaks"¹³ occurring at idle running of the installation.

The main feature of this characteristic is the presence of a pronounced maximum efficiency for a given load of the installation. Such modes, usually labeled *nominal*, move farther and farther from the maximum power mode, corresponding to the relative load $B = 0.5$, as the efficiency increases. As a result, the power-based efficiency of a real Carnot cycle (from quasi-statistical characteristics of the processes) at $O < \infty$ is not a maximum, but rather zero. Thus, taking into account the power and performance of the power plant brings the results of the thermodynamic analysis of its efficiency closer to reality.

Universal load characteristics are very useful not only for monitoring compliance with the most economical operating modes of basic, peak and transport power plants, but also when choosing the most promising of them with respect to future operating modes. In this way, non equilibrium thermodynamics of energy conversion processes acquire important practical applications.

VIII. SUMMARY AND CONCLUSION

1. The main disadvantage in using their complete theory of thermodynamics of irreversible processes (TIP) as a general physical theory is its original limitations on processes of energy dissipation; this can be traced to its dependence on the principle of increasing entropy.
2. The approach to non-equilibrium thermodynamics from a more general position of an energy conservation law shows a failure of the hypothesis of local equilibrium. Thus, it highlights the necessity of introducing additional variables of a nonequilibrium state, where upon potential gradients and generalized process speeds would arise.
3. Determination of the basic quantities in which TIP is defined -- thermodynamic forces and energy fluxes-- on a more general basis of a law governing the transfer of energy in path environments allows us to create a locally non-equilibrium thermodynamics. This version of thermodynamics does not exclude from consideration any (reversible or irreversible) component of real processes.
4. We propose an approach, which for brevity we term "energo dynamics", to prevent the occurrence of inequalities in the transition to non-static processes. This allows to take into account the irreversibility of real processes of energy conversion not only in thermodynamics, but also in other fundamental disciplines.
5. Energodynamics allows us to give a strictly thermodynamic theory, free from the postulates and considerations of molecular-kinetic and statistical-

mechanical theories, and one which validates all the provisions of a TIP, thus expanding its domain to nonlinear processes and states far from equilibrium.

6. The isolation of independent processes occurring in the system under study refutes Onsager's postulate about the dependence of each of the fluxes on all forces acting in the system. It thus makes it possible to find, for each flux, a unique corresponding force whose disappearance results in the cessation of the process.
7. The proposed energo dynamic method for finding the superposition effects of heterogeneous processes allows further reduction in the number of empirical coefficients by $n(n+1)/2$ in TIP to n and explains these superimposed effects not by fluxes, but rather by forces in full accordance with the principles of mechanics.
8. A suitable generalization of TIP to the processes of purposeful transformation of various forms of energy in natural and technical systems reveals their fundamental unity and difference from relaxation processes both in relation to their equations and their reciprocity relations.
9. The transition to the study of the kinetics of energy conversion processes allows us to propose a universal criterion for the efficiency of power and technological installations, taking into account, respectively, their power and performance, and combining the advantages of absolute, relative, exergy, etc. efficiency.
10. The unity of the laws of transformation of thermal and non-thermal forms of energy discovered within the framework of energo dynamics made it possible to propose a theory of the similarity of power and technological installations and to construct their universal load characteristics that facilitate the choice of nominal, peak, etc. modes of their operation.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Onsager L. Reciprocal relations in irreversible processes. Phys. Rev. 1931.237 (14). 405-426; 238 (12). 2265-2279.
2. Prigogine I. Etude Thermodynamique des Phénomènes Irréversibles. [Thermodynamic research into irreversible phenomena] Liege, 1947. (In French)
3. Casimir H. B. G. On Onsager's Principle of Microscopic Reversibility. Rev. Mod. Phys. 1945. No. 17 p. 343.
4. Denbig, K. Termodinamika statsionarnykh neobratimykh protsessov. [Thermodynamics of stationary irreversible processes] Foreign Languages Publishing House. Moscow. 1954. (in Russian).

5. Meixner I. Thermodynamik der irreversiblen Prozesse [Thermodynamics of irreversible processes] Aachen. 1954. (in German)
6. De Groot, S.R., Mazur, P. Nonequilibrium Thermodynamics. Amsterdam, 1962.
7. Gyarmati I. Introduction to Irreversible Thermodynamics. Budapest, 1960.
8. Haase R. Thermodynamik der Irreversiblen Prozesse. [Thermodynamics of irreversible processes] Darmstadt, 1963. (In German)
9. Bakhareva I. F. Nelineynaya neravnovesnaya termodinamika [Nonlinear nonequilibrium thermodynamics]. Saratov: Izdatel'stvo Saratov-skogo universiteta, 1967. (In Russian).
10. Gurov K. P. Fenomenologicheskaya termodinamika neobratimykh protsessov [Phenomenological thermo-dynamics of irreversible processes] Moscow: Nayk, 1978 (in Russian).
11. Lavenda B. H. Thermodynamics of irreversible processes. London, 1978.
12. Bazarov I.P. Termodinamika [Thermodynamics]. Ed. 4.: Vyshaya shkola, 1991. (In Russian).
13. Umov A.I. Izbrannye sochineniya [Selected Works] Moscow, Leningrad. 1950. (In Russian).
14. Etkin V. Thermokinetics (Synthesis of Heat Engineering Theoretical Grounds). - Haifa, 2010. Translated from: Etkin V.A. Termokinetika (termodinamika neravnovesnykh protsessov perenosa i preobrazovaniya energii. Tolyatti, 1999).
15. Krishtal M.A., Volkov A.I. Mnogokomponentnaia diffuziia v metallakh [Multicomponent diffusion in metals]. Metallurgiya, Moscow, 1985. (In Russian).
16. Etkin V. Energodynamics (Thermodynamic Fundamentals of Synergetics). New York, 2011. Translated from: Etkin V.A. Energodinamika (sintez teorii perenosa i preobrazovaniya energii). [Energodynamics (Thermodynamic Fundamentals of Synergetics)]. St. Petersburg. Nauka, 2008.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Data-Driven Knowledge Agriculture: A Paradigm Shift for Enhancing Farm Productivity & Global Food Security

By Aprajita Srivastava & Dr. H. O. Srivastava

World Development Foundation

Abstract- Data-driven Knowledge agriculture using mechanized intelligent computer-based monitoring and control systems and complex Software for machine learning and visualization for predicting a variety of parameters such as future food requirements, resource planning for higher yield, and supply chain is the future of farming. This needs to be urgently adopted by the world farming community to provide food to the growing world population, remove hunger, and at the same time sustain planet resources by judicious uses of input such as water, fertilizer, pesticide etc., as envisioned by Sustainable Development Goals 2030. This paper discusses data-driven technology for identifying trends and other insights for making informed decisions for enhanced productivity and profitability, through market research and evaluating customer needs and sentiments.

Keywords: *precision agriculture, knowledge agriculture, data-driven agriculture, SDG2030, farm data visualization, agriculture analytics, agriculture business intelligence.*

GJSFR-A Classification: FOR Code: 070199

Strictly as per the compliance and regulations of:

Data-Driven Knowledge Agriculture: A Paradigm Shift for Enhancing Farm Productivity & Global Food Security

Aprajita Srivastava ^a & Dr. H. O. Srivastava ^a

Abstract- Data-driven Knowledge agriculture using mechanized intelligent computer-based monitoring and control systems and complex Software for machine learning and visualization for predicting a variety of parameters such as future food requirements, resource planning for higher yield, and supply chain is the future of farming. This needs to be urgently adopted by the world farming community to provide food to the growing world population, remove hunger, and at the same time sustain planet resources by judicious uses of input such as water, fertilizer, pesticide etc., as envisioned by Sustainable Development Goals 2030. This paper discusses data-driven technology for identifying trends and other insights for making informed decisions for enhanced productivity and profitability, through market research and evaluating customer needs and sentiments.

Keywords: precision agriculture, knowledge agriculture, data-driven agriculture, SDG2030, farm data visualization, agriculture analytics, agriculture business intelligence.

I. INTRODUCTION

Knowledge Agriculture™ is a new way of farming that uses technology and tools such as IOT (Internet of Things), Robotics, AI (Artificial Intelligence), UAV (Unmanned Aerial Vehicles), Cloud, Greenhouse, BA (Business Analytics) and specialized software for weather modeling, smart zone seeding, fertilizer modeling, (Srivastava, 2018; Definitions, 2022), to address issues relating to food requirements of current 8.0 billion world population, estimated to grow to 9.8 billion in 2050 (PRB, 2016). The current practice of farming in most of the countries is based on traditional methods of sowing, harvesting, storage and marketing which results in poor productivity and profit. We define agricultural productivity as the ratio of outputs to inputs, expressed either in volumes or in physical quantities (kg, tons, etc.) (FAO, 2018). TFP (Total Factor Productivity) is a measure of the efficiency of the contribution of all the significant inputs into production. TFP provides a

Corresponding Author ^a: Cloud support engineer in analytics, and Hon. Director of World Development Foundation undertook R&D projects for use of ICT for agriculture in India and Ethiopia for increased productivity and social projects for citizens to express themselves socially, culturally, politically and spiritually, Krishi Apts. Vikaspuri-D, New Delhi-110018, India. e-mail: aprajitaedu1311@gmail.com

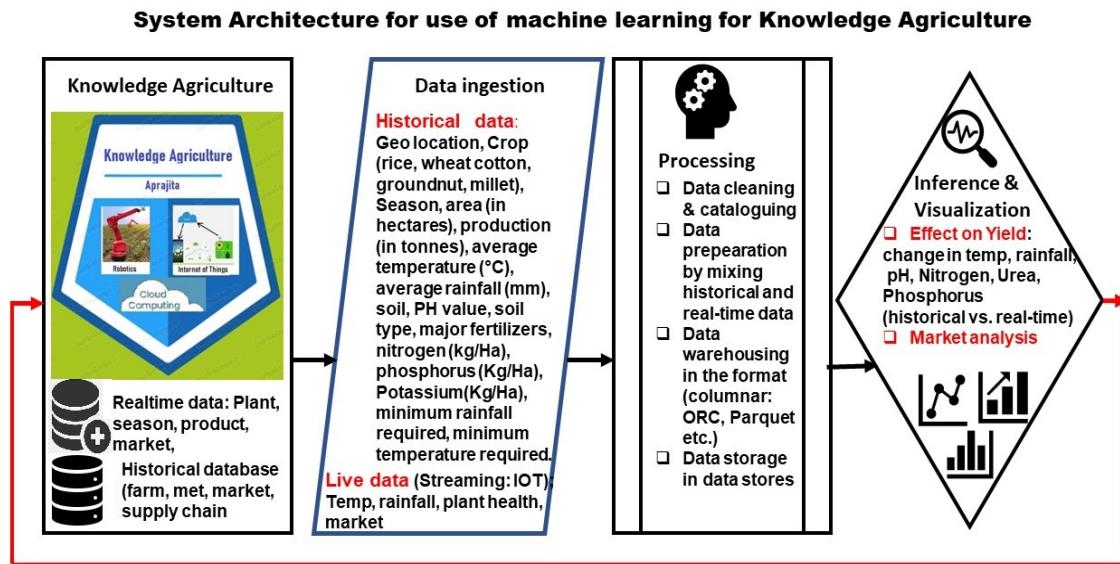
Author ^a: Ph. D., FIETE, Former Addl. Director General & Head of AIR Resources of All India Radio and Doordarshan (Level of Addl. Secretary to the Govt. of India), is the President and CEO of World Development Foundation.

complete picture of productivity and is more closely connected to unit production costs and market prices than partial productivity indicators (Fuglie, 2015). There is a close relationship between agricultural productivity and farm incomes. Considering this, increasing farm income is at the center of measures related to food security, rural livelihoods, ending hunger in Africa and other parts of the Globe by 2030 and fulfilling SDG2030 targets on food and nutrition security. Despite the importance of agricultural productivity, data on various parameters required to analyze and deduce the current productivity and forecast the model for improved productivity is scarce and of poor quality. There is a need for new and enhanced data collection frameworks to better measure agricultural production and the amounts of inputs used in the production processes.

Data is becoming an ever-important factor in the world, and businesses are developing the skill to use data analysis as a tool for enhanced profit. Agriculture is not immune to this, and data-driven decisions are essential for improved agricultural productivity. Data analysis focuses on cleaning, modeling and visualizing data to provide descriptive, diagnostic, predictive, prescriptive and cognitive analytics. Descriptive analytics based on historical data may be used to generate reports to give a view of a farmer's production, sales and financial data. Diagnostic analytics helps in answering questions about why certain events happened for example anomalies that might be due to unexpected changes in a metric or a particular market. Predictive analytics techniques use historical data to identify trends, for instance changes in demand or consumption and determine if they're likely to recur. Prescriptive analytics is an application of(ML) (Machine Learning) that prescribes optimal actions to achieve a goal or target, for example use of lesser pesticides due to consumer's behavior of changing to organic food. It may also help farmers provide historical crop yield record with a forecast reducing risk management. Machine learning uses statistical algorithms that involve statistical and functional analysis of existing data to learn, a process called training. Patterns and relationships in the data identified during training are used to build a model. The model makes intelligent decisions about data it hasn't encountered before. A process called inference is used to make decisions

about new data. Training ML models with larger volumes, more relevant, and accurate data increases the forecasting accuracy. Cognitive analytics helps analyse the various changes in a parameter, its effect, and its solution (Asakiewicz, 2016). Extensive studies on the predictive ability of ML techniques, such as multiple linear regression, regression trees, artificial neural networks, support vector regression, and k-nearest neighbor for crop yield production, have been undertaken (Gonzalez-Sanchez, 2014). ML and advanced sensing techniques have been used to analyze online multi-layer soil data, and satellite imagery of crop growth characteristics to predict wheat yield (Pantazi *et al*, 2016). 'Crop Advisor' is a software tool for predicting the influence of climatic parameters on crop yields (Veenadhari *et al*, 2014; Majumdar *et al*, 2017). SMAG, a French company has developed software using 30 years of weather data history, satellite and drone images, and soil types to enable users to track the progress during the life cycle of a plant and predict yields. 80% of French agricultural land under wheat cultivation is managed through this algorithm. InVivo, France's leading agricultural cooperative group with 220 members using the technology, earns €6.4 billion in sales (Talend, n.d.).

II. KNOWLEDGE AGRICULTURE™


Knowledge Agriculture aims to achieve the objectives enshrined in SDG2030 to increase the agriculture yield without harming the environment, sustaining planet resources, and simultaneously countering challenges such as depletion of water resources and increased erosion and loss of productivity due to the occurrence of extreme weather events. The recent global environmental changes are apparent caution to mankind to immediately change the way it produces food and makes it available to the present and future generations. This can be achieved by optimal use of input resources such as seed, water, fertilizer and chemicals by preventing loss in storage, transportation and supply. In knowledge agriculture, data is captured from several sources. Sensors and IOT (Internet of Things) are used to collect farm data such as soil moisture, humidity, temperature, heat, light, etc. A second database stores the survey report that includes, productivity of soils, suitability of soils for raising specific crops, etc. Another database contains details of time for planting, produce to be planted, row spacing, desired yield, waste recycling, water supply, etc. There are several other databases which store historical rates, market details, supply chains, etc. These structured, semi-structured, or unstructured data are ingested into local or cloud-based storage, computing, analyzing, and creating models for ML-based predictions and taking corrective actions. The data allows the farmers to use a DSS (Decision Support System), to make optimized

decisions such as tending each plant with water and fertilizers, spraying pesticides, and eliminating the weeds by selective burning or tilling as per its need during the life cycle without damaging the desired plant. Further, supply chain network design, product design and development, demand planning, procurement management, customized production, inventory management, logistics, and agile supply chain are essential components in farm management. A sustainable global supply chain is becoming an ever-increasingly complex system, especially with the need to deal with international partners (McCue, 2020). Modern technologies, such as CEP(Complex Event Processing), RFID, block chain, IoT, and WSN(Wireless Sensor Networks), boost supply chain performance. Supply chain analytics allows quick adjustments and more effective tactical decisions.

III. STORYTELLING FROM FARM DATA

a) System Architecture for the use of machine learning models for Knowledge Agriculture

A system architecture for predictive analysis of historical and live data and taking corrective actions is shown in Figure 1.

Figure 1: System architecture for predictive analysis of historical and live data and taking corrective actions

From the Figure, it will be seen that Knowledge Agriculture involves the use of IOT (Internet of Things) tools such as infra-red cameras, sensors (barometers, hygrometers, light meters, and ambient thermometers), electrodes, GPS (Global Positioning System) guided farm machines (tractor, drones) to detect physical parameters namely moisture, heat, light, pressure, nutrients and pests, etc. These data are streamed directly to the cloud, the technology that relieves the users from maintaining an elaborate computer system with expert staff including programmers and system administrators, for processing, monitoring, and analysis. The historical database is also held on Geo location of the farm, type of the crop (rice, wheat cotton, groundnut, millet), seasons when they are sowed/harvested, area (in hectares), production (in tonnes), average temperature (°C), average rainfall (mm), soil, pH (Hydrogen potentials) value, soil type, major fertilizers, nitrogen (kg/Ha), phosphorus (Kg/Ha), Potassium (Kg/Ha), minimum rainfall required, the minimum temperature required, etc. for optimum yield. Data on logistics, marketing chain, price (historical and current), consumers and input suppliers are also maintained on the cloud. Meteorological data is used for analyzing the weather variation. Bringing all the data to the cloud is part of data ingestion.

The data coming from different agencies may be in structured, unstructured, or in semi-structured formats. These need to be cleaned, normalized, categorized, and cataloged. Since the data is enormous and petabytes of big data need to be analyzed, it needs to be put in a way that analysis becomes possible, a few in real time for taking immediate corrective action in the farm such as tending each plant with water, fertilizers as per its need during the life cycle; eliminating the weeds

by the spraying of pesticides, tilling or selective burning without damaging the desired plant. It may need certain data available in CSV (Comma-Separated Values) or JSON (JavaScript Object Notation) formats to be converted in a columnar form known as ORC or Parquet form. These activities come under processing.

The final analysis is done by building visualization for real-time monitoring of the crop for dry fields or identifying plants needing attention for the use of fertilizer, pesticide or heating, etc., and thus allocating resources dynamically and efficiently. Careful and precise application of all inputs for agricultural produce can maximize crop yields and thereby reducing cost, and at the same time minimize waste of pesticide and water usage. Dynamic evaluation of moisture content can stop the excessive use of water for irrigation. This is especially of great value for 18 countries, with almost four billion people who are using their water reserves to the point of exhaustion to produce grains (*Earth Policy Institute, 2013*). The consolidation of historical weather data with meteorological prediction can be used to build complex models to predict the time of sowing/harvesting the crop. Another real-time model for supply chain can track the movement of food to identify bottlenecks and optimize the movement of product by improving logistics. To summarize, the analysis provides the potential to foresee demand, assess user sentiment, promote coordination and collaboration throughout the supply chain through fleet management tracking solutions, and use GPS-oriented analytics to optimize routing, cut transportation costs and provide an advanced mapping of vehicle locations.

Big data analytics is a complex process of examining the massive amount of data to uncover information such as hidden patterns, correlations, and

other insights like market trends and customer sentiments that enables organizations to make informed business decisions. We divide the entire analysis in

three steps, namely Data management, Analytics & visualization. This is shown in Figure 2. A few tools used in different stages are mentioned in the Figure.

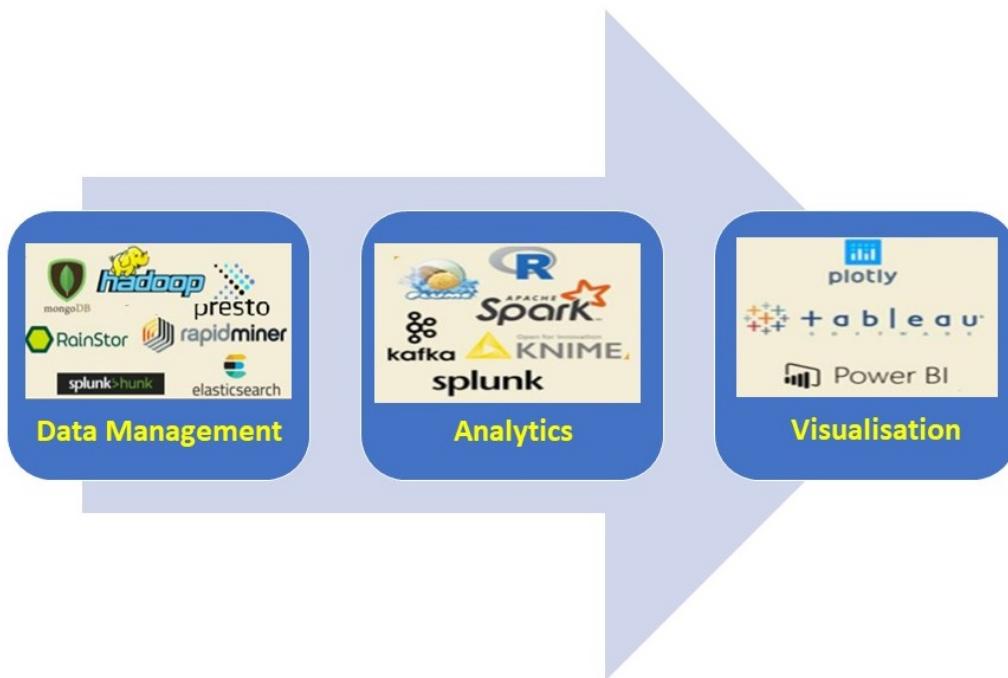


Figure 2: Stages of Data analytics and visualization

Hadoop (*Apache Hadoop Documentation, 2014*) is an open-source framework written in Java that provides many analytical tools to store and process large datasets ranging in size from gigabytes to petabytes to generate new insight, which includes Machine Learning and data mining. The Apache Hadoop kernel has a storage part, known as Hadoop Distributed File System (HDFS), and a processing part known as the Map Reduce algorithm for parallel processing. Few of the tools are Apache spark (*Spark Core Programming, n.a.; Kannan, 2015*), a cluster computing platform to process batch applications, Machine Learning, streaming data processing, and interactive queries; Map Reduce (*Seema & Jha, 2015*), an Algorithm based on the YARN framework to perform the distributed processing in parallel in a Hadoop cluster; Apache Hive (*Hiba et al. 2019*), a Data warehousing tool that uses query language known as HQL or HIVEQL; Apache Impala, an open-source SQL engine; Apache Mahout(*Anil et al. 2020*), used for implementing various Machine Learning algorithms offering implementations of classification, clustering, dimensionality reduction and linear algebraic computations; Apache pig, an open-source Apache library that runs on top of Hadoop, providing a scripting language used for analysing massive datasets by representing them as dataflow (*Swarna & Zahid 2017*); HBase, a non-relational, NoSQL distributed, and column-oriented database that allows for data to be analysed in real-time, as it is entered (*History of Apache*

HBase, n. a.); Tableau, a software to generate helpful visualizing charts on interactive dashboards and worksheets and many more used in the Business Intelligence Industry (*Tableau, n. a.*). These tools, with their short descriptions, have been shown in Figure 3.

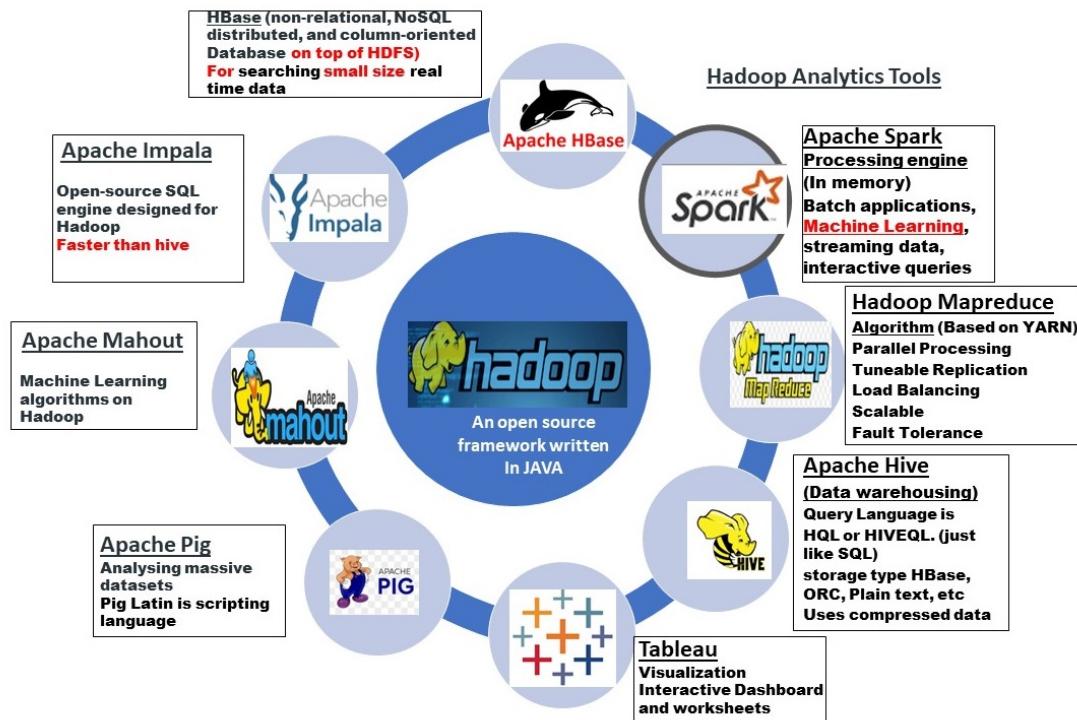
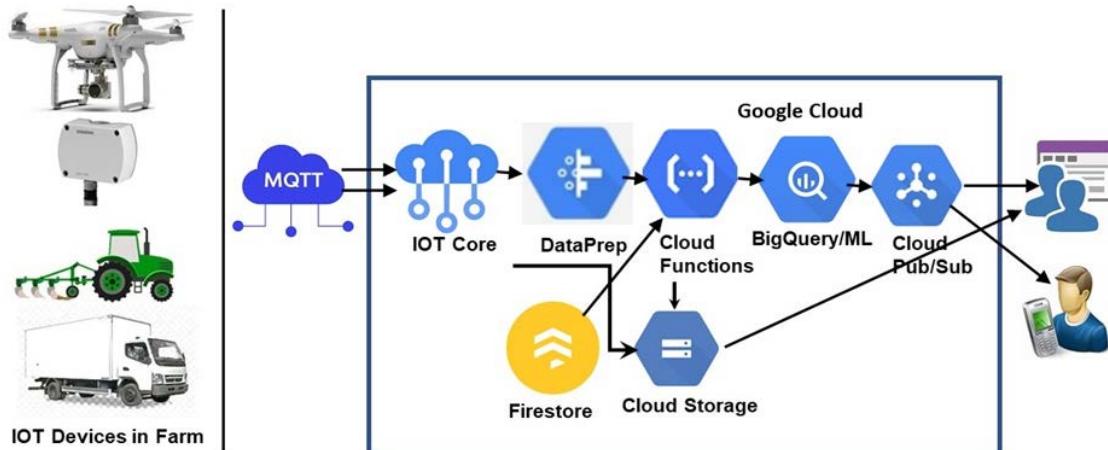


Figure 3: Hadoop Analytics tools for Big Data analysis


IV. CLOUD-BASED ARCHITECTURE

Open-source tools can be used for Knowledge Agriculture data analytics, visualization, and undertaking corrective action using BI (Business Intelligence) tools like a tableau. However, this needs hardware and software infrastructure with competent programmers. The alternate solution is to use Cloud-Based platform which offers "SaaS (Software as a Service), PaaS (Platform as a Service), and IaaS (Infrastructure as a Service)" (IBM Cloud Education, n. a.). SaaS utilizes the internet to deliver applications that run directly through web browsers, thus sparing the employees and companies from the efforts of installing, managing, and upgrading software. PaaS provides a framework for developers to build upon and create customized applications. IaaS is a form of virtual cloud computing technology that provides highly scalable infrastructure, including servers, networks, operating systems, and storage. Using IaaS, businesses hire resources on-demand and scale it as per their requirements instead of having to buy the hardware outright. Google Cloud Platform Services (GCP), Amazon Web Services (AWS), Microsoft Azure, Digital Ocean, Linode, Rackspace, and Cisco Metapod are a few companies providing IaaS. In 2020, the cloud-based segment had the largest share of the agriculture analytics market. The large share of cloud-based market is primarily due to easy accessibility, lower maintenance, affordable pricing, and reliable security. Furthermore, benefits provided by cloud-based solutions in terms of SaaS, PaaS, and IaaS

for agriculture analytics are helping the segment grow at the highest speed. A few basic architectures based on a few major cloud service providers for big farm data analytics are discussed below.

a) Google Cloud Platform (GCP)-based architecture

A typical system architecture based on the Google cloud platform is shown in Figure 4. Here, data from IOT devices are captured using MQTT protocol through IOT core (fully managed Service for securely connecting and managing millions of IoT devices), and data is prepared through DataPrep (explores, cleans, and prepares structured and unstructured data for analysis). Thereafter this data is analyzed along with the other historical database stored in Firestore (a NoSQL document database), using Cloud Functions (a serverless execution environment for building and connecting cloud services) and BigQuery/ML that creates and executes machine learning models. The information after analysis is made available to Data analysts/farmers through Pub/Sub, which provides messaging between applications.

Figure 4: System architecture for farm data analysis and prediction based on Google cloud (Note: The GCP icons are available in the open domain)

i. Use case-Taranis (Google cloud along with Tensor Flow)

As much as forty percent of crops in agriculture are regularly lost due to pests, crop illnesses, weeds, and lack of nutrients. Using drone technology and artificial intelligence, Taranis (*Taranis, n.d.*), working in several countries worldwide, with more than 20 million acres of land in Russia, Eastern Europe, and South America, is providing farmers with modern tools on the cloud along with Tensor Flow to reduce crop loss, increase yields, and lower costs (*Google Cloud, n.d.*). To develop BI (Business Intelligence) models, drones were deployed to capture tens of millions of photographs over the past year and a half, which have been analyzed and tagged. Each photo has up to a thousand items of interest, such as insect damage or leaf discoloration. The company claims to have processed around 100 million distinct features in approximately 700,000 images. The insights provided through visualization provide farmers with the information that enables them to intervene early and prevent crop loss. Farmers can target problems with concrete solutions, like adding fertilizer in a specific area with low in nutrients. The scalable Compute Engine dedicates information from the images when new images arrive. Data is uploaded to a Cloud SQL database for further analysis.

Tensor Flow (*TensorFlow, n. a.*) is an open-sourced machine learning platform that delivers a complete functional solution with a focus on deep neural networks to analyze massive amounts of unstructured data. It contains a diverse and complete set of libraries, tools, and community resources. Tensor Flow is used for building the machine learning models by using tens of millions of photographs of agriculture fields for training. Feeding the dataset for the new photographs and comparing them with models is used to discover items of interest, such as insect damage or leaf discoloration.

b) Amazon Web Services (AWS) based architecture

A typical broad system architecture using AWS is shown in Figure 5. It would be observed from the Figure that broad modalities are similar. The IOT data is streamed using a tool known as Kinesis which allows real-time streaming of IOT data from the devices deployed on the farm. Another tool, IoT Core connects billions of IoT devices such as sensors, actuators, embedded devices, wireless devices, and smart appliances over MQTT, HTTPS, and LoRa WAN protocols and routes trillions of messages to users without managing any infrastructure.

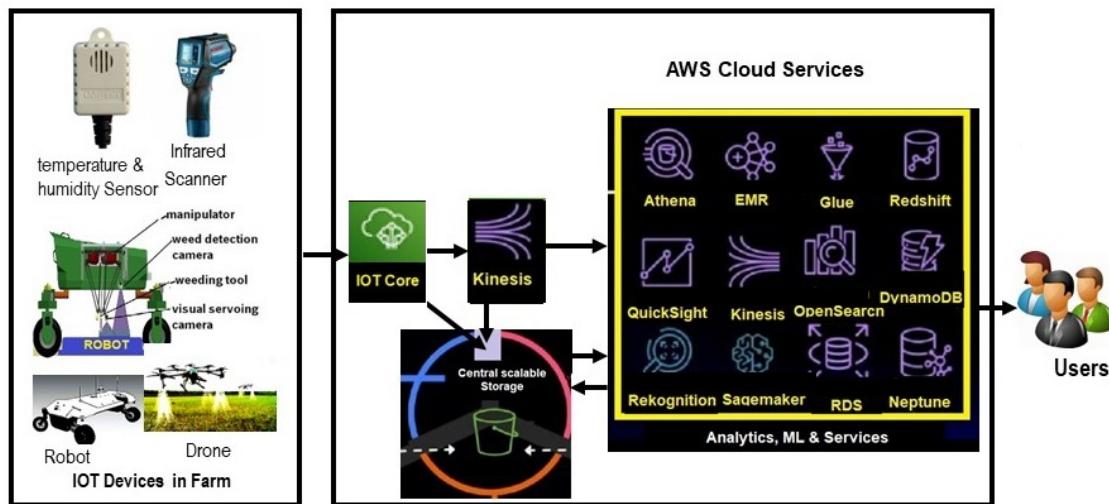


Figure 5: System architecture for farm data analysis and prediction based on Amazon Web Services (AWS) (Note: The AWS icons are available in the open domain)

Kinesis Data Analytics (KDA) analyzes streaming data to gain actionable insights and responds to farmers' needs in real-time. It also generates real-time alerts and dashboards. KDA supports standard ANSI SQL and provides an easy-to-use schema editor. It includes open-source libraries based on Apache Flink. IoT Analytics datasets can be taken to the Quick Sight console (Business intelligence tool) for creating dashboards and visualizations. Red shift is a high-performance, petabyte-scale data warehouse service for analytical processing (OLAP) workloads, while RDS Postgre SQL or Aurora typically stores terabytes of relational data for on-line transaction processing (OLTP) workloads. Dynamo Db stores non-relational data, and Neptune is a fully managed graph database. Glue is a server less data integration and ETL (Extract, Transform and Load) tool used for discovering, preparing, and combining data for data analysis and Machine Learning. Open Search provides for free-text search. Athena is a serverless interactive query service, an upgraded SQL query engine from the Trino open-source project, that makes it easy to analyze data in storage using standard SQL. Amazon has developed their own EMR, which is taking the place of Apache Hadoop and Apache Spark. This makes it simpler to perform tasks that involve big data analysis such as data transformation, graph analytics, and machine learning on a managed cluster platform. Rekognition is part of the artificial intelligence services provided for image analysis.

i. Use cases

Mantle Labs (*Mantle Labs, n. a.*) uses the AWS cloud platform to automate the processing of satellite data from 500 million hectares of agricultural land spanning six continents for tracking vegetation health, soil moisture, and climate impact daily. This service provides an accurate, near real-time risk assessment to the world's 600m farmers, instantly. The company states

that it can accumulate and analyze billions of pixels of imagery from several satellites on a daily basis to create a data cube of the entire world. It uses Elastic Container Registry (ECR) for storing container images and Fargate as a serverless compute engine. ECR allows sharing and downloading of images securely over Hypertext Transfer Protocol Secure (HTTPS) with automatic encryption and access controls. Fargate is a serverless compute engine that enables building applications without managing servers. Mantle Labs also leverages Simple Queue Service (SQS) for event-based batch processing of satellite images. The data analysis forecasts crop health, forest changes, climate impact, crop observation, drought impact analysis, and field-level profitability analysis. The deep learning engine has the capability to examine petabyte-scale data to provide high-resolution analysis for any area on the planet. The farmers can use the platform for crop monitoring and near real-time production estimation, including commodity price forecasts, production, and supply chain analysis. To bank and insurance companies, it offers credit risk assessment, underwriting and pricing, portfolio creation and risk diversification, claims fraud management, and processing (AWS, n. a.). Mantle Labs, with the Agri-EPI Centre, offered its Geobotanics platform, which runs crop monitoring solutions, for UK (United Kingdom) food security during the coronavirus pandemic ("Crops and Soil Newson Agri-tech partners support COVID-19 food security", 2020).

GeoPard, Köln, Germany (*GeoPard, n. a.*) uses AWS for spatial data analytics and artificial intelligence algorithms for crop farming that automates workflows to create VRA maps for seeding, fertilizing, and crop protection based on various data sources and agronomic logic. Variable-rate technology (VRT) allows determination of the exact number of passes over an area to deliver the right amount of farm inputs such as

fertilizer, chemicals, pesticide, lime, gypsum, and irrigation water. By creating a Zones Map from specified data layers such as Topography, Satellite Images, Soil Sampling, High-Density Sensors and Cameras, Applied Datasets of Yield, VRA maps can be employed for any agricultural field. Data visualization leads to new ideas, and analytics helps to solve problems by creating solutions and writing prescriptions agronomists.

CropX captures raw data from global soil sensors and integrates it with topography/soil maps, weather forecasts data, satellite imagery, hydraulic models, crop models, user inputs, data from the controllers, and agricultural equipment such as sprayers, tractors & harvesters, and then ingests it to a centralized platform running on Elastic Compute Cloud (Amazon EC2) instances. It then analyses and saves satellite imagery, agronomical data, and insights in the cloud storage. It uses SNS to transfer messages between services. The Service provides crop-specific and growth-stage-specific insights and recommendations, such as advising farmers when, where, and how much to irrigate, fertilize and spray (CropX, n. a.).

c) Microsoft Azure

Farm Vibes. AI (*Project Farm Vibes, n.a.*) is Microsoft's open-source Multi-Modal Geospatial ML Models for Agriculture and Sustainability. There are three main components of FarmVibes.AI. The first one consists of data ingestion from sources such as satellite imagery (RGB, SAR, multispectral), drone imagery, weather data, custom sensor data (such as weather sensors), and more. The input data is pre-processed for building ML models with ease based on parameters that can be specified. The inbuilt notebooks are used to tune the models to achieve a level of accuracy for the specific parts of the world or seasons. The library includes data for detecting practices (for example, harvest date detection in the country for a particular crop), estimating climate impact (both seasonal carbon footprint and long-term sustainability), microclimate prediction, and crop identification. The artificial intelligence arm of Farm Vibes has three parts, namely, Async Fusion, which pairs sensors and satellite imagery to create nutrient heat and soil moisture maps; Space Eye, which removes clouds from satellite imagery; Deep MC, which uses sensor data and weather forecasts to predict the temperatures and wind speeds of a farm's microclimate; and a "what if" analysis tool that predicts effect on the soil's carbon sequestration abilities based on variances in farming methods.

i. Use Case-Bayer

Bayer's Climate Field View™ is a data integration tool that provides yield analysis, field region reports, field health imagery, and manual seed scripts. As per the company's report, the Software is being used on more than 180 million farming acres across more than

20 countries. Microsoft and Bayer have entered into a strategic partnership to build a new cloud-based set of digital tools and data science solutions to enable the rapid development of agriculture food tech applications by the combination of modern cloud technology and adding a layer of data (*Digital Farming, n. a.*).

V. CHALLENGES

Soil fertility has severely degraded in many parts of the world due to intensive agriculture, increasing use of fertilizers and pesticides, over-grazing, water pollution, deforestation, salinization, and accumulation of non-biodegradable waste. Climate change due to global warming further aggravates land degradation, soil erosion, and soil fertility. Natural disasters like flooding and landslides are being witnessed more frequently worldwide. Severe soil degradation can reduce crop yield by over 50% (FAO, 2019). At the same time, Food and Agriculture Organization of the United Nations has estimated that the world population will exceed 9 billion by 2050, and the world will lose about 250 million crop-production acres due to urbanization and soil degradation from excessive tillage and other farming practices (Wilde, 2021). Food loss and waste (FLW) in production, postharvest and consumption stages are 24, 24, and 35 percent, respectively, accounting for more than 80 per cent of food wastage in these stages, which is quite alarming (Li et al, 2017).

The agriculture analytics market is expected to grow to \$2.27 billion by 2027, at a CAGR of 17.5% from 2020 to 2027. The key factors driving the growth are rising pressure to meet global demand for food, especially in the current world environment of food shortage due to the COVID epidemic, climate changes, and war. This environment has led to an increasing need for improved farm productivity that is possible only by the use of Knowledge Agriculture deploying modern tools and technology of AI and predictive analytics to improve the yield and cut down the losses of 1.2 billion tonnes globally; 40% of all food is never eaten when both farming and post-farming are taken into account, as per WWF-UK (WWF, 2021). Going with cloud-based technologies and applying big data in the agribusiness chain will reverse the trend of farmers selling their land for choosing employment in the service sector and make the agriculture business profitable.

The lack of technical know-how among farmers, the fragmented agriculture industry, and need for heavy capital investment for Knowledge Agriculture, lack of standardization for data management and data aggregation may hamper the growth of this market. Further, political compulsions, farmers', and trade unions' lack of trust in industrialists and solution providers are significant impediments. One of the most significant challenges is discovering stable business and operational frameworks for private-public

collaborations. The Indian Government's withdrawal of farm bills is a pointer (*Mukherji in Business Standard, Jan, 17, 2023*). The explicit motive for data harvesting is the prediction of consumers' wants and needs. The farmers fear that the data collected by service providers can be manipulated by them for their own advantages. For example, the forecast of a higher need for fertilizer in a specific region of the world may lead to an artificial increase in prices in that region in collusion of service provider and fertilizer supplier. Beyond data access and infrastructure, digital democracy calls for a fundamental redistribution of decision-making power from a small number of corporate stakeholders to a broader group of farmers and citizens. GODAN (Global Open Data for Agriculture and Nutrition) of United Nations, currently with more than 374 partners from national governments, non-governmental organizations, international and private sector organizations, pleads for the active sharing of data on agriculture and nutrition among all the stakeholders (*GODAN, n. a.*). The European Commission's launch of public consultations on the Data Act with the possibility of imposing binding rules to provide governments access to private-sector data has started heated debates. The Data Act is a proposal by the European Commission for a legislative provision that "aims to create a fair data economy by ensuring access to and use of data for legitimate purposes, including in business-to-business and business-to-government [B2G] situations" (European Commission, 2021).

VI. WAY-AHEAD

Linking data from farm operations on agricultural sites with information and knowledge collected from laboratories will be required to be effectively analyzed and used to optimize sector performance. The best possible solution for this is to make accessible global data from land globally and provide a platform for analysis and use for long-term sustainable development by improving economic opportunities for farmers. Upgrading the skills of all the stakeholders, resource persons in agriculture Universities, students and farmers, open access to research, meta-analysis, and available data publication is vital for food nutritional security. Providing more specialized Big Data analysis tools on mobile devices, and extending the information about the features, benefits, and limitations of each framework in various local languages will help the world population. Carnegie Mellon University is undertaking a research project for automatic speech recognition for 2000 languages from the present 200 (*Science Daily, 2023*). WDF University for SDG2030 has developed skill development on-line courses, which provide choice for translation of courses in many Indian and foreign languages (*WDF University, n. a.*). Hence, technological issues related to ingestion,

analysis, processing, and application associated with Farm Data must be included in studies and constitute an essential research topic.

VII. CONCLUSION

There is an urgent need to create a sustainable food system to feed the growing population on the earth. The climate crisis grew increasingly severe and irreversible in the year 2022. The world witnessed record ice melt at the poles, catastrophic flooding in Pakistan and China, record-breaking heat waves in the US (United States) and Europe, and severe drought in Africa. The war between Russia and Ukraine has led to rising energy prices and climate-fuelled droughts, and has pushed a perilously stretched global food system to the brink. The situation has led to an increased interest in investigating how our food is grown and ensuring that the most efficient practices are used. Efficiency in growing more food needs urgent use of tools and technology for Knowledge Agriculture. Countries have to adapt it to escape a cycle of catastrophes and debt. The 2030 agenda for 17 Sustainable Development Goals (SDGs) aims to end poverty and malnutrition around the globe, preserve the climate and environment while sustaining the planet's resources. The agenda was adopted in 2015, and now after, seven years (mid-term of 2015-2030), "the world continues to lose ground in its efforts to end hunger, food insecurity, and malnutrition", according to the report of SOFI (State of Food Security and Nutrition in the World) released in 2022 (*Food and Agriculture Organization of United Nations, 2022*). The information admits that "many of the SDG2 targets are growing wider each year". Eight hundred twenty-eight million people, around 10.5% of the world population, were affected by hunger globally in 2021, an increase of 46 million since the end of 2020. Nearly 3.1 billion people globally could not afford a healthy diet in 2020, an increase of 112 million from 2019 due to the pandemic and war. The government of India has been providing free food, to prevent death from hunger, to its 814 million population since March 2020 under the National Food Security Act, which has been extended up to Dec. 2023 (*The Economic Time, 2022*). The total adds to 3.924 billion of 7.79 billion, about 50% world population for the year 2020, lacking proper food during pandemic. Serious efforts are required to avoid the bleak future by using modern tools and technology to farm sustainably and climate sustainably and offer farmers an adequate advice, training, and skill.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Agri-tech partners support COVID-19 food security. (2020, April 21). *Crops and Soil News*. <https://agri-epicentre.com/news/agri-tech-partners-support-covid19-food-security>.

2. Anil, Robin & Capan, (2020). Apache Mahout: Machine Learning on Distributed Dataflow Systems. *Journal of Machine Learning Research*. 21. 1-6.
3. Apache Hadoop Documentation. (2014). <http://hadoop.apache.org/>
4. Asakiewicz, Christopher, Cognitive Analytics for Making Better Evidence-Based Decisions (August 24, 2016). Available at SSRN: <https://ssrn.com/abstract=2965767> or <http://dx.doi.org/10.2139/ssrn.2965767>
5. AWS. Mantle Labs Improves Global Food Supply Chain Financing on AWS, <https://aws.amazon.com/solutions/case-studies/mantle-labs/>
6. Brown, L.R. (2013, July 09). Peak Water: What Happens When the Wells Go Dry? *Earth Policy Institute*. http://www.earth-policy.org/plan_b_updates/2013/update115
7. CropX Agronomic Farm Management System, <https://cropx.com>
8. Definitions.net. STANDS4 LLC.(2022). Knowledge agriculture. <https://www.definitions.net/definition/knowledge+agriculture>
9. Digital Farming, Smart Solutions for a Sustainable Future, Bayer. <https://www.bayer.com/en/agriculture/digital-farming>.
10. European Commission. (03 June 2021 - 03 September 2021). Data Act & amended rules on the legal protection of databases, https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13045-Data-Act-including-the-review-of-the-Directive-96-9-EC-on-the-legal-protection-of-databases/public-consultation_en
11. Food and Agriculture Organization of United Nations (FAO). (2018). Guidelines for the measurement of productivity and efficiency in agriculture. <https://www.fao.org/3/ca6395en/ca6395en.pdf>
12. Food and Agriculture Organization of United Nations (FAO). (2019). Global Symposium on Soil Erosion (GSER19), <https://www.fao.org/about/meetings/soil-erosion-symposium/key-messages/en/>
13. Food and Agriculture Organization of UN. (2022). The State of Food Security and Nutrition in the World 2022. <https://www.fao.org/documents/card/en/c/cc0639en>
14. Fuglie, K., (2015). Accounting for growth in global agriculture. *Bio-based and Applied Economics*. 4(3), 201–234
15. GeoPard Agriculture, <https://geopard.tech>
16. GODAN. Global Partnership for Sustainable Development. Global Open Data for Agriculture and Nutrition. <https://www.data4sdgs.org/partner/global-open-data-agriculture-and-nutrition>
17. Gonzalez-Sanchez, Alberto., Frausto-Solis, Juan., Ojeda-Bustamante, W., (2014) Predictive ability of machine learning methods for massive crop yield prediction. *Span J Agric Res*. 12(2), 313–28.
18. Google Cloud: Helping farmers to feed the planet with cutting-edge drone imaging and AI, <https://cloud.google.com/customers/taranis>
19. Hiba. A., Abu-Alsaad, et. al. (2019). Retailing Analysis Using Hadoop and Apache Hive. <https://ijssst.info/Vol-20/No-1/paper8.pdf>
20. IaaS vs. PaaS vs. SaaS, IBM Cloud Education, <https://www.ibm.com/in-en/cloud/learn/iaas-paas-saas>
21. Kannan P., (2015). Beyond hadoopma preduce apachetez and apache spark. San Jose State University. <http://www.sjsu.edu/people/robert.chun/courses/CS259Fall2013/s3/F.pdf>
22. Li. Xue, G. Liu, J. Parfitt, X. Liu, E. Van Herpen, Å. Stenmarck, C. O'Connor, K. Östergren, S. Cheng,. (2017). Missing food, missing data? A critical review of global food losses and food waste data, *Environ. Sci. Technol.*, 51 (2017), 6618-6633, <https://doi.org/10.1021/acs.est.7b00401>.
23. Majumdar, J., Naraseeyappa, S. & Ankalaki, S. (2017). Analysis of agriculture data using data mining techniques: application of big data. *J Big Data*. 4, 20. <https://doi.org/10.1186/s40537-017-0077-4>.
24. Mantle Labs, <https://www.mantle-labs.com>
25. McCue, L. (2020, December 16). Supply chain analytics: What it is and why it matters. Oracle NetSuite. <https://www.netsuite.com/portal/resource/articles/erp/supply-chain-analytics.shtml>
26. Mukherjee Sanjeeb. (Tuesday, January 17, 2023). PM Narendra Modi withdraws three farm laws, asks farmers to go home. *Business Standard*. https://www.business-standard.com/article/current-affairs/pm-narendra-modi-withdraws-three-farm-laws-asks-farmers-to-go-home-121111900296_1.html
27. Pantazi, X.E., et al. (2016). Wheat Yield Prediction Using Machine Learning and Advanced Sensing Techniques. *Computers and electronics in agriculture*, V.121, 57-65. <https://doi.org/10.1016/j.compag.2015.11.018>
28. Project FarmVibes. Democratizing digital tools for sustainable agriculture, <https://www.microsoft.com/en-us/research/project/project-farmvibes/>
29. ScienceDaily, (10 January 2023). Project aims to expand language technologies: Research could bring automatic speech recognition to 2,000. Carnegie Mellon University. <https://www.sciencedaily.com/releases/2023/01/230110151049.htm>
30. Seema Maitrey, & C.K. Jha. (2015). MapReduce: Simplified Data Analysis of Big Data, *Procedia Computer Science*, Volume 57, 563-571, ISSN 1877-0509, <https://doi.org/10.1016/j.procs.2015.07.392>.
31. Spark Core Programming. https://www.tutorialspoint.com/apache_spark/apache_spark_rdd.htm

32. Srivastava, A., (2018). Technology Assisted Knowledge Agriculture for Sustainable Development Goals. *Adv Crop Sci Tech* 6, 391. <https://doi.org/10.4172/2329-8863.1000391>
33. Swarna, C. & Ansari, Zahid. (2017). Apache Pig - A Data Flow Framework Based on Hadoop Map Reduce. *International Journal of Engineering Trends and Technology.* 50. 271-275. <https://doi.org/10.14445/22315381/IJETT-V50P244>
34. Tableau, <https://www.tableau.com>
35. Talend, Big Data and Agriculture: A Complete Guide, <https://www.talend.com/products/data-fabric/>
36. Taranis, <https://taranis.ag>
37. TensorFlow, <https://www.tensorflow.org>
38. The Economic Time. (Dec 24, 2022). Govt to provide free food to 814 m Indians till Dec '23. https://economictimes.indiatimes.com/news/india/govt-to-provide-free-food-to-814-m-indians-till-dec-23/articleshow/96468364.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst
39. The History of Apache HBase: A Complete Guide, <https://history-computer.com/the-history-of-apache-hbase-a-complete-guide/>
40. U.S. Environmental Protection Agency. Population Reference Bureau (PRB). (2016). World Population Data Sheet. <https://www.prb.org/wp-content/uploads/2016/08/prb-wpds2016.pdf>
41. Veenadhari, S., Misra, B. and Singh C., (2014). Machine learning approach for forecasting crop yield based on climatic parameters, International Conference on Computer Communication and Informatics, Coimbatore, India, 2014, 1-5, <https://doi.org/10.1109/ICCCI.2014.6921718>
42. WDF University for SDG2030 <https://wdfuniversity.org>
43. Wilde Matt. (2021). Progressive Farmer Crops Editor. *Farmland Loss Threatens Food Supply.* <https://www.dtnpf.com/agriculture/web/ag/news/article/2021/02/01/land-use-farmland-loss-threatens>
44. WWF report. (21 July 2021). *Over 15% of food is lost before leaving the farm.* <https://www.wwf.eu/?4049841/fifteen-per-cent-of-food-is-lost-before-leaving-the-farm-WWF-report>

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

The Heat Transfer by Radiation under Relativistic Conditions

By Emil V. Veitsman

Abstract- An expression was obtained for the energy density of the moving black-body radiation, i.e., the Stefan-Boltzmann law valid in the interval of object velocities from zero to the velocity of light in vacuo when the angle of observation θ equals zero. The object temperature is shown to comprise two parts. The first one is a scalar invariant under the Lorentz transformations. The second one is a vector depending on the velocity of system motion. The scalar component of the temperature is a contraction of two tensor components of rank 3. Under normal conditions this mathematical object is a scalar. Taking account of a tensor character of the temperature a new formulation is given for the second thermodynamics law. The results obtained are of the great practical importance, in particular, while designing devices to measure the radiation temperature of moving cosmic objects, e.g., quasars.

Keywords: *heat transfer; radiation; relativistic conditions; temperature; thermodynamics; entropy.*

GJSFR-A Classification: *DDC Code: 621.4022 LCC Code: TJ260*

Strictly as per the compliance and regulations of:

The Heat Transfer by Radiation under Relativistic Conditions

Emil V. Veitsman

Abstract- An expression was obtained for the energy density of the moving black-body radiation, i.e., the Stefan-Boltzmann law valid in the interval of object velocities from zero to the velocity of light in vacuo when the angle of observation θ equals zero. The object temperature is shown to comprise two parts. The first one is a scalar invariant under the Lorentz transformations. The second one is a vector depending on the velocity of system motion. The scalar component of the temperature is a contraction of two tensor components of rank 3. Under normal conditions this mathematical object is a scalar. Taking account of a tensor character of the temperature a new formulation is given for the second thermodynamics law. The results obtained are of the great practical importance, in particular, while designing devices to measure the radiation temperature of moving cosmic objects, e.g., quasars.

Keywords: heat transfer; radiation; relativistic conditions; temperature; thermodynamics; entropy.

I. INTRODUCTION

The problem of the moving black-body radiation arose in 1907 – almost immediately after the creation of Special relativity (SR). It is in this year that Kurd von Mosengeil's big article was published in der Annalen der Physik [1]. This work supervised by Max Planck underlies his relativistic thermodynamics [2]. The great scientist considered the theory of the black-body radiation to be well-studied and the most suitable for formulating foundations of thermodynamics correct over the entire whole interval of object velocities v , i.e., ranging from zero to the velocity of light in vacuo.

In article [1] a system is studied comprising a radiator of electromagnetic waves, receiver and reflector (mirror). The radiators are receivers at the same time. The three elements are moving uniformly and rectilinearly in space with a relativistic velocity forming an acute angle with one another. As a result, the temperature transformation law was obtained under relativistic conditions:

$$T = T_0 \sqrt{1 - \beta^2}, \quad (1)$$

where T_0 is the temperature if $v \ll c$ (here and below index "0" means that the given quantity concerns normal conditions); $\beta = v/c$.

Author: Independent Researcher, 28 department, 5 Klimashkin Str., 123557. Moscow. e-mail: evveitsman@gmail.com

For more than 50 years formula (1) had not been called in question until X.Ott's article was published [3], in which the relativistic temperature was shown to transform following another law:

$$T = T_0 / \sqrt{1 - \beta^2}. \quad (2)$$

The expression (2) was obtained by X.Ott for a variety of physical processes including electromagnetic radiation. However unlike Mosengeil, X.Ott elected another approach for studying the process of electromagnetic wave radiation under relativistic conditions. He examined wave emission of individual atoms, whereas Mosengeil studied black-body radiation, as we have noticed above. In particular, in [1] Stefan-Boltzmann's law was obtained:

$$\varepsilon_0 = \frac{E_0}{V_0} = a T_0^4, \quad (3)$$

based on the famous Planck formula derived first semiempirically:

$$\rho(\omega, T) d\omega = \frac{8\pi\hbar\omega^3 d\omega}{c^3 \left(e^{\frac{\hbar\omega}{kT}} - 1 \right)}, \quad (4)$$

where E_0 is the radiation energy of the black-body; V_0 is the volume; a is Stephan-Boltzmann's constant (J/cc · grad⁴); $\rho(\omega, T)$ is the radiative energy density (J/cc); k is Boltzmann's constant; ω is the frequency of oscillator radiation.

As known, Stefan-Boltzmann's constant equals:

$$a = \frac{k^4 \pi^2}{15\hbar^3 c^3}. \quad (5)$$

X.Ott's article has induced a long-term polemic on the temperature transformation under relativistic conditions. Some researchers adhered to Planck-Einstein's viewpoint; the others adhered to X.Ott's. Some scientists considered the temperature to be a relativistic invariant [4]. There appear absolutely exotic opinions. For example, the authors of Ref. [5] arrived at a conclusion of the temperature under relativistic conditions being changed both according to Planck, and to Ott, and to Callen and Horwitz as the able

Indeed, examine the simplest case represented in the Fig.1. As seen, there are two reference frames. One of them (with primes) is moving uniformly and rectilinearly with the velocity \mathbf{v} . There is a cylindrical object at rest in the moving reference frame. There is a cylindrical cavity in the object. The walls of the cavity are a black-body. They are emitting and absorbing photons. There is a very small hole on a face-wall of the object (see Fig.1). The flux of photons is flowing out the cavity. Since the hole is very small, the equilibrium of the photon gas in the cavity does not disturb practically. The photon radiator is at rest in the moving reference frame. An observer is at rest in the laboratory reference one. The observer is detecting photons (the energy of the electromagnetic wave). Here Maxwell's 3-D tensor of energy-momentum $\sigma_{\alpha\beta}$ has only one component - σ_{11} . It is equal to the density of energy in the wave [9]. Knowing the density of energy in the flux of photons, we can estimate the density of energy of the photon gas in the cavity in practice. If the angle θ between \mathbf{v} and the observer is $3\pi/2$ (the object is moving away from the observer), then the radiation frequency of the oscillator ω will be for this case equal to

$$\omega = \omega_0 \frac{\sqrt{1-\beta^2}}{1+\beta}. \quad (8a)$$

If the object is moving to the observer i.e., the velocity of the system is equal to $-\mathbf{v}$, then

$$\omega = \omega_0 \frac{\sqrt{1-\beta^2}}{1-\beta}. \quad (8b)$$

Denote the frequencies ω in (8a) and (8b) as ω_1 and ω_2 then

$$\bar{\omega} = \frac{\omega_1 + \omega_2}{2} = \frac{\omega_0}{\sqrt{1-\beta^2}}, \quad (8c)$$

If the angle θ were $(-\pi/2)$, then the formula for the frequency transformation would have another form, namely:

$$\omega = \omega_0 \sqrt{1-\beta^2}. \quad (9)$$

for the observer in the laboratory reference frame.

Thus without taking into consideration (8) and (9), we cannot evidently use the well-known Bose-Einstein distribution for obtaining the Stefan-Boltzmann law when the object under study is moving with relativistic speed.

The aforesaid allows us to formulate a main goal of our work – obtaining a radiation law for the black-body moving with a relativistic velocity when the

angle θ between the moving velocity \mathbf{v} and the observer is $3\pi/2$ (see Fig.1). A solution of the problem will be performed by the methods given in [9].

Here we must be added the following. Attempts have been made to obtain the law connecting the radiation intensity with the temperature when relativistic effects are involved [10, 11]. For example, in [11] an ultrarelativistic plasma is examined containing electrons and positrons. Their annihilation generates electromagnetic radiation. Its intensity is defined, in particular, with the help of a one-dimensional Bose-Einstein distribution. It is proportional to the plasma temperature to the fourth power, with the velocity of the object as a whole being equal to zero. It is plasma particles that are in motion.

II. METHODS AND RESULTS

a) *Definition of the number of field oscillators with a given frequency when the angle θ is $3\pi/2$ (Fig.1)*

Assume that we have an opaque object with an inner cylindrical cavity. Its surface is a black body heated up to some temperature T . There is a thermodynamical equilibrium in the cavity between its inner surface and electromagnetic radiation. There is a very small hole in the object cover, through which electromagnetic waves radiate out of the cavity (see Fig.1). The object is moving uniformly and rectilinear with the velocity \mathbf{v} together with the reference frame. The radiation from the cavity is detected with a device being at rest in a laboratory reference frame. First of all, we will show that the Stefan-Boltzmann law (3) is incorrect over the whole range of object motion velocities, i.e., from zero up to $v \rightarrow c$. Indeed, according to X. Ott [3], the radiation energy in the cavity is equal to:

$$E = \frac{\sum_{n=1}^{\infty} h \omega_0^{(n)}}{\sqrt{1-\beta^2}}, \quad n=1,2,\dots,l, \quad (10)$$

then the electromagnetic energy density

$$\varepsilon = \frac{E_0}{V_0(1-\beta^2)} = \frac{\sum_{n=1}^{\infty} h \omega_0^{(n)}}{V_0(1-\beta^2)}, \quad n=1,2,\dots,l, \quad (11)$$

where n is an oscillator serial number, $\omega^{(n)}$ is the frequency of its oscillations.

For the flux of photons moving away from the cavity (see Fig1), the equations (10) and (11) are also correct. Indeed, there is only one component σ_{11} of Maxwell's stress tensor (see above). The component is equal

$$\sigma_{11} \sim E_2^2 + E_3^2 + H_2^2 + H_3^2 = \frac{E_{02}^2 + E_{03}^2 + H_{02}^2 + H_{03}^2}{1 - \beta^2},$$

$$E_{2(3)} = \frac{E_{02(03)}}{\sqrt{1 - \beta^2}}; H_{2(3)} = \frac{H_{02(03)}}{\sqrt{1 - \beta^2}}$$

where $E_{2(3)}, E_{02(03)}$ are the intensity components of the electric field in the directions 2 and 3 for the observers in the laboratory reference frame and for the observer moving with the system under study correspondingly; $H_{2(3)}, H_{02(03)}$ are the intensity components of the magnetic field in the directions 2 and 3 for the above observers.

No matter how the temperature of the system transforms, i.e., according to Planck or to Ott or to Callen and Horwitz, we shall always arrive at the point of absurdity. Indeed, let the temperature transform, e.g., according to Planck, i.e., to (1). In this case the right side of (3) will have the following form $\alpha T_0^4 (1 - \beta^2)^2$. Then, as seen from (11), the right side of (3) appears to tend to zero as $v \rightarrow c$, while the left side of this formula to increase infinitely. This indicates a close connection between the radiation law of a moving black body and the temperature transformation under relativistic conditions.

Now find the number of oscillators $g(\omega_1, \omega_2)$ $d\omega_1 d\omega_2$ with frequencies in intervals $\omega_1, \omega_1 + d\omega_1$ and $\omega_2, \omega_2 + d\omega_2$ and a given polarization in the cavity using the well-known procedure [9]. The following fact

$$g(\omega_1, \omega_2) d\omega_1 d\omega_2 = 2\pi m_1 d\omega_1 d\omega_2 = \frac{2\pi k_1 dk_1 dk_2}{(2\pi)^3} \Delta L_1^2 \Delta L_2 = \frac{\omega_1 d\omega_1 d\omega_2}{(2\pi)^2 c^3} \Delta L_1^2 \Delta L_2 =$$

$$= \frac{\omega_1 d\omega_1 d\omega_2}{(2\pi)^2 c^3} \Delta V. \quad (13)$$

In case of electromagnetic waves should be taken into account two polarizations, and then we shall have:

$$g(\omega_1, \omega_2) d\omega_1 d\omega_2 = \frac{\omega_1 d\omega_1 d\omega_2}{2\pi^2 c^3} \Delta V. \quad (14)$$

Here it is important to emphasize that formula (14) is correct for the observer at rest in a real space monitoring, from the referring frame, the object moving then uniformly and rectilinearly with the relativistic velocity v . Since the radiation is thermal the average volume of the oscillators with a given polarization will almost be independent of time. In this case, it is unnecessary to define oscillator numbers in Minkowski space.

should be pointed out at once. The number of these oscillators is a function of two variables. The reason for that was explained above but here the following should be noted. If a spherical coordinate system is used for the case $v \ll c$, then in our case it is convenient to use a cylindrical one taking account of formulae (8) and (9).

The classical approach to finding the quantity $g(\omega) d\omega$ is based on using the number space n followed by transition to a spherical space of the wave vector $k = |\mathbf{k}| = n \frac{2\pi}{L}$, where L is the normalized cube edge, and finally to the spherical space of frequencies ω . In the case studied we use a cylindrical space representable as two spaces – flat circular and linear perpendicular to one another. Then to define the necessary quantity we shall use two coordinate systems: polar and one-dimensional Euclidean, i.e., a straight line. The amount of numbers within the spherical layer dn of the spherical space is $4\pi n^2 dn$ [9] (the spherical coordinate system). The amount of numbers n_1 in the circular layer is equal to $2\pi n_1 dn_1$ (the polar coordinate system). As to n_2 in a linear interval of one-dimension space, it will be equal to dn_2 . As a result, we have for the whole system:

$$g(\omega_1, \omega_2) d\omega_1 d\omega_2 = 2\pi n_1 dn_1 dn_2. \quad (12)$$

Turning from a number space to a wave vector space and finally to a frequency one, we shall have:

b) *Relativistic temperature as either a vector or a tensor*
 Now we should make a new attempt to solve some problems connected with the relativistic temperature. First of all, we should clarify if this thermodynamic parameter is a scalar or appears to be a vector or a tensor. In this connection we should first recall the formulae for velocity addition in SR. As known, the components of the total velocity in the directions \mathbf{X}_2 or \mathbf{X}_3 will tend to zero for the observer in the laboratory reference frame as $v \rightarrow c$ (see Fig.1). In turn, the component parallel to axes the \mathbf{X}_1 will not do that. This suggests immediately that the temperature becomes a mathematical object different from a scalar. What is the object?

Until very recently the temperature in the above case is considered to be either a scalar or a quantity

forming a vector with other quantities. For example, in [10] V. Hamity represents this thermodynamical parameter as

$$\Theta^\mu = \frac{v^\mu}{T}, \quad \mu = 0,1,2,3, \quad (15)$$

where v^μ is a unit 4-vector in Minkowski space, moreover

$$v^\mu = [v^0, v^\alpha], \quad \alpha = 1,2,3, \quad (16)$$

i.e., $v^\alpha \equiv \mathbf{v}$ is a velocity vector in Euclidean space;

$$v^\mu v_\mu = 1. \quad (17)$$

Further, developing the idea of temperature vector representation, the author of [10] finally comes to the following expression:

$$\beta_\mu = v_\mu / kT, \quad (18)$$

with $\beta_\mu = (\beta, 0, 0, 0)$, then

$$\beta_\mu = \delta_\mu^0 / kT, \quad \delta_\mu^\nu = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \quad (19)$$

Other authors, e.g., [12], also tried to represent the relativistic temperature exclusively as a vector. However, in our opinion, this approach to the problem is incorrect, since the photon gas in the cavity is a continuous medium. Then an expanded tensor approach is necessary to describe energy processes in it. In this case the second thermodynamics law can be represented in Minkowski space as

$$\delta\sigma = \frac{\delta Q^{ijk} g_{jk}}{T^{i\alpha\beta} g_{\alpha\beta}}; \quad i, j, k = 1, 2, 3, 4; \quad \alpha, \beta = 1, 2, 3, 4, \quad (20)$$

where the heat Q and the temperature T are tensors of rank 3, but $g_{jk}, g_{\alpha\beta}$ are covariant fundamental tensors. Formula (20) needs a special explanation.

As known, M. Planck assumed that $\sigma \neq \sigma(\mathbf{v})$, i.e., the entropy of the system varies exclusively owing to thermodynamical processes in the object under study and is independent of its velocity relative to the observer in the laboratory reference frame [2]. As will be shown below, the law (20) agrees with the Planck statement. Further, the contraction of the heat and temperature tensors with the fundamental tensors transforms them to the vectors multiplied into scalar quantities. The latter are invariant parts of the above tensors that do not vary when passing from one reference frame to another. As

to the vectors, their components are equal to unity when the moving system 4-velocity equals to zero, i.e.,

$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ i \end{pmatrix}, \quad (21)$$

$$n^1 = \frac{n^1 - \beta n^4}{\sqrt{1 - \beta^2}}, \quad n^2 = n^2, \quad n^3 = n^3, \quad n^4 = \frac{-\beta n^1 + n^4}{\sqrt{1 - \beta^2}}, \quad (22)$$

where i is imaginary unit; $\beta = v/c$,

Then the contraction in (20) of two vector quantities in indices i gives a scalar quantity, which is invariant under the Lorentz transformations. As to heat and the temperature, their invariant parts vary exclusively owing to purely thermodynamic reasons. In turn, the vector components vary exclusively, when passing from one reference frame to another. In both cases either the heat or the temperature are inversely proportional to the quantity $\sqrt{1 - \beta^2}$. Then the entropy will not change in the absence of heat input into the system. The latter is in a full accord with the results obtained in works [13, 14, and 15] where the temperature was shown to transform under relativistic conditions in inverse proportion to the quantity $\sqrt{1 - \beta^2}$. Then we can represent the temperature in Minkowski space as

$$T^i = T^{i\alpha\beta} g_{\alpha\beta} = T n^i = T \mathbf{n}, \quad (23),$$

where T is the invariant part of the tensor magnitude of rank 3, i.e., $T^{i\alpha\beta}$. In the real space formulae (20) and (23) remain unchanged with the only difference that, first, we now use affine tensors, second, the dependences (21) and (22) take the form:

$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad (24)$$

$$n^1 = \frac{n^1}{\sqrt{1 - \beta^2}}, \quad n^2 = n^2, \quad n^3 = n^3. \quad (25)$$

At $v=0$ the spatial components of T^i coincide in Euclidean space with the same components in Minkowski space.

In space-time the components of squared sum of the vector quantity $T \mathbf{n}$ read

$$T^2 n_x^2 + T^2 n_y^2 + T^2 n_z^2 = T^2 n_\tau^2 = T_x^2 + T_y^2 + T_z^2 = T_\tau^2, \quad (26)$$

invariant in all inertial reference frames.

On the other hand the invariant of this sort gives in Euclidean space

$$\begin{aligned} T^2 n^1 n_1 + T^2 n^2 n_2 + T^2 n^3 n_3 &= \\ = T^2 n^1 n_1 + T^2 n^2 n_2 + T^2 n^3 n_3 &= T_x^2 + T_y^2 + T_z^2 = \text{invar}, \end{aligned} \quad (27)$$

taking into consideration that $n_1 n^1 = 1$ (affine tensors), i.e., the spatial part of the invariant connected with the temperature 4-tensor is completely identical to the invariant connected with the temperature 3-tensor. It is very important since it allows one to solve our problem directly in Euclidean space. As to the ultrarelativistic plasma considered in [11], the aforesaid will be valid in this case as well, which will be discussed below.

c) *Radiation Intensity Dependence vs. Temperature for a Moving Black Body*

Consider a black body moving uniformly and rectilinearly at angle $\theta = 3\pi/2$ with respect to the observer in the laboratory reference frame. Based on the aforesaid and on classical methods (i.e., for $v \ll c$, see, e.g., [9, 16]) we can now begin its solution taking into consideration the follow. Now we use a cylindrical coordinate system and certain elementary normalizing volume in it. This volume contains two independent oscillators. The first oscillator is oriented parallel to axis 1. The second one is oriented perpendicularly to this axis. Then we can write an expression for the average total energy $\bar{\varepsilon}$ of the linear oscillators with quantum

numbers $n_1 = n_2 = 1$ as follows (cylindrical space, zero oscillations are neglected):

$$\bar{\varepsilon} = \overline{(\varepsilon_1 + \varepsilon_2)} = \frac{\hbar(\omega_1 + \omega_2)}{\left(\frac{\hbar\omega_1}{e^{\frac{\hbar\omega_1}{\theta_1}} - 1} \right) \left(\frac{\hbar\omega_2}{e^{\frac{\hbar\omega_2}{\theta_2}} - 1} \right)}, \quad (28)$$

where ω_1 and ω_2 are the frequencies of oscillators in the direction perpendicular and parallel to the velocity of the moving object; n_1 and n_2 are positive (quantum) integers for the oscillators in the first and second directions. In this case $n_1 = n_2 = 1$, since photons are bosons, they can be in one quantum state; T_1, T_2 are the values of the temperature tensor components.

Obtaining the formula (28), we have used the law of the probability multiplying since the both oscillators are independent one another.

Then the average volume of the total energy $\bar{\varepsilon}$ of the electromagnetic field per unit volume in the moving cavity proves to equal

$$\bar{\varepsilon} = \frac{E_0}{V_0(1-\beta^2)} = \frac{2\hbar}{(2\pi)^2 c^3} \int_0^\infty \left(\frac{\omega_1^2 d\omega_1}{e^{\frac{\hbar\omega_1}{\theta_1}} - 1} \right) \int_0^\infty \left(\frac{d\omega_2}{e^{\frac{\hbar\omega_2}{\theta_2}} - 1} \right) + \frac{2\hbar}{(2\pi)^2 c^3} \int_0^\infty \left(\frac{\omega_1 d\omega_1}{e^{\frac{\hbar\omega_1}{\theta_1}} - 1} \right) \int_0^\infty \left(\frac{\omega_2 d\omega_2}{e^{\frac{\hbar\omega_2}{\theta_2}} - 1} \right). \quad (29)$$

As a result, we have obtained, in fact, four improper integrals, three of them converge. The last two integrals in (29) differ only by variables. They are easily calculated using variable transformations as follows:

$$y_{1(2)} = \frac{\hbar\omega_{1(2)}}{\theta_{1(2)}} = \frac{\hbar\omega_{1(2)}}{kT_{1(2)}}, \quad (30)$$

$$\begin{aligned} I_1 &= \frac{2\hbar}{(2\pi)^2 c^3} \int_0^\infty \left(\frac{\omega_1 d\omega_1}{e^{\frac{\hbar\omega_1}{\theta_1}} - 1} \right) \int_0^\infty \left(\frac{\omega_2 d\omega_2}{e^{\frac{\hbar\omega_2}{\theta_2}} - 1} \right) = \frac{2\theta_1^2 \theta_2^2}{(2\pi)^2 \hbar^3 c^3} \int_0^\infty \frac{y_1 dy_1}{(e^{y_1} - 1)} \int_0^\infty \frac{y_2 dy_2}{(e^{y_2} - 1)} = \\ &= \frac{2\theta_1^2 \theta_2^2}{(2\pi)^2 \hbar^3 c^3} \cdot \frac{\pi^4}{36} = \frac{k^4 \pi^2 T_1^2 T_2^2}{72 \hbar^3 c^3} = 0.208 a T_1^2 T_2^2, \end{aligned} \quad (31)$$

where a is the Stefan-Boltzmann constant, i.e.,

$$a = \frac{k^4 \pi^2}{15 \hbar^3 c^3}. \quad (32)$$

$$I_2 = \frac{2\hbar}{(2\pi)^2 c^3} \int_0^\infty \frac{\omega_1^2 d\omega_1}{\left(e^{\frac{\hbar\omega_1}{\theta_1}} - 1 \right)} \int_0^\infty \frac{d\omega_2}{\left(e^{\frac{\hbar\omega_2}{\theta_2}} - 1 \right)} = \frac{2\hbar}{(2\pi)^2 c^3} I_2' I_2'', \quad (33)$$

$$I_2' = \int_0^\infty \frac{\omega_1^2 d\omega_1}{\left(e^{\frac{\hbar\omega_1}{\theta_1}} - 1 \right)} = \frac{\theta_1^3}{\hbar^3} \int_0^\infty \frac{y_1^2 dy_1}{(e^{y_1} - 1)} = \frac{\theta_1^3}{\hbar^3} \Gamma(z) \zeta(z) = \frac{\theta_1^3}{\hbar^3} \cdot 2 \cdot 1.5498 \approx 3.1 \frac{\theta_1^3}{\hbar^3}, \quad (34)$$

where $\Gamma(z)$ is the gamma function [17],

$$\zeta(z) = \sum_{k=1}^{\infty} \frac{1}{K^z} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots \approx 1.5498; \quad \Gamma(z+1) = \Gamma(z); \quad \Gamma(1) = \Gamma(2) = 1.$$

$$I_2'' = \int_0^\infty \frac{d\omega_2}{\left(e^{\frac{\hbar\omega_2}{\theta_2}} - 1 \right)} = \frac{\theta_2}{\hbar} \int_0^\infty \frac{dy_2}{(e^{y_2} - 1)} = \frac{\theta_2}{\hbar} \left[-y + \ln(-1 + e^y) \right]_{y=0}^{y \rightarrow \infty}. \quad (35)$$

As seen, the integral (35) is integrated by quadratures but it diverges within the interval $0 - \infty$, namely,

$$I_2'' = \frac{k|T|}{\hbar} \left[-y + \ln(-1 + e^y) \right]_{y=0}^{y \rightarrow \infty} \rightarrow \infty, \quad y = \frac{\hbar\omega_2}{k|T|}, \quad (36)$$

however, we can overcome the difficulties that have arisen. Indeed, we obtain the infinity for zero in the bottom limit of the integral (35). But we can take a number ϑ in the bottom limit of (35) instead zero. The number has to be very close to zero at a given temperature taking into account of the energy, by which we neglect. It must be much less than the whole energy radiated by the black body in this direction, i.e.,

$$\vartheta \ll \left[-y + \ln(-1 + e^y) \right]_{y=\vartheta}^{y \rightarrow \infty}. \quad (37)$$

Here we should note that a conscious inaccuracy was made in the classical method of obtaining Stefan-Boltzmann's law. As known, according to this method, the integration takes place in the space of positive (quantum) integers. But they form a continuum for large values. If the integers are small, there is a discrete series, and we cannot formally integrate. If nevertheless we are doing that, we have:

$$I_2'' = \int_{\vartheta}^{\infty} \frac{d\omega}{\left(e^{\frac{\hbar\omega}{k|T|}} - 1 \right)} = \frac{k|T|}{\hbar} \int_{\vartheta}^{\infty} \frac{dy}{(e^y - 1)} = \frac{k|T|}{\hbar} \left[-y + \ln(-1 + e^y) \right]_{y=\vartheta}^{y \rightarrow \infty} = \Lambda \frac{k|T|}{\hbar}. \quad (38)$$

As a result, we have for I_2 :

$$I_2 \approx \frac{2\hbar}{(2\pi)^2 c^3} I_2' I_2'' = 3.1 \frac{2\theta_1^3 \theta_2}{(2\pi)^2 \hbar^3 c^3} = 0.238 \Lambda a T_1^3 T_2, \quad (39)$$

and

$$\varepsilon = \frac{E_0}{V(1-\beta^2)} = 0.208aT_1^2T_2^2 + 0.238\Lambda aT_1^3T_2 . \quad (40)$$

If the velocity $v=0$, we have from (40):

$$\varepsilon_0 = aT_0^4(0.208 + 0.238\Lambda) , \quad (41)$$

but after this condition we must have $0.208 + 0.238\Lambda = 1$ according to Stefan-Boltzmann's law. Then $\Lambda = 3.33$ and

$$\varepsilon = \frac{E_0}{V_0(1-\beta^2)} = 0.208aT_1^2T_2^2 + 0.792T_1^3T_2 = 0.208T_{(0)1}^2 \frac{T_{(0)2}^2}{1-\beta^2} + 0.792T_{(0)1}^3 \frac{T_{(0)2}}{\sqrt{1-\beta^2}} \quad (42)$$

36

for the energy density of radiation under relativistic conditions.

Now we show that the condition (37) is met, i.e., that quantity ϑ is near to zero and much less than $[-y + \ln(-1 + e^y)]_{y=\vartheta}^{y \rightarrow \infty}$.

First, we should solve a transcendent equation

$$\Lambda = 7.22 = \vartheta - \ln(-1 + e^\vartheta) , \quad (43)$$

its solution (see Appendix below) is:

$$\vartheta = -\ln(1 - e^{-\Lambda}) . \quad (44)$$

and $\vartheta \approx 0.0416 \ll 3.33$. As we see, condition (37) is full met.

III. DISCUSSION

It should be noted at once that the dependence (42) does not lead to the point of absurdity and contradictions. The dependence (42) provides rather a probable answer to the question concerning the temperature transformation under relativistic conditions. It is evident that the dependence (1) is incorrect and would be rejected many years ago and without all mathematical involvements if it were not a giant authority of Planck and Einstein. Really, how is the dependence (1) be followed if such cosmic objects as quasars do exist, whose velocity v of motion can be equal $0.93c$ with the luminosity reaching enormous values? The first principle of thermodynamics leads to the point of absurdity under relativistic conditions if one considers that the temperature of the object under study varies

with proportion to $\sqrt{1 - \frac{v^2}{c^2}}$ as $v \rightarrow c$. Indeed, in order

to obtain the Lorentz transformation from the first principle of thermodynamics we have to express the heat throw the temperature, i.e., $dQ = TdS$ or $dQ = SdT$. The entropy is a Lorentz invariant, i.e., $S = S_0$. If we did not input the heat in the studied system accelerating it up to speed v , then $TdS = 0$ and

the quantity T disappears from the equation. Only the term SdT gives us the result; it is $T = T_0 / \sqrt{1 - \beta^2}$. However, e.g., Einstein [8], uses the expression $Q = Q_0 \sqrt{1 - \beta^2}$ and it means that $T = T_0 \sqrt{1 - \beta^2} \neq 0$ as $S = S_0$. It is a nonsense.

In the most general case the temperature is a complex mathematical object. It comprises an invariant part independent of the motion velocity and a part dependent on the velocity and oriented in space. Under normal conditions the temperature becomes a scalar, the same does for the heat. The entropy problem has not been studied completely. It is not improbable that the entropy can be a tensor object in which indices are contracted which results in a scalar independent of the system motion velocity. Evidently, it is for experiment to solve this problem. However no experiment has been performed since the birth of relativistic thermodynamics in 1907. Of course, the law (20) requires justification at the molecular level, however it is other problem.

Having obtained the above results, we can now make important conclusions concerning relativistic thermodynamics as a whole. First of all, they concern a relativistic temperature T . Taking into consideration the above results and results obtained in [3, 13-15, 18 - 23], we can now contend with a high degree of probability:

only the dependence of the kind $T \sim 1/\sqrt{1-\beta^2}$ provides a possibility of obtaining a consistent relativistic thermodynamics, which is correct over the entire interval $0 - c$ of the motion velocities of the object under study. As a proof of this argument we represent all fundamental thermodynamical parameters and dependences (as already known and obtained recently) containing them. There is the temperature in these parameters and dependences. It varies in inverse proportion to $\sqrt{1-\beta^2}$.

1. The average value of kinetic energy of the molecule (atom) translational motion:

$$\bar{\varepsilon} = \frac{3}{2}kT. \quad (45)$$

Evidently, the dependence (45) is correct over the entire interval of object motion velocities if the temperature varies in inverse proportion to $\sqrt{1-\beta^2}$.

2. The equation of state of perfect gases [13, 20]:

$$\frac{pV}{1-\beta^2} = NkT, \quad (46)$$

naturally, for the observer in the laboratory reference frame; the pressure p is Lorentz invariant; the volume of gas $V = V_0 \sqrt{1-\beta^2}$.

3. The equations of state for the interface separating a pure liquid and its vapours [13, 20].

The equations are valid over the entire interval $0 - v$ of the object velocities if $T = T_0 / \sqrt{1-\beta^2}$; besides, the surface tension is Lorentz invariant like the pressure.

4. The thermodynamic potentials (internal energy, enthalpy, free energy, free enthalpy) including their specific (J/cm^2) values [15]

Dependences obtained are correct on the entire velocity interval $0-v$ if $T = T_0 / \sqrt{1-\beta^2}$; the dependences are not contradictory and absurdity. A similar result is obtained for the chemical potential (including its specific values), i.e., $\mu \sim 1/\sqrt{1-\beta^2}$ [23, 24].

As known, the chemical potential of photon gas equals to zero. This fact does not contradict the latter relation. Indeed, write down it as

$$\mu_i(x, y, z) = \text{const} / \sqrt{1-\beta^2},$$

$\text{const}=0$ for the photon gas. As $v \rightarrow c$ the root in the relation tends to zero, however $0/0$ in the right-hand-side of the relation will be equal to zero because the root only tends to zero but const equals zero by definition.

5. Small fluctuations of volume, microparticles, temperature [22].

The dependences obtained are valid for intervals of object velocities where fluctuations are small. If the temperature in the formulae obtained varies in inverse proportion to $\sqrt{1-\beta^2}$, we do not come to any contradictions or absurdity.

6. The theory of the charge transfer according to H.Ott and E.V.Veitsman[3, 25].

The theory is correct under relativistic conditions if only the object temperature varies in inverse proportion to $\sqrt{1-\beta^2}$.

7. A closed thermodynamical cycle and the well-known thermodynamical principles as follows

$$\oint \delta E = 0,$$

$$\oint \delta S = \oint \frac{\delta Q}{T} = 0,$$

are correct if $T = T_0 / \sqrt{1-\beta^2}$ [3, 22].

8. The radiation energy and momentum vary in the range $0 - c$ inverse proportional to $\sqrt{1-\beta^2}$, i.e., as $T = T_0 / \sqrt{1-\beta^2}$ [3].

9. Chemical reaction rates w , e.g.,

$$w = \frac{1}{v_A} \frac{d[A]}{dt} = aA_r = (aRT) \frac{A}{RT} = a_1 A_1,$$

vary over the interval $0 - c$ inverse proportional to $\sqrt{1-\beta^2}$, i.e., as $T = T_0 / \sqrt{1-\beta^2}$ [23]. Here v_A is the stoichiometric coefficients of the substance A; A_r is the affinity according to De Donde; a is a phenomenological coefficient.

We cannot obtain a consistent aggregate of the thermodynamic parameters and dependences containing the parameters under Lorentz transformation if $T = T_0$ and $T = T_0 \sqrt{1-\beta^2}$. What is more, we sometimes come to contradictions with special relativity and the first principle of thermodynamics using these relations, e.g., $T = T_0$ (see below). As to the theories where the latter temperature transformations are used for a specific process, and contradictions are absent at first sight, so we again come to absurdity but in a implicit form. For example, Clapeyron's equation $pV = NkT$ is quite formally correct under relativistic conditions even if the gas temperature varies according to Planck, however at the same time formula (45) describing the energy of the molecule (atom) translational moving is correct under the relativistic

conditions if the temperature of the object transforms only following Ott's theory. The other variants are absent here. However this dependence and Clapeyron 's equation treat the same division of physics – thermodynamics of gases and vapours. But if in the framework of this division of physics the temperature of the system may transform under relativistic conditions otherwise, then it is nonsense.

Take, e.g., the equality $T=T_0$ ($T=T'$). As known, the temperature of gases or liquids depends on the velocities w their molecules (atoms) relatively the mass centre of the system under study. Let us be an observer in the laboratory references frame (see above, Fig.1). He is observing the microparticle velocities relatively the mass centre of a moving system containing a gas. The velocity components are equal according to SR:

$$w_1 = \frac{\dot{w}_1 + v}{1 + \frac{v\dot{w}_1}{c^2}},$$

$$w_2 = \frac{\dot{w}_2 \sqrt{1 - \beta^2}}{1 + \frac{v\dot{w}_1}{c^2}},$$

$$w_3 = \frac{\dot{w}_3 \sqrt{1 - \beta^2}}{1 + \frac{v\dot{w}_1}{c^2}}.$$

As we see, the velocity w has to vary at transition from one reference frame to another one. The equality $T=T_0$ contradicts to SR. It contradicts also the first principle of thermodynamics. Indeed, according to Callen and Horwitz [4] enthalpy H , chemical potential μ and temperature T are the Lorentz-invariants. However, then we will be at a deadlock because according to the Gibbs' equation (it follows from the first principle of thermodynamics)

$$T = \left(\frac{\partial H}{\partial S} \right)_{p,N}; \mu = \left(\frac{\partial H}{\partial N} \right)_{S,p}, \quad (47)$$

where S is the entropy, p is the pressure and N is the number of microparticles in the system. Going from one referee frame to other one, we obtain in (47) 0/0, i.e., indeterminate forms which we cannot evaluate.

Of utmost interest is to consider if the dependence (20) remains valid for the case of an ultrarelativistic high-temperature spherical plasma (fireball) [11]. According to the author of [11], the spectrum of its equilibrium radiation $d\epsilon_\gamma(\omega_*)$ (J/cc)

due to the annihilation of electrons and positrons is described by the dependence

$$d\epsilon_\gamma(\omega_*) = \frac{T^4}{\pi^2 \hbar^3 c^3} \frac{\omega_*^2 \sqrt{\omega_*^2 - \Delta^2 f}}{e^{\omega_*} - 1} d\omega_*, \quad (48)$$

in the fireball, where $\omega_* = \hbar\omega/T$ is the dimensionless frequency; $T > mc^2$ is the energy, i.e., apparently, $\theta = kT$ (k is the Boltzmann constant, T is now the absolute temperature; θ not to be confused with the angle similarly designated (see above); $\Delta = \hbar\omega_{p,rel}/T$; $\omega_{p,rel}$ is the relativistic frequency of the plasma oscillations; f is a dimensionless constant.

Formula (20) is valid for the case (48) with the vector part of the temperature dependent on the total velocity of electrons and positrons in the fireball but not on the velocity of its centre of mass. If their velocities are very high, then we have the well-known case described, e.g., in [10]. This is the case of a system of particles being widely apart and moving with very high velocities. It should be noted that these two cases are not fully identical, since the microparticles in [10] are not identical before and after the collision. In article [11], an electron-positron collision results in their annihilation. However these cases are very similar, thus the system energy ϵ may be given as

$$\epsilon \sim \sum \frac{m_i c^2}{\sqrt{1 - \frac{v_i^2}{c^2}}}, \quad (49)$$

where m_i is the microparticle mass, v_i is its velocity.

Then the vector part of the temperature in the ultrarelativistic case will transform in inverse proportion of the roots $\sqrt{1 - v_i^2/c^2}$. Here we immediately arrive at the conclusion that the dependence (48) is very doubtful, since the right side does not transform identically to its left side under the relativistic conditions. It should be also noted that the object studied in [11] is, in fact, a stable fireball. Evidently, when the density of electrons and positrons exceeds a certain limit, the stability will be broken, and an explosion will occur.

IV. CONCLUSIONS

Law was obtained for the black-body radiation in the whole interval of its (black-body) movement speed, i.e., from zero up to the speed of light in vacuum. This law is a special case when an angle θ between the movement velocity of the object under study and the observer is equal to zero. When the black-body speed is zero we obtain Stefan-Boltzmann law; when the black

body speed tends to the speed of light in vacuum we do not come to absurdity and contradictions.

Appendix. Obtaining the solution of (44).
We have from (43)

$$\ln e^g - \ln(-1 + e^g) = \ln e^\Lambda, \quad (50)$$

$$\ln \left[\frac{e^g}{-1 + e^g} \right] = \ln e^\Lambda, \quad (51)$$

$$\left[\frac{e^g}{-1 + e^g} \right] = e^\Lambda, \quad (52)$$

$$e^{-\Lambda} e^g = -1 + e^g, \quad (53)$$

$$(e^{-\Lambda} e^g - e^g) = -1, \quad (54)$$

$$e^g (e^{-\Lambda} - 1) = -1, \quad (55)$$

and finally

$$g = \ln \left(-\frac{1}{e^{-\Lambda} - 1} \right) = \ln \left(\frac{1}{1 - e^{-\Lambda}} \right) = -\ln(1 - e^{-\Lambda}), \text{ i. e., (44).}$$

REFERENCES RÉFÉRENCES REFERENCIAS

1. K. von Moesgeil. Theorie der stationären Strahlung in einem gleichformig bewegten Hohlraum, Annalen der Physik, Vol.22, №5, 867 – 904, 1907
2. M. Planck. Zur Dynamik bewegter Systemen, Annalen der Physik, Vol. 26, №6, 1- 34, 1908.
3. X. Ott. Lorenz-Transformation der Wärme und der Temperatur, Zeitschrift f. Phys., Vol.175, №1, 70-104, 1963.
4. H. Callen, G. Horwitz. Relativistik Thermodynamics, Am. J. Phys., Vol.39, №8, 938 – 947, 1071.
5. G.Cavalleri, G. Salgarelli. Revision of the relativistic dynamics with variable rest mass and application to relativistic thermodynamics, Il nuovo cimento. Organo della società italiana di fisica, ser.10, Vol. A62, №№ 2 – 4, 722 – 754, 1969.
6. P.T. Landsberg, G.E.A. Matsas. Laying the ghost of the relativistic Transformation, Physics Letters A, Vol. 223, 401-403, 1996.
7. P.T. Landsberg, G.E.A. Matsas. The impossible of an universal relativistic temperature transforming, Physica A, Vol. 340, №№1 – 3, 92 – 94, 2004.
8. A. Einstein. Ueber das Relativitätsprinzip und die aus demselben gezogenen Folgerungen, Jahrbuch deutsche Radioaktivität und Elektronik, №4: 411 – 462, 1907.
9. V.G. Levich. The Course of Theoretical Physics, V.1., Fizmatgiz, Moscow, 1963.
10. V.H. Hamity, Relativistic Thermodynamics, Phys. Rev., Vol. 187, №5, 1745 – 1752, 1969.
11. M.V. Medvedev. Thermodynamics of photon in relativistic e^+e^- plasma, Phys. Review E., Vol. 59, №5, 4766 – 4768, 1999.
12. R. Hakim, A. Mangeney. Remarks on Relativistic Thermodynamics, Lettere al Nuovo Cimento. Revista internazionale Society della italiana Di Fisica, seria 1, Vol.1, №9, 429 – 435, 1969.
13. E.V. Veitsman. Some Problems in Relativistic Thermodynamic, J. Experimental and Theoretical Phys., Vol. 105, №5, 1057 – 1067, 2007.
14. E.V. Veitsman. On Relativistik Surface Tension, J. Colloid Interface Sci., Vol. 265, №1, 174 – 178, 2003.
15. E.V. Veitsman. Specific thermodynamical potentials on surfaces under relativistic conditions, J Colloid Interface Sci., Vol. 337, №2, 355-357, 2009.
16. Y.P. Terletsky. Statistical Physics, Vissnaya Shkola, Moscow, 1966.
17. A.P. Prudnikov, U.A. Brychkov, O.I. Marichev. Integrals and Series, V.1 (Page 177), Fizmatgiz, Moscow, 2003.
18. E.V. Veitsman. Interrelation between thermodynamic processes in moving systems, Technical Physics, Vol. 55, №5, 595 – 600, 2010.
19. E.V. Veitsman, Galilean Electrodynamics. Irreversible process thermodynamics of continuous systems under relativistic conditions, Vol. 23, 23 - 32 (2012).
20. E.V. Veitsman, Relativistic state equations for the interface, J. Colloid. Interface Sci. Vol. 290, 231 - 234 (2005). Corrigendum's. 295. 592 (2006); 333, 411 (2009).
21. E.V. Veitsman. First Principle of thermodynamics under relativistic conditions. General case, Vol. 30, p.63 – 72, 2019.
22. E.V. Veitsman, Galilean Electrodynamics. Temperature and small fluctuations in a velocity interval of a moving medium, Vol. 26, 23 - 31 (2015).
23. E.V. Veitsman. On the bond between the chemical reaction rate and the velocity of the system under study, Am. J. Mod. Phys., Vol 2, 93 - 97 (2013).
24. E.V. Veitsman. On the rate of relativistic chemical reactions, J. Colloid Interface Sci., Vol. 275, 555 - 559 (2004).
25. E.V. Veitsman, Universal J. Phys. And Application, Vol. 9, 47 - 57 (2015).

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

The New View at the Physics of the Planet Earth

By Danilov Vladimir Igorevich

Technical University (MADI)

Annotation- In this article, a solution is proposed for several questions that have been facing modern Earth Science for a long time.

The questions of Earth's magnetic field physics, mountain formation, oceanic currents, tides, earthquakes, geodynamics and other natural phenomena caused by the influence of external gravitational forces are considered. A different view of the underlying physics allows for an easy and well-argued explanation of many natural phenomena, making it understandable even to unprepared readers. This view, when applied to other planets, can help in explaining other phenomena in the Solar System.

It is hoped that the scientific community will adopt this new explanation as a tool for further investigation of nature. Any constructive criticism on the topic is welcome.

Keywords: *geotectonics, mountain building, planetary magnetic field, ocean currents, tides, satellite movement.*

GJSFR-A Classification: DDC Code: 785.8 LCC Code: M1003

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

The New View at the Physics of the Planet Earth

Danilov Vladimir Igorevich

Annotation- In this article, a solution is proposed for several questions that have been facing modern Earth Science for a long time.

The questions of Earth's magnetic field physics, mountain formation, oceanic currents, tides, earthquakes, geodynamics and other natural phenomena caused by the influence of external gravitational forces are considered. A different view of the underlying physics allows for an easy and well-argued explanation of many natural phenomena, making it understandable even to unprepared readers. This view, when applied to other planets, can help in explaining other phenomena in the Solar System.

It is hoped that the scientific community will adopt this new explanation as a tool for further investigation of nature. Any constructive criticism on the topic is welcome.

Keywords: *geotectonics, mountain building, planetary magnetic field, ocean currents, tides, satellite movement.*

Note: As this article was being written, the sad news came of the passing of Seiya Uyeda on January 19, 2023 at the age of 93. Seiya Uyeda was a member of the Japanese Academy of Sciences, a professor at Tokyo and Tokai Universities, a foreign member of the academies of sciences of various countries, including the Russian Academy of Sciences. His scientific interests included the magnetism of rocks, heat flows on oceans and land, plate tectonics, dynamics of subduction zones, etc.

I. INTRODUCTION

This article is written under the impression of reading Seiya Uyeda's (上田誠也) book "The New View of the Earth. Moving Continents and Moving Oceans".

A wonderful book where, in simple Japanese, ordinary words, without cluttering the text with elaborate expressions and a multitude of mathematical formulas, without introducing unclear, rather unrealistic, assumptions, the author spoke about the process of understanding the structure of our planet. He approached the material being considered very critically, indicating not only accepted facts, but also contradictions. He argued the unsoundness of some hypotheses, but in others, he did not notice any obvious distortions of reality.

Although the result of the research conducted by him was an increase in the number of questions rather than found answers, this work determined the main circle of issues that should be given attention to understand the physics of processes occurring on the

planet. As they say, "Correctly posed questions are already half the way to a solution».

The goal of this article will not only be to answer the questions raised in the book, but also to add others, explain them, and also bring them together into a single mechanism that controls the majority of processes happening on the planet and that can be applied to any Earth-like planet.

Like in the book of Uyeda, the article will not contain formulas or unverified numbers. All evidence is presented in the form of measurement results that visually show the behavior of the parameters being considered, and in the form of graphs. Also, natural phenomena that can be observed should and can serve as evidence. They can be considered as the results of experiments set by nature. The combination of these phenomena provides a basis for the assertion of the validity of the proposed approach to the physics of the planet.

Since the book is quite large in volume and there is no possibility, or need, to transfer all of the interesting information in it, we will only quote the specific tasks or puzzles in it that require an answer.

The main natural phenomena, according to Uyeda and his predecessors, that are subject to consideration and resolution are: "Some Unsolved Problems in Geophysics" written by JI. G. Adams, President of the American Geophysical Union, in 1947, and in it, the following six problems were listed:

1. Origin of mountain systems;
2. Origin of geosynclines (deep basins filled with deposits);
3. Causes of volcanic eruptions and other magmatic processes;
4. Causes of deep-focus earthquakes;
5. Origin of Earth's magnetic field;
6. Temperatures prevailing in the Earth's depths.

Although the listed problems were not the only pressing issues, they were indeed of great importance. Furthermore, none of them has been fully resolved to this day; all of them remain as pressing as ever.

Page 9, Uyeda [1].

Following is the question of mobilism, that is, the movement of continents- what and how does it drive them to move? The hypothesis of movement from the process of cooling of the internal mass is shown to be insufficient.

This ends the list of questions in the book.

Allow me to add more to this list:

Author: e-mail: danvlad@bk.ru

How is the mass distributed inside the planet?

How is the high temperature inside the planet maintained? (almost a repetition of the 6th question from the book)

The shape of the Earth geoid- why?

What forces drive the movement of ocean waters, creating the main ocean currents?

How to explain the behavior of water tides in the ocean?

What forces drive the air masses reaching stratosphere heights?

"Killer waves"- the reason for their appearance?

Since the laws of physics apply to other planets as well, it's probably appropriate to add another question to these issues- the behavior of the Moon. Why does it and many other planet's moons rotate around their axis as they orbit their planet? Although these questions appear to be from different fields of knowledge and involve different phenomena and even planets, as will be shown below, they are united by one force, or rather, its manifestation. This is the external force of gravity acting on the internal mass of the planet, leading to the phenomena mentioned above. Of course, not all problems explained by the proposed mechanism of planetary interaction are addressed. Some can be seen in the article [18], where more data from measurements and observed facts are presented.

Let's consider the principle of nature study set by Newton: "I do not invent hypotheses. Everything that cannot be deduced from phenomena should be called a hypothesis; but metaphysical, physical, mechanical, and hidden properties have no place in experimental philosophy".

All the laws he derived are real and still work today. He also said, «...Either don't report anything new or have to spend all your energy defending your discovery».

We will answer all the questions asked, though it may not be in order. The first and main one will be the distribution and movement of matter inside the planet. All the others will be additional confirmations of the first, as they are manifestations of it. Additionally, I would like to mention the excellent book by O.N. Korotsev, "Astronomy," which gave a lot of insight into what is happening on the planets.

Accepted but not real.

It is necessary to immediately say about those postulates that are now accepted by some, but in reality have no place to be:

- "Coriolis force" - this force does not actually exist. It is a hypothetical "force" introduced to describe the behavior of a body when transitioning from different observation systems. There is no source of this force in nature. It does not move or act on anything.
- Satellites do not fall or miss their planets. They move in orbits where the centripetal forces are equal to the gravitational (attractive) forces. There is no

free fall with acceleration, and therefore tidal effects can be observed.

- Convection inside a planet. Convection cannot exist within a planet's body. Often, the example of a heating teapot is used to describe convection, but a planet is not a teapot, it is more like a thermos. And in a thermos there can be no convection- once the temperature is distributed, it will not change this distribution if there are no external influences. Of course, this is without taking into account minor, insignificant losses. If the planet is not heated by the Sun, then the temperature on the surface will drop to minus, which means that internal heating of the planet is very small.

In Uyeda's book, the question of convection is given a lot of space- from pages 171 to 190. Many options are considered, even up to convection in the mantle!!! The result was such a statement: "There is no need to say that the problem has not been finally solved by us. A whole series of scientists continues to work on it and at present time».

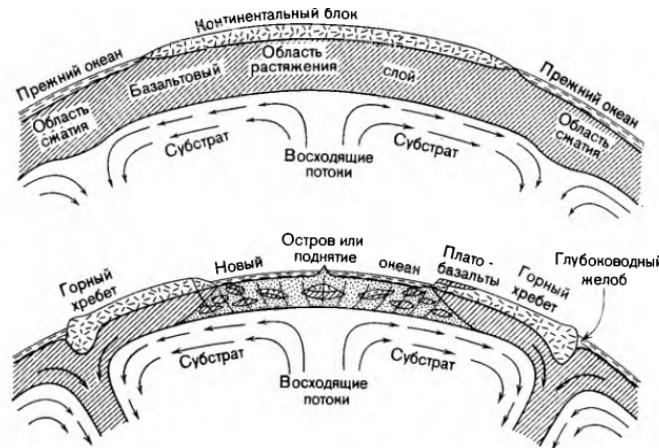


Рис. 1-14. Модель конвекции в мантии как возможного механизма континентального дрейфа [24].

Показано растаскивание континента восходящими мантийными потоками и образование нового океана в результате разрастания рифта. В районе нисходящего потока образуется горный хребет, а рядом с ним — глубоководный желоб.

Drawing from the Uyeda book

Such drawings do not reflect reality - rising streams will not cool down without cooling. The ocean does not boil, does not receive heat, and the temperature difference on the surface of the planet and under the crust exceeds 3000 degrees Celsius. There is no active heat transfer. A thermos, in fact a very good one, has been working for many centuries.

These streams explain the generation of the planet's magnetic field, these streams explain tectonic movements and much more.

Taking the hypothesis of convection as a working one and building theories on this basis, scientists are far from reality, replacing them with fantasies. Reality, at least on the example of a kettle, says that the kettle, in the end, boils and there is no convection in it, there is a fierce mixing with one temperature throughout the volume. For reference, the boiling temperature of iron and silicon is only 2800 degrees Celsius.

Additionally, it is worth noting that convection requires a constant inflow of energy. It follows that there must be a perpetual, inexhaustible source of heat inside! The reality observed on the planet does not provide examples of this. Based on what has been said, it must be considered that everything underlying this hypothesis is definitely false (see Newton's law).

- It is doubtful to consider nuclear reaction (radiogenic hypothesis) as a source of maintaining high temperature inside the planet for the following reasons: the lava flowing from volcanoes is less radioactive compared to, for example, the radiation from an atomic power plant reactor. Also, the concentration of radioactive elements is very low in the overall mass of the planet. Most of them have a short half-life.

- The inflow of water into the ocean does not correspond, or even contradicts, the inflow (bulge) of the Earth's crust.

II. DISTRIBUTION OF MASS WITHIN A PLANET'S BODY

Based on the previously mentioned Newton's principle, let's see what "phenomenon" can be taken as a prototype of the planet. A very suitable for this is the well-known spherical aquarium. It is filled with water and various materials with different specific weight - sand, stones, plastic toys, fish, feed, etc. As they are distributed, everyone knows. If you tilt it, a shift will occur, and if you rotate it, a constant movement directed towards the Earth by the heavy mass will occur. The aquarium is in a constant gravitational field of the Earth, similarly the Earth is in the attraction field of the Sun. And the Earth is such an aquarium relative to it. And the distribution will be similar - closer to the Sun, heavy masses, the lightest on the opposite side. Now if we imagine that the walls of the aquarium are made of soft, rubber-like material, we can simulate the behaviour of the Earth's crust under the action of the attraction forces of the Sun. If we add water to an inflated air balloon, we will get a visual representation of the behaviour of the Earth's crust - "hump" and its movement upon rotating the balloon.

It should be noted that the planet is in a nearly equipotential field of the Sun, meaning that any part of it is attracted to it equally. The distance to the Sun is immeasurably larger than any distance on the planet.

The only significant difference between these two vessels is that the weak gravitational forces of the mass located inside the aquarium do not affect its distribution, or rather do not show themselves, while large masses of the planet can redistribute it.

Inside the planet, if considered separately from external forces, the total gravitational attraction vector at any point is directed towards the center, and the value of the force decreases to zero at the center where the bi-directional attraction from the peripheral masses is compensated.

If external gravitational forces are absent, the heavy components of the planet's matter will strive to sink into the central region, driving the lighter ones closer to the surface.

Therefore, the regions where denser masses can accumulate are located in the center of the planet and closest to the external source of gravity and the inner side of the crust.

Since the main external sources are two - the Sun- distant but powerful, and the Moon- much less massive but close, then there are three places of accumulation of heavy masses. Two of them are very dynamic, and the central one should be subject to oscillation and may even follow the first two. It is currently impossible to determine. Measurements based on single seismic waves cannot reflect the real picture due to the speed of events. Perhaps additional measurements of gravitational forces will be required. In our case, to describe the phenomena on the surface, it

does not play a decisive role. For simplicity of description, let's assume that it moves. Let's call it the heavy part of the planet's core.

Let's consider the gravitational forces from which masses affect the readings of the gravimeter sensor. (Fig. 1.)

- F_3 is the constant force of attraction of a planet's stationary mass.
- F_M is the variable force of attraction of the Moon.
- F_{M1} is the variable force of attraction from the mass of the core attracted by the Moon.
- F_{M2} is the variable force of attraction from the mass of the core attracted by the Sun.
- F_C is the variable force of attraction of the Sun.

At the same time, F_{M1} and F_{M2} depend on the values of F_C and F_M , as well as on the position of the Sun and the Moon relative to each other and to the Earth. In addition, the data measurements are affected by the location of the masses attracted by the Sun and the Moon, as the projections on the vertical are measured, and the same mass located directly under the sensor will show a higher value than one at the same distance but at an angle.

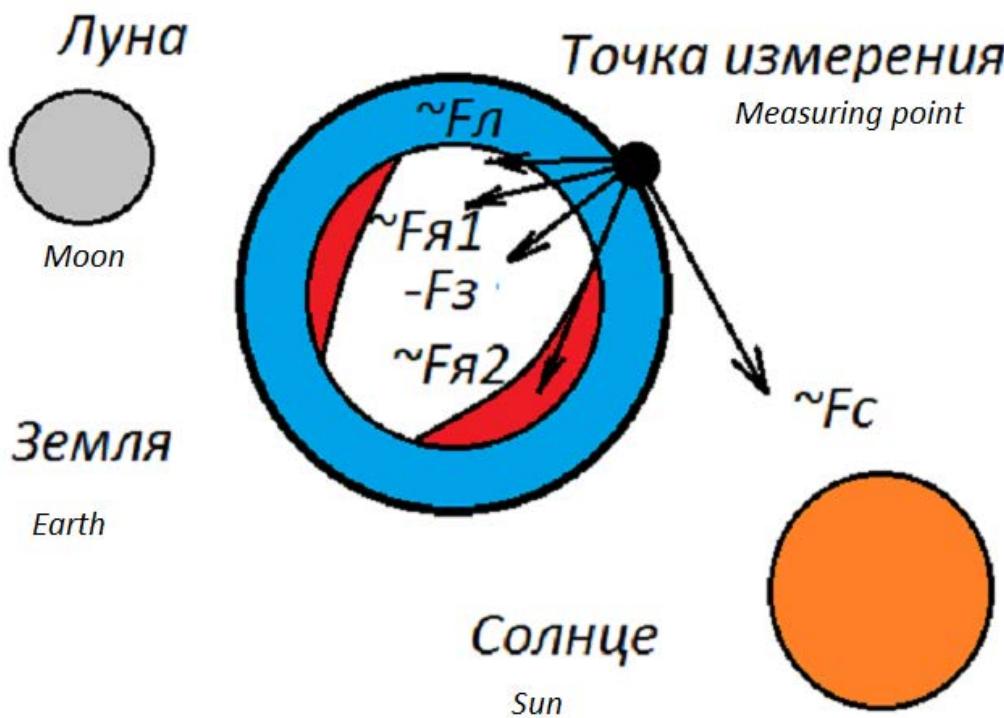


Fig. 1: Schematic diagram of forces composing the readings of the gravimeter

a) Seasonal shifts in the trajectory of the core movement

In reality, the heavy part of the core moves from East to West and in a spiral North-South and back, with

a change in the planet's position relative to the Sun (change of season). (Fig. 2)

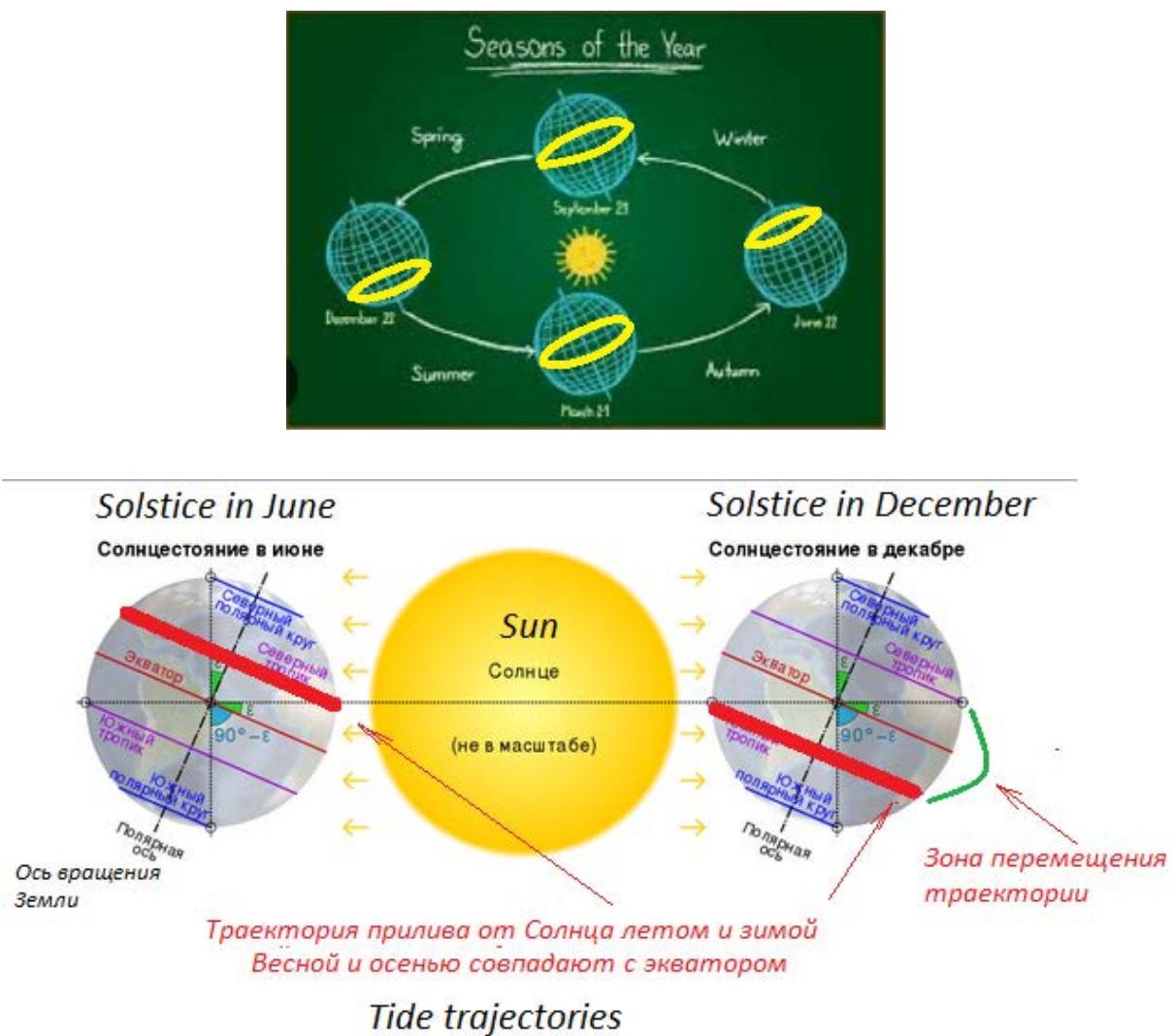


Fig. 2: Seasonal changes in the trajectory of the heavy part of the nucleus

b) Analysis of the results of gravity force measurements

The study of the behaviour of gravitational forces, presented by employees of the DVO RAN laboratory, some of which are presented in work [7], and combined with their positions of the Sun and Moon,

calculated at the same time and tied to the station's location, confirms the mechanism of the behaviour of the planet's internal masses previously discussed using the aquarium as an example.

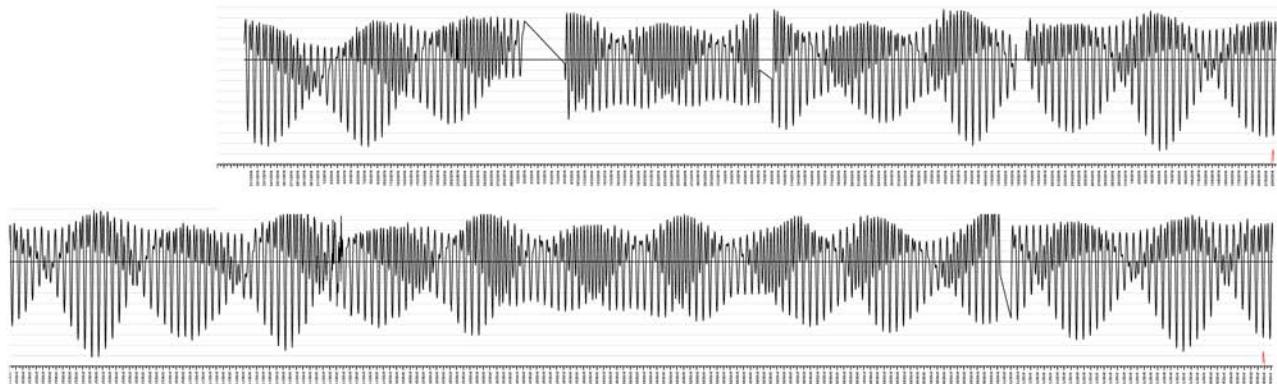


Fig. 3: Gravitational force behavior before June 22nd, 2016 (upper), 2013 (lower), and its mirror reflection after. Coast area of the Sea of Japan

The changes in the trajectory of the heavy core's movement are clearly shown in the gravity charts for the year (Fig. 3).

It is very well seen that there is almost a perfect match between the values before June 22nd and its mirror reflection after. This means that after the day of

solar opposition, the mass inside the planet with the same daily and monthly dependence returns to the Southern Hemisphere, where, after reaching the maximum distance on December 22nd, it begins to move back. And so on, forever. Movement without end. (Fig. 2).

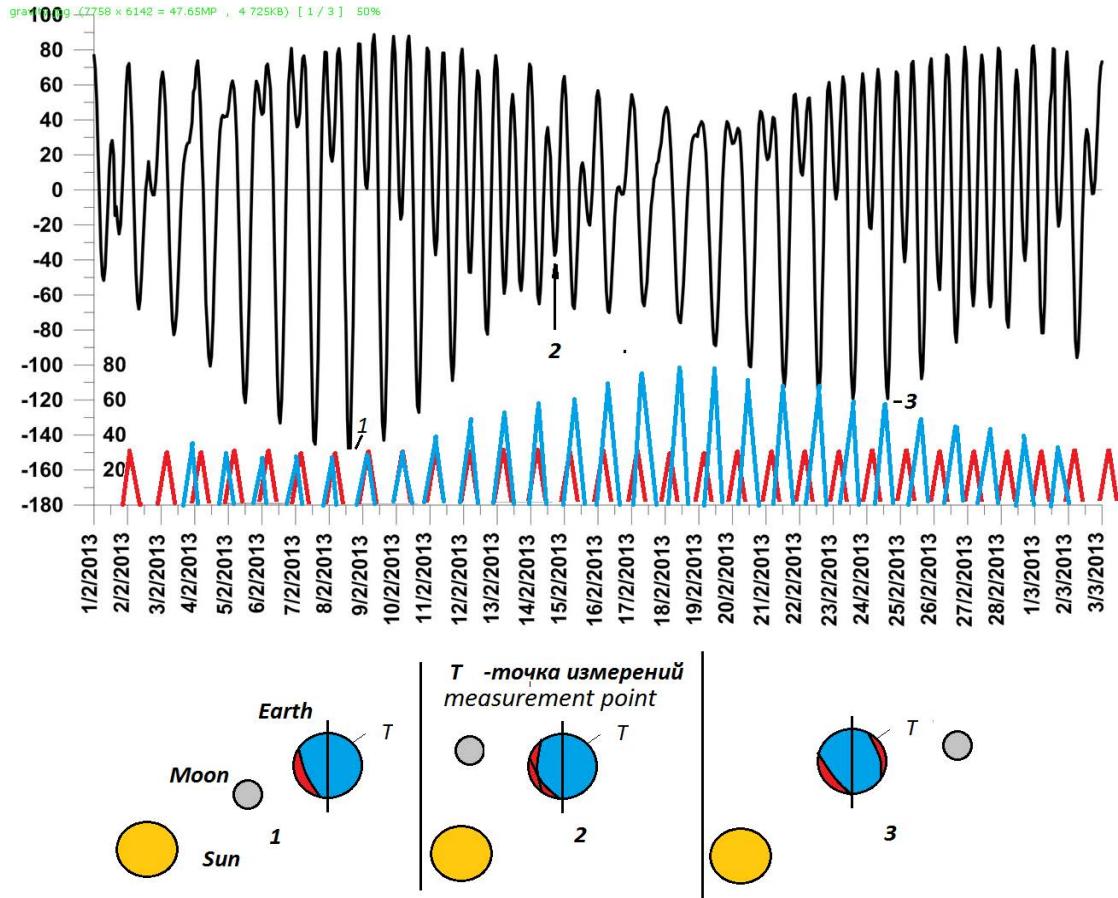


Fig. 4: The graph of the forces of attraction and a hypothetical illustration of the positions of the planets for the selected minimum values that occur during nighttime. February 2013. The Sun is indicated in red and the Moon in blue- sunrise, zenith, sunset

The graphs also show a decrease in amplitude in the spring and autumn months.

If we assume there is no movement of the core, then in the winter, when the Sun and Moon rise the lowest above the horizon, the change in gravitational forces should be of the lowest amplitude. But the measured values indicate otherwise. The increase in amplitude of the signal is caused by the approach and removal of the planet's internal mass.

The heavy part of the core can move away from the measurement point by a significant distance. Such a removal will necessarily lead to a change in the gravimeter readings, which is observed and very sharp, with a quadratic dependence.

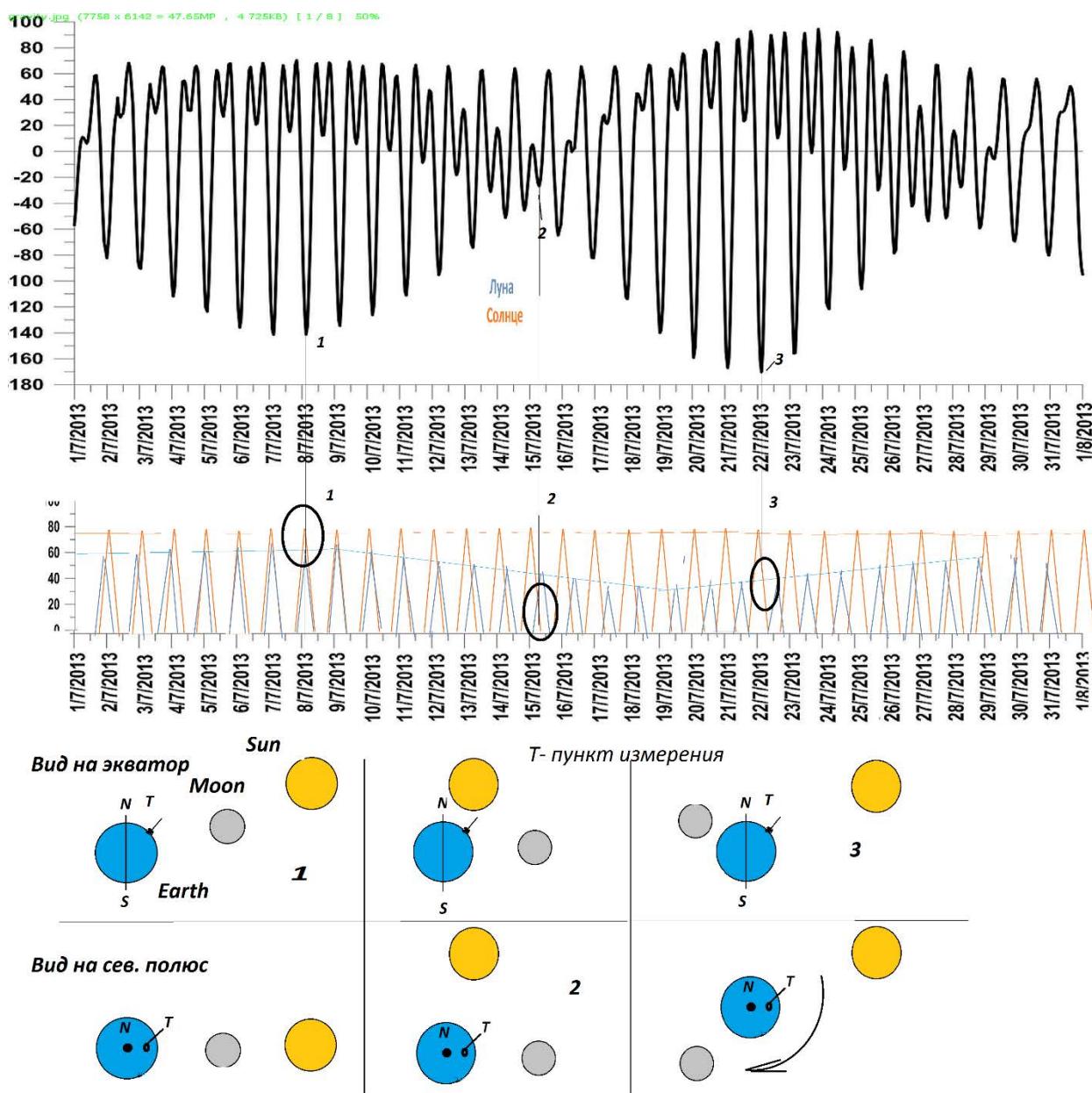
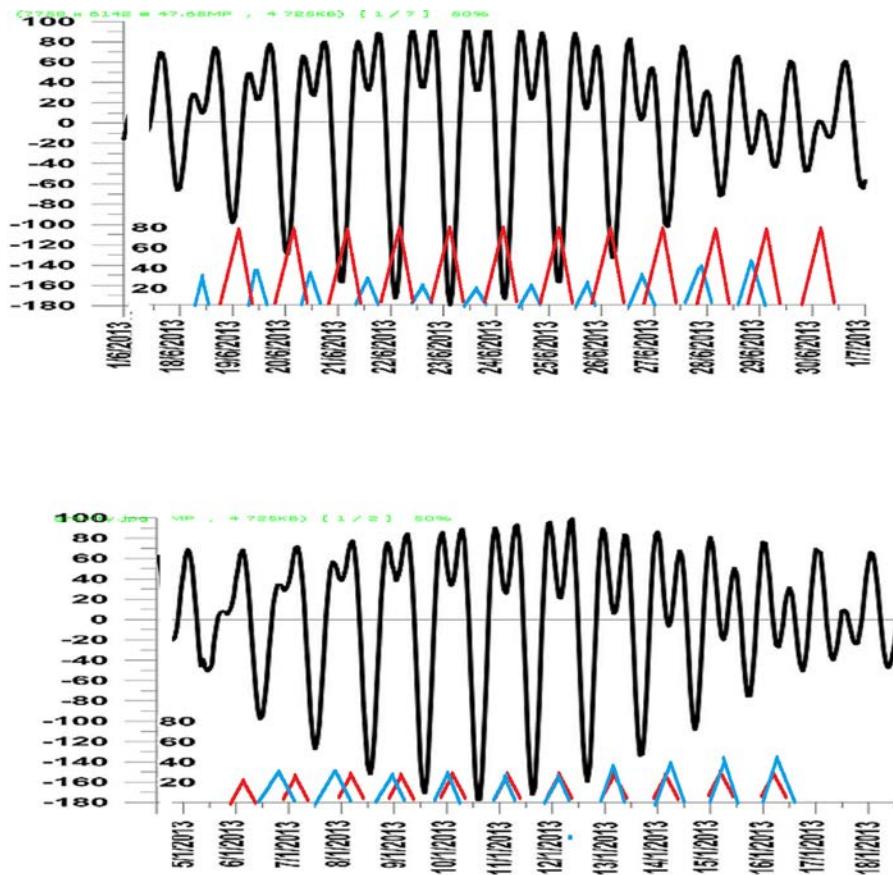
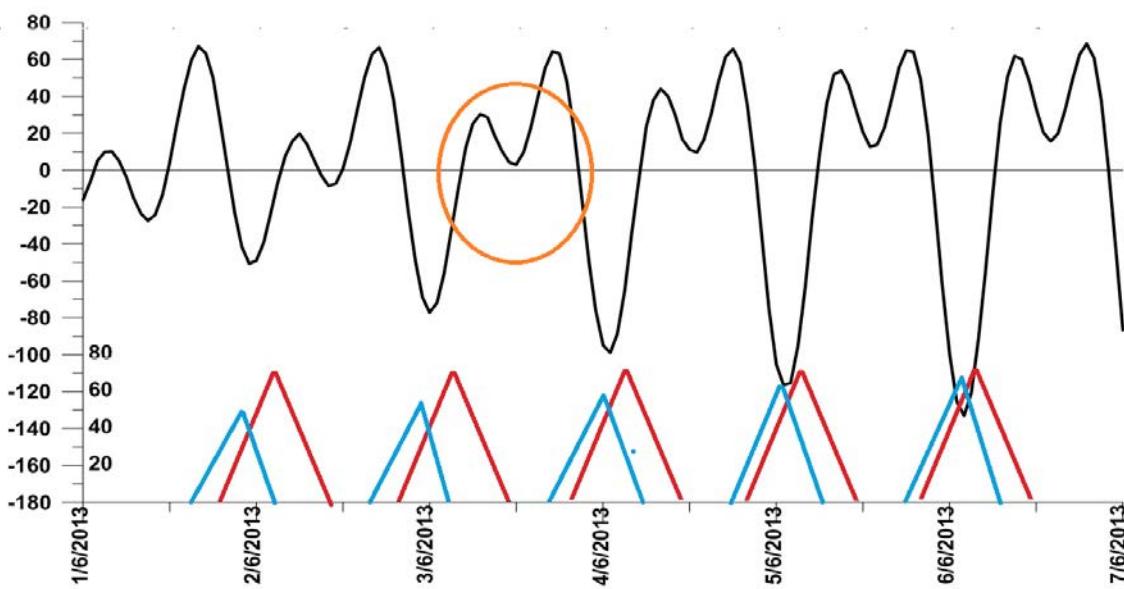




Fig. 5: The graph of the forces of attraction and a hypothetical illustration of the positions of the planets for the selected minimum values that occur during daytime. July 2013. View in two projections, hypothetical

Fig. 6: Almost identical shape of the signal with absolutely different positions of external forces. June and January 2013. If the minimum occurs at noon in June, then at midnight in January

Fig. 7: The behaviour of gravitational forces, June 2013. A characteristic drop during night time caused by the heavy mass core moving away from the gravimeter's location.

Formation of the Dip in the Gravitational Attraction Graph at Night Time.

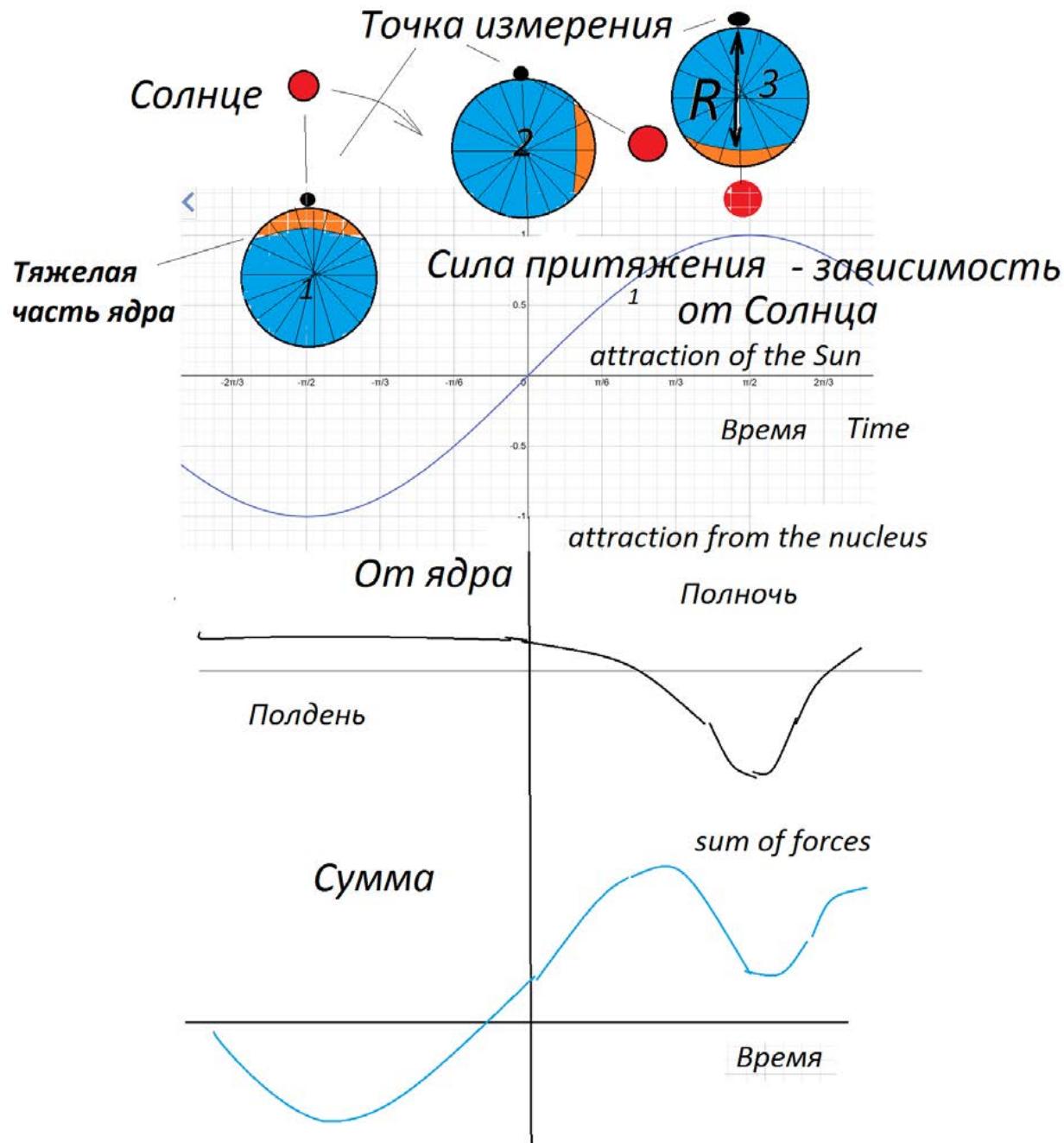


Fig. 8: View from the Pole. Only the Sun's influence on the core mass is shown. Conventional illustration. Gravimeter located at measurement point

The movement of the internal mass at the initial stage has little effect on the instrument readings due to the small projection of the gravitational attraction vector onto the vertical at the point of measurement. Subsequently, the dependence becomes close to the inverse square of the distance R and the value of the gravitational force decreases sharply.

In the summer months, the value of R is smaller than in the winter, but in winter, the point of measurement is initially further away from the core mass.

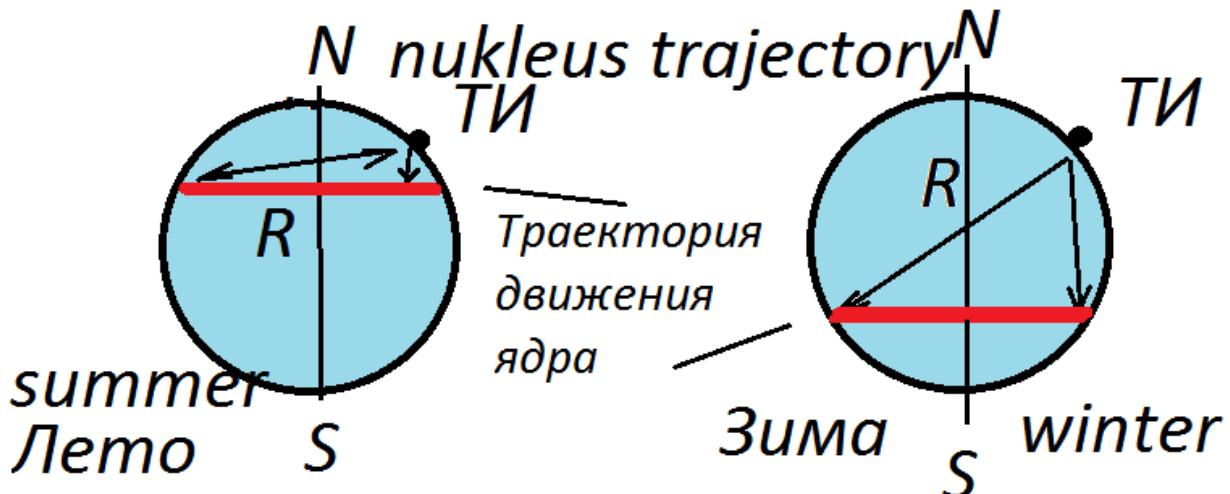


Figure 9: Distances from the measurement point to the position of the heavy part of the core in summer and winter

This displacement of the core and the collapse of the gravitational force explains the occurrence of the surface tide at night. That's why it is directly opposite the daytime tide.

All that has been said about the influence of the Sun also applies to the influence of the Moon.

It is worth noting another fact - when summing up two sinusoidal signals, that is what will be from the

influence of the masses of the Sun and Moon on the readings of the gravimeter, the trajectories are almost circular, a symmetrical signal shape is obtained. However, the measurement data (Figures 3-6) are clearly not symmetrical, which again confirms the influence of additional forces.

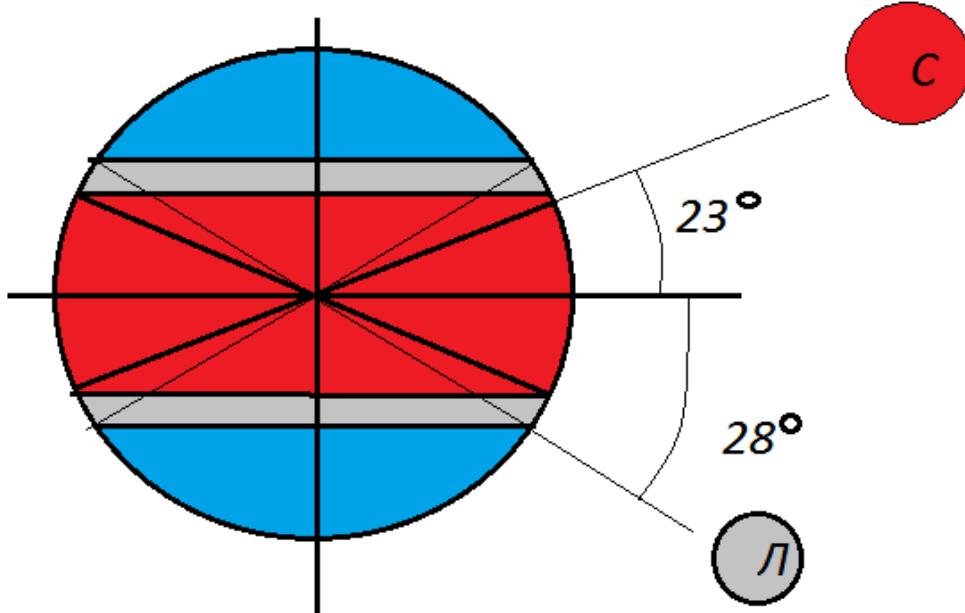


Figure 10: A schematic representation of the distribution of zones of influence from the Sun and Moon

The constant movement of mass in the same sector of the planet inevitably leads to the "bulging" of the Earth's crust, giving the planet the shape of a geoid.

Of course, one immediately wants to understand which has more impact on the formation and movement of the core, the Sun or the Moon. Unfortunately, this is not yet obvious. To understand this, a comparative analysis of the readings of gravimeters located on opposite parts of the planet is probably necessary. From existing data, it can be seen that the core can split into two parts and vice versa, causing a more significant impact on the gravimeter sensor. The difficulty of the analysis lies in the multitude of variables and their interdependence.

III. CONCLUSION

The analysis of data from gravitational force measurements leads to a clear conclusion about the influence of attraction forces from masses moving inside the planet's body on the gravimeter readings.

The periodicity of these changes has daily, monthly (sidereal month), seasonal, semi-annual, and yearly (astronomical year) dependencies.

The amplitude and shape of the signals also have a cyclicity and depend on both the absolute position of the Sun and Moon, and their mutual position.

Note:

In the work "Rotational Factors of Tectogenesis - History of the Question and Modern State" by L.I. loganson of the O.Yu. Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences [19], a very detailed approach to the question of the movement of the planetary interior matter is systematised. Many options for explaining this movement and the evolution of understanding this issue are shown, and how many scientists have dealt with this issue is shown. By referring to this work, I try to deflect accusations of a small list of used literature. There is no need for references to what is not based, not confirmed by measurement data or natural phenomena. The words "core movement" do not yet speak of the concept of the causes that cause this movement, nor of all the consequences of this movement. And just because they are mentioned somewhere, it doesn't mean that the issue is resolved there.

This is the only place in the article where I will allow myself to criticise the contemporary approach to explaining the structure of the Earth. The purpose of the article is not to criticise various models, but to reveal and explain what is measured, what manifests itself in the form of natural phenomena, taking into account the laws of physics.

Since many refer to the works of Avsyuk Y.N. [9], let's take them as the generally accepted ones, although others are almost not different. For example, such a statement.

"The stiffness of the bond and the frequency of the free vibrations of the Earth's inner core have been estimated by several authors. The magnitude of the force acting on the inner core can be recalculated into its displacements through the value of the stiffness coefficient k . There is some uncertainty in the value of the bonding coefficient k , depending on the difference in density values between the core σ_1 and the surrounding liquid material σ_2 . Therefore, several variations of $(\sigma_2 - \sigma_1)$ were taken into account [Avsyuk, 1996]."

Estimates show that forced internal core displacements of 0.4-11.6 m with a half-sidereal month cycle (6×10^{-7} sec) "stir" the surrounding liquid core with a power of $3.5-10.5 \times 10^{18}$ erg/s. As a result, the power of the core displacement process by solar disturbances surpasses the upper limit of the power of the "generator" capable of regenerating the Earth's magnetic field. To sustain the current dipole field at 0.6 Ga, a generator with a power of $10^{14}-10^{15}$ erg/s is necessary. For a toroidal field at 100 Ga, the "generator" must be more powerful, of the order of $10^{17}-10^{18}$ erg/s.

The calculation that the movement of the axis (the geographic pole) is caused by the movement of the planet's core is certainly acceptable as a hypothesis, but what is the connection between the cyclicity in half a sidereal month and the movement of the Sun? Such a movement- several meters, will not be reflected in real gravimeter readings, will not create daily, monthly, seasonal, semi-annual periodicities. And there are dependencies and they are obvious- it means that it's not the core, or rather not such a movement and location. On the other hand, we all know perfectly well how unbalanced bodies affect their behavior during rotation. Just a few grams on the rim lead to the vibration of quite a massive wheel of a car. And in a planet, a relatively small accumulation of mass in some place on the inner side of the crust will lead to a change in the Chandler wobble of the axis. There is abundant data on the change in the rotation time of the planet during major earthquakes, and they occur quite far from the core.

The values of power presented by Avsyuk are not justified and do not reflect anything. It is not shown how and why the core moves, how the "generator" works (in traditional physics, there is no concept of a "magnetic field generator"). It is created either by a permanent magnet or by an electric current), how the current appears and flows in it, and how the real magnetic field (MF) is created. In addition, it is said that the MF must be constantly regenerated - but why? A permanent magnet, which eventually becomes the body of the planet, does not need this. How, for example, can the Kursk magnetic anomaly be regenerated without making other regions anomalous?

As we can see, almost nothing is confirmed by neither the results of measurements, nor the known laws of physics, nor natural phenomena. This is precisely why

works of this kind and similar ones are not included in the list of literature. The situation is even worse with all sorts of "mathematical models." In them, an electric current can flow in a circle, not along the path of least resistance, and magnetic "embryos" can develop and power lines can twist in eights. Physics is completely ignored. The paper tolerates everything.

Changes in the measured values of Newton's gravitational constant G at different times have led scientists to consider the influence of external gravitational forces, called gravitational waves. Many scientific organizations are actively searching for these waves and significant funds are being invested in creating installations. In the work of A.V. Vikulin [14], the history and problems arising in the study of these phenomena are considered in detail. However, the change in the force of attraction can be explained by the internal movement of masses, especially since these changes are well recorded and appear to be periodic, depending on the position of the Sun and the Moon (Fig.3-Fig.7).

a) *Temperature inside a planet, changes in matter properties*

What temperature and what changes in matter properties occur inside a planet - let professionals better explain this.

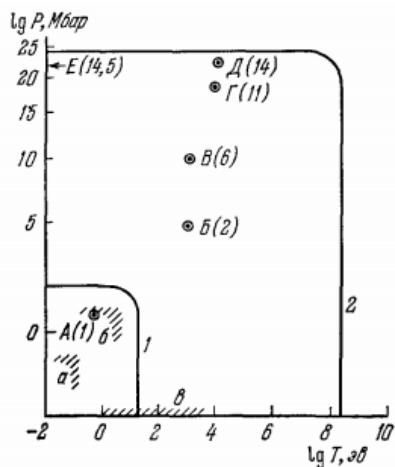


Рис. 1. Экстремальные состояния в природе и в лабораторных условиях.
А — центр Земли, Б — центр Солнца, В — центр белого карлика, Г — кора пульсара, Д —mantль пульсара, Е — ядерное вещество. Цифры в скобках указывают логарифм плотности (в г/см^3). Область *а* соответствует статическому, *б* — динамическому методам получения высоких давлений, *в* — методам получения высоких температур. Кривые 1 и 2 ограничивают рассматриваемую в обзоре область экстремальных состояний.

«At relatively low pressures and temperatures, the substance continues to exhibit the exceptional diversity of its forms that is inherent in its cold, uncompressed state. Accordingly, the characteristics of the substance remain highly sharp and non-monotonic functions of its composition.... However, with increasing pressure or temperature, the substance acquires a more

universal structure and its characteristics become increasingly smooth functions of the substance's composition. This clearly expressed trend is related to the fact that with the increase in the internal energy of the substance, it becomes possible to have a certain order and 'simplification' of its structure.

Molecules or molecular complexes break down with increasing pressure or temperature and the substance transitions to a purely atomic state. The electronic shells of the atoms rearrange, acquiring a more regular filling of energy levels. At the same time, the outer electrons, which determine the chemical individuality of the substance, are detached. Finally, if the substance remains in a solid state during compression and heating, it becomes ordered and its crystal lattice is organized. Going through a series of structural transformations, it becomes more densely packed and ultimately acquires a uniform (face-centered cubic*) structure for all substances.»

You can learn more by watching the primary source [3].

This can be easily explained on a household level - squeezing a handful of cherries, we see how the cores are compressed into a fairly solid clump, and the flesh (electrons) separates. Of course, Coulomb's forces, both attraction and repulsion, have not been canceled.

As already mentioned, the movement of mass occurs in a limited sector of the planet's body, determined by the angle of tilt of the axis of rotation and the direction of external forces. Fig. 10.

The movement of masses occurs at a huge linear velocity. If it is assumed that the movement takes place at the boundary of Mohorovicic, it is difficult to imagine that it is close to the speed of sound in air, approximately 1300 km/h (360 m/s) (This is only an assumption!!).

The movement of masses causes heating of the parts undergoing deformation and is a source of heat that maintains the planet's temperature in its current state.

There are no real observations of other heat sources.

As previously stated, all other known energy sources on the planet have long since depleted. The maintenance of such an internal temperature is facilitated by the property of the Earth's mantle, such as low thermal conductivity. This is because with a huge temperature difference inside and outside the planet, there is a noticeable decrease in surface heating when intense solar radiation is lost.

The appearance of an electrical current and the planet's magnetic field.

Free electrons, separated as a result of heating and increased pressure, carrying a negative charge, are hundreds of times lighter than the remaining positive ions. The ions, like pebbles in an aquarium, settle on the bottom, that is, on the side facing external gravity (the Sun, the Moon), pushing out electrons.

The mass inside the planet creates an electric dipole as it is separated by external gravity. The heavy, positively charged part will be closer to the surface of the Earth and to external sources of gravity (Fig. 11).

Of course, the Coulomb forces which work on attraction at the point of contact and repulsion within the resulting volumes were not canceled.

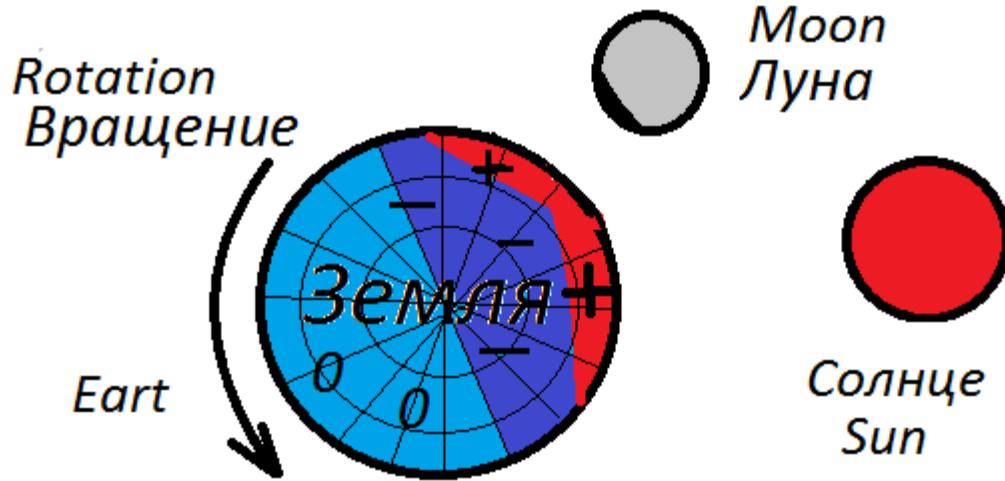


Figure 11: Dipole division. Conventional drawing

The movement of these heavy, positively charged masses occurs from East to West when the planet rotates. The movement of electrically charged parts is equivalent in effect to an electric current in a conductor. Since positively charged masses are moving, the direction of the current will also be from

East to West. According to the "compass" or "crowbar" rule - whichever one you prefer - the force lines of the magnetic field generated by such a current will be directed from the South geographical pole to the North. In other words, it's all as in reality. Figure 12.

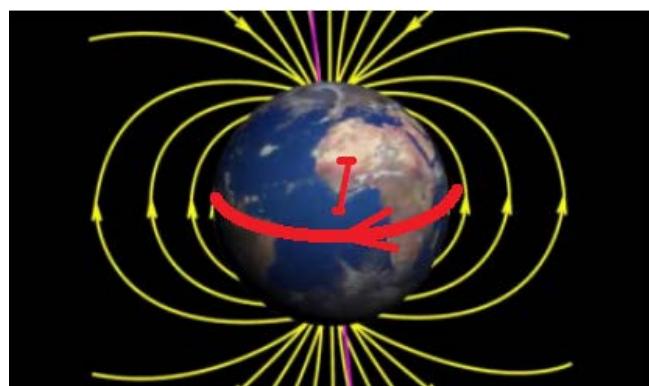


Fig. 12: Positive ion flow and magnetic field generated by it

This moving flow creates a variable (pulsating) Earth's Magnetic Field.

The pulsating (at a surface point), with a period of 1 day, magnetic field is supported by the planet's paramagnetic properties, which smooth and stabilize its behavior. At the same time, the planet's body itself is magnetized.

The magnetized planet mass creates the Earth's main Magnetic Field.

It is clear that existing magnetic anomalies formed with a different direction of charged flow movement, with different speeds and potentials. The current field is not able to remagnetize them.

Thus, the creator and driving force of charges that create the magnetic field of any planet with a liquid core are the combined forces from the Sun, moons, and neighboring planets moving relative to the planet.

Very interesting measured data were presented by the employees of the Institute for Climate and Environmental Systems Monitoring in their work (Yu. P. Malyshkov, 2009) [6].

Based on the multi-year research of natural impulse electromagnetic fields on Earth (NIEFE) in seismically active regions of the Pribaikalye, they have come to the conclusion about the movement of the planet's core and related natural phenomena - seismic

activity, influence on human organisms, etc. These are truly remarkable works, continuing, already at a more technological level, the research of A. Chizhevsky. [5].

Intensity maps of NIEFE changes at different times [6] exactly mimic the movement of the dipole's heavy part.

From this, it becomes clear the appearance of a magnetic field on other planets where there are satellites or dynamic influence from the Sun, and its absence where there is none. This is described in more detail in [18]. The same applies to the 11-year cycle of solar activity that affects the Sun's core and the mass of the largest planet in the Solar System, Jupiter, and its impact on the Earth's biosphere.

b) *The origin of mountain systems*

In our case, it does not matter how the planet evolved - whether it was formed from a dust accumulation or a melted debris. We take it as it is - inside the melts, on top the cooled "foam" in the form of a crust. This is what we observe.

The Earth's crust is measured and classified. It is known about the unevenness of its inner surface, and it is known about the "overlapping" of its individual parts on each other. The question of where these titanic forces come from and how they act on tectonic movements remained unresolved.

Fig. 13: Photos of mountains and rapids

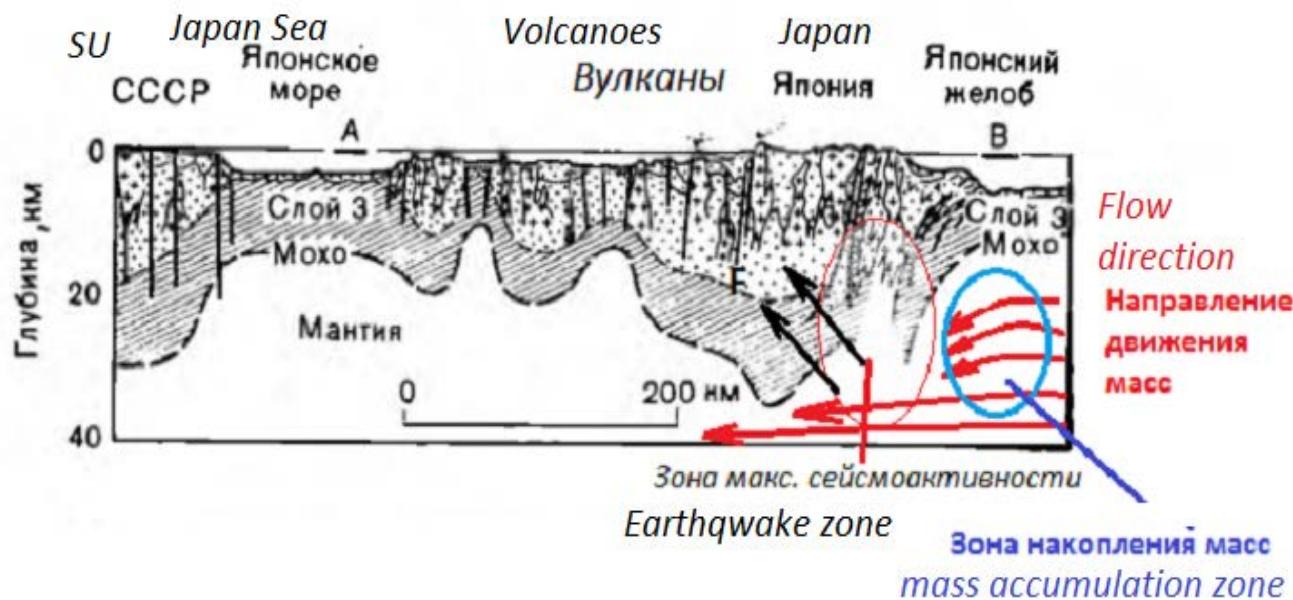
"Mountain formation is a geological process of formation of mountain structures under the influence of intense upward tectonic movements, whose speed exceeds the speed of processes leading to the leveling of the Earth's surface." This process is commonly explained in this way, but, as already noted earlier, there are no upward movements inside the planet.

The most similar phenomenon to mountain formation in the environment is river rapids. There is a flow of water in a river and there is movement of mass under the crust inside the planet. There are big masses moving in both places, there are rapids in a river and mountains on land. The location of mountains is mostly south-north, across the movement of mass inside the planet, the location of rapids is mostly across the flow, but there are exceptions in both places. The analogy is complete. (Fig. 13). The movement of the planet's core mass is constant and multi-millennial. Mountain formation alternates with the destruction and weathering of mountains.

Second question:

The origin of geosynclines (deep valleys filled with deposits); According to Uyeda, "Many mountain rocks that make up modern mountain ranges originally accumulated on the seabed, and their thickness often exceeded 10,000 meters."

If the formation of mountains is possible with the rise of the bottom of a former ocean by several


kilometers, why is it not possible to form valleys at the same time? If we look at how gorges are formed, everything becomes clear.

Third question:

The causes of volcanic eruptions and other magmatic processes; Let's go back to the rotating aquarium. The contents of the aquarium, or rather, its heaviest and densest part, move along the wall, along the boundary of the body. The same occurs inside the planet. Where is this boundary? Maybe this is the Mohorovičić boundary? Yes, it is possible, but if we imagine the inner surface of the aquarium not from a smooth glass, but like, for example, the bottom of a mountain stream, then all kinds of deposits will appear in the form of small fragments, over which bare cliffs rise - in our case, these are the "underground" parts of mountain ranges.

Just like in ice when troughs are formed, voids and cracks occur in the Earth's core, through which magma, under the pressure of constantly moving core mass, emerges to the surface. Once a channel has formed, melting and forming a throat, it becomes a place of eruption for many centuries.

It is important to note that the pressure of the moving mass will be directed not towards the center of the planet, but towards the external gravitational force, i.e. the Sun and Moon. And moving under the throat, this mass will squeeze out magma like a piston.

Fig. 14: The direction of the movement of the mass of substance causing pressure in the area of existing volcanic vents has been added to the illustration from Uyeda's book. The areas of mass accumulation before the earthquake and the area of maximum seismoactivity are indicated

Since Uyeda is Japanese, it is natural that he provided data mostly concerning his homeland. The fourth question from the book: causes of deep-focus earthquakes.

Let's consider what effects are observed during strong earthquakes:

- Vibrations and movements of the Earth's crust
- Witnesses report a rumbling sound, like the movement of a large mass, like a mountain landslide.
- Electromagnetic disturbances, magnetic storms.
- A sudden change in the period of rotation of the Earth
- The effect of "calm" of seismic activity and electromagnetic background radiation before major earthquakes is known.

Uyeda pointed out another effect: "Here it is important to mention another astonishing fact. It has long been known that every strong earthquake that occurs in Japan causes its Pacific coast to rise several meters. But between earthquakes, the coast gradually sinks."

Only the first two points are performed during weak earthquakes.

It is logical to assume that these are two different types, with different physics.

Since we are interested in the type of deep-focus events, we will consider its causes and consequences.

When the flow moves and after accumulating a critical mass in a convenient area, a collapse may occur which triggers an earthquake. For example, as shown in Fig. 14. During the collapse, the natural pressure will be exerted downward on the continental part. In the case of the Uyeda being considered, this is the Pacific part of the island. Afterwards, this part returns to its place.

The confirmation of such a mechanism of earthquake occurrence is that most earthquake epicenters are located on the borders of tectonic plates, that is, at geological faults

This phenomenon can be the cause of movements in the mantle's surface layers, leading to the appearance of additional earthquake epicenters and aftershocks.

It is also important to note that magnetic storms on Earth are accompanied by low-frequency oscillations of the Earth's body, and conversely, earthquakes are accompanied by electromagnetic emissions, that is, these two phenomena are interrelated, and this can also serve as confirmation, as there are spikes in electrical charge (flow of charged matter), and the transition process, as is known, has a wider spectrum than a constant current.

The "calm" effect of seismic activity and electromagnetic background radiation, described in work [6], before major earthquakes is caused by the accumulation of a critical mass.

Due to the non-uniformity of the inner mantle surface, the effects on it will naturally be uneven. Powerful "collapses" of accumulated mass will cause

changes in the rotation time of the planet, that is, changes in astronomical time.

The collapse that occurred in the Earth's crust under the ocean and transmitted to the surface will cause a large wave, called a "killer wave."

The mass of the planet's core, subjected to the influence of various gravitational forces from the Sun and the Moon, moves along the "inner" surface of the Earth, constantly mixing, hitting irregularities, and carving a new channel for itself every day. The inner part of the Earth's crust is constantly being affected, which is transmitted to the tectonic plates, causing them to gradually move, thus moving the continents. And they indeed move in the latitudinal direction (East-West) and do not move in the longitudinal direction (South-North).

This is in response to the question posed in Uyeda's book on mobilism, as we can see it is easily explained by the proposed physics.

Sometimes, in literature, movement is associated with tidal forces. But tidal forces are considered differently, these words carry a completely different physical meaning. And even if you accept their interpretation, only tidal forces cannot create movements, as they are first directed towards the East, and then exactly the same time towards the West.

Only the moving mass of the planet's core is constantly directed from East to West.

The causes of the main (defining) ocean currents on the planet are the trade winds and ocean tides.

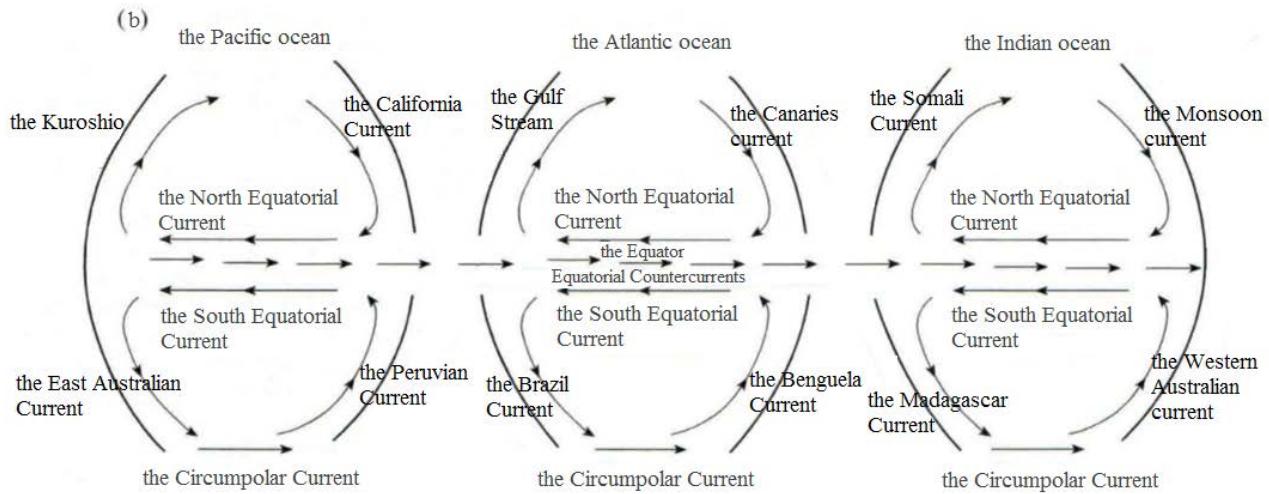


Fig. 15: Map of ocean currents and a conditional diagram (Garetsky 2006 [17]) showing the similarity of structures of large-scale currents in the Pacific, Atlantic, and Indian Oceans

As seen from Figure 15, the main currents that create all others are the North and South Equatorial currents. If there were no continents, they would close into a circular global current. Meeting the continent, they diverge on different sides of the equator and circulate in closed ocean spaces.

As previously discussed, there is a movement of the core mass in the equatorial zone, and this gravitational influence on the ocean waters creates the equatorial currents. This is the only force directed constantly from East to West. These currents lead to increased ocean levels on their western parts, which in turn creates conditions for the appearance of equatorial countercurrents- surface compensating currents.

Similar gravitational effects on air masses result in the formation and maintenance of closed ring-like

trade winds, whose heights reach stratospheric levels and are not impeded by land, and these winds can no longer be subject to surface heating temperature effects on Earth.

The moving "bulge" caused by the deformation of the Earth's crust due to the attraction of the heavy core part and barely noticeable to the average observer, leads to the tidal water flow in the ocean away from the location of the "bulge" to the coastal parts of the oceans, causing oceanic tides. This is why ocean tides never coincide with the passage of the Sun or Moon at the zenith in this place, but they do coincide with low tides. For the same reason, there are no significant tides in the open ocean, while according to contemporary interpretation, they should be maximum and follow the Sun and Moon.

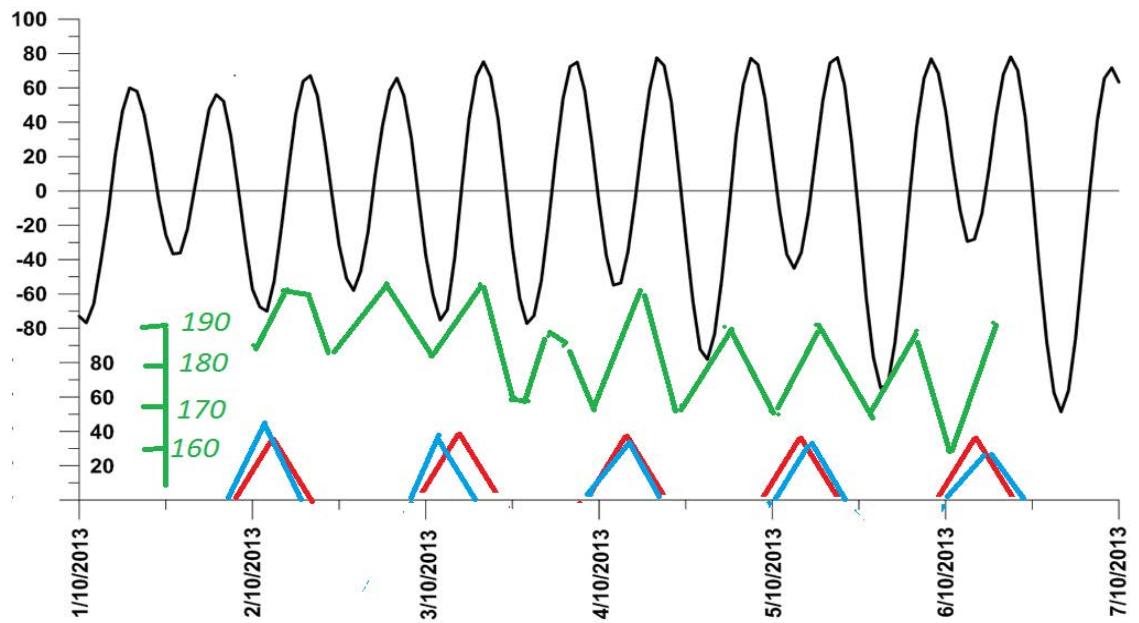


Fig. 16: Measurement data. Station "Posiet" on the Pacific coast. On the horizontal axis is World Time

Black - measured gravity strength. μ Gal.

Red - position of the Sun in degrees above the horizon (time of sunrise, maximum position, sunset)

Blue - position of the Moon in degrees above the horizon (time of sunrise, maximum position, sunset)

Green - ocean water level. cm.

A time interval has been specially selected when the Sun and Moon are on the horizon and simultaneously affecting the Earth's core.

The data on gravitational forces was provided by employees of the gravimetry laboratory of the Institute of Oceanology of the Russian Academy of Sciences.

Ocean level data is measured at the "Posiet" station meteorological station.

The times of sunrise, maximum position, sunset, and angle of ascent of the Sun and Moon were taken from the StarCalc program with a reference to the station location.

It can be seen that a couple of hours before the Sun and Moon pass through the zenith points, a tidal surge occurs and at the same time the gravitational force decreases, i.e., a tidal surge of the solid part of the planet. A tidal surge is also visible at night when there is a tidal surge of the mantle as the planet's core moves to the opposite part of the Earth.

The "hump" on the mantle will change its position and size daily depending on:

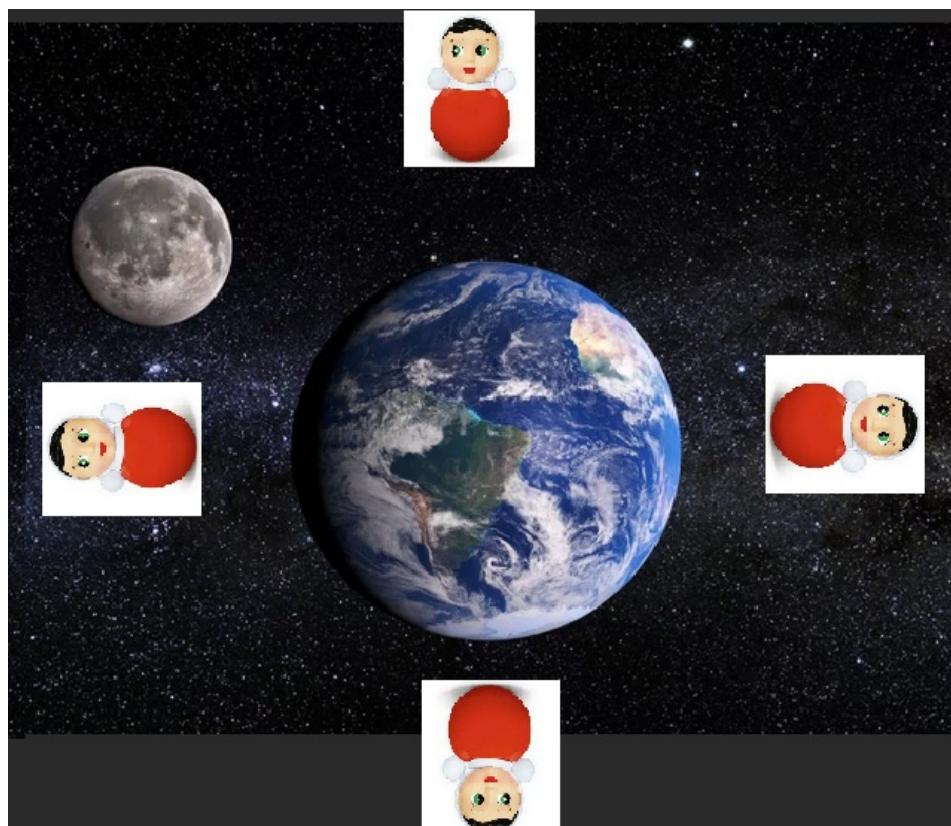
- Season (tilt of the rotation axis);
- Distance of the Moon and Sun from Earth;
- "Phase", i.e. different positions of the Moon and Sun; and the tidal surge near the shore will not be constant, but will depend on these factors and the bottom topography.

Now about the tidal rise (surge) on the opposite side of the Earth's sphere.

Unfortunately, this is difficult to demonstrate visually, as in the first case, but here too everything is quite simple. The shifted towards the Sun and Moon mass of the planet's core will weaken the gravitational force on the opposite side of the ball proportional to the square of the shift distance. On the graph provided, there will be gravity force dips (black color) during periods when there is neither the Sun nor the Moon above the measurement point. These surges of the Earth's surface also lead to an ebb at this place, and at this time, the ocean waters.

c) *Why do we see only one side of the Moon?*

It is usually explained that it makes one rotation on its axis as it orbits around Earth. But what and how makes it do this?


There is another explanation, due to tidal forces, but what are the tidal forces on the Moon and how do they affect it? If there are tides, there should be ebb and flow, but they have not been detected.

In principle, these two explanations are correct, but it is necessary to explain the mechanics of such movement. By the way, many moons behave similarly, rotating around their planets.

The presence of meteorite craters all over its surface, not just on the side facing space from where meteorites arrive, speaks to its former rotation.

Its former rotation is also confirmed by the fact that it previously had a strong magnetic field, now only residual, i.e., what remains as magnetized particles of the lunar ground. A magnetic field could only arise from the movement of electric charges, and movement is only possible with rotation.

During the evolution of the Solar System and the cooling of the Moon, heavier masses of interior material stopped moving and grouped on the side facing Earth of the satellite, turning the Moon into a kind of "see-saw" and causing it to rotate towards us with the same heavy side. And just like the see-saw, it swings, relative to the heavy part, creating what is known as libration, allowing the Earth observer to glimpse behind the geometric edges of the visible flat circle. Fig. 17. It seems that the same fate awaits Earth in the future.

Fig. 17: A schematic representation of the Moon's behavior as it moves relative to the Earth

Thus, the Earth's gravitational force not only holds the Moon in its orbit as a satellite, but also causes it to constantly rotate, which consumes energy and may lead to partial cooling of the Earth. On the other hand, the mass of the Moon affects the movement of the Earth's inner core, and the movement of the core leads, due to frictional forces, to the warming of the planet.

The fact that most satellites rotate around their planets, facing them with one side, and the rotation of planets such as Venus and Mercury is synchronized with the movement of the Earth (these two planets face the Earth with one hemisphere when they approach it), indicates that planets interact with each other as bodies with offset centers of mass. In this case, with a liquid, mobile core, this center of mass can move within the solid envelope of the planet.

IV. CONCLUSION

For those who have read to this point, you probably noticed that there is nothing particularly difficult about what has been said.

You don't have to be a big expert in the hypotheses and models written in "scientific" books on these topics to understand the essence of the discussed issues. Just a high school level and knowledge of basic physics laws is enough. This is what made Sayed Wady's book appealing, and this is such an approach to research.

The consideration of mathematical models not based on measured data, not on the basis of observed effects, not on real facts, not on known and proven physics laws, and sometimes even contrary to them, cannot lead to any positive results. And sometimes there is not enough data to create more or less realistic models.

The explanation of many natural phenomena by one real, observable, and measurable cause allows to reduce the number of options (hypotheses) arising around the phenomena under consideration. One cause can be studied more thoroughly based on the multi-faceted manifestation of it. A structured Science of Earth emerges, where such sciences as oceanology, geophysics, magnetic field physics, geology, atmospheric physics and similar, are included as branches of the general one. The Science of Earth itself acts as a component part of the Science of the World, in which Earth is considered as one of the objects of research, and many processes related to it and studied, can be transferred to other planets.

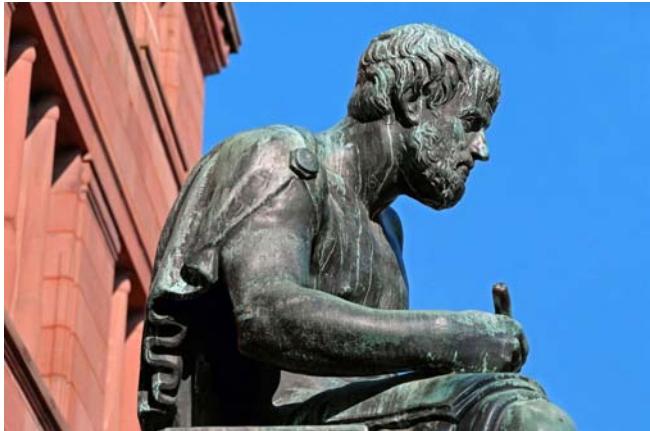
Thank you for reading. Wishing everyone creative success.

All comments and questions should be sent to danvlad@bk.ru.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Uyeda S. New View of the Earth / Translation from English by B.A. Borisov. - Moscow: Mir, 1980. - 214 p.
2. O.N. Korotcev. Astronomy. - St. Petersburg: Azbuka-Classika. 2003. - 736 p. ISBN 5-352-00496-8.
Editor-in-Chief: Dr. Gnedin. Yu.N.
Reviewers: Dr. Batrakov Yu.V., Cand. Sc. Vitinskiy Yu.I., Dr. Medvedev Yu.D., Cand. Sc. Naumov V.A., Cand. Sc. Popov V.S., Cand. Sc. Sokolov V.G., Cand. Sc. Tolbin S.V.
3. D.A. Kirzhits "Extreme States of Matter (Superhigh Pressures and Temperatures)". Progress in Physical Sciences, Physics of Our Days. Volume 104, 489-508 (1971).
4. I.L. Iosilevskiy, "Polarization of plasma in massive astrophysical objects," TVT, 48:6 (2010), 804-809.
5. A.L. Chizhevsky "Earthly Echoes of Solar Storms" Moscow, "Thought", 1976, 367 pages.
6. Yu.P. Malyshkov, C.Yu. Malyshkov "Periodic Variations of Geophysical Fields and Seismicity, Their Possible Connection with the Movement of the Earth's Core" // Geology and Geophysics, - 2009- vol. 50- No. 2- pp. 152-172
7. Vestnik Kraunts. Science Of The Earth. 2015. No. 3. Issue No. 27 Z.N. Proshkina, M.G. Valitov, R.G. Kulicic, T.N. Kolpashchikova Study Of Tidal Variations Of Gravity Force In The Transition Zone From The Continent To The Japanese Sea
8. G.P. Arnautov, E.N. Kalish, Yu.F. Stus, M.G. Smirnov, I.A. Bunin, D.A. Nosov Institute Of Automation And Electrometry Of The Russian Academy Of Sciences, Novosibirsk Measurement Of Gravity Force Variations During Solar Eclipses On July 31, 1981 And August 1, 2008 According To The Results Of Gravimetric Observations In The Novosibirsk Region Yavsyuk Y.N., Adushkin V.V.
9. Avsyuk Y.N., Adushkin V.V, Ovchinnikov V.M. Comprehensive Study Of The Mobility Of Earth's Inner Core // Physics Of The Earth, 2001, No. 8, Pp. 64-75.
10. Ovchinnikov V.M. Comprehensive Study Of The Mobility Of Earth's Inner Core // Physics Of The Earth, 2001, No. 8, Pp. 64-75.
11. Sidorenkov N.S. Physics Of Rotational Instabilities Of The Earth. M.,Science. Fizmatlit, 2002, 384 Pages.
12. Kiselev, V.M. Rotation Of The Earth From Ancient Times To The Present: Monograph / V.M. Kiselev. - Krasnoyarsk: Siberian Federal University, 2015. - 262 Pages. ISBN 978-5-7638-3199-3
13. Melchior P. Earth Tides. "Mir" Publishing Moscow, 1968.
14. Vikulin, A. V. On The Geodynamic Detector Of Gravitational Waves / A.V. Vikulin // Space And Time. 2014 No. 1(15). - Pp. 196-207. Stationary Network Address: 2226-7271provr_St1-15.2014.71
15. Dehant V. Tidal Parameters For Earth // Ph. Earth And Pl. Int. -1993. - Vol. 76. - Pp. 259-315.
16. Shtokman V.B. "Equatorial Countercurrents In Oceans", Leningrad 1948.
17. Garetsky R.G. Dobroliubov A.I. "Tidal Discrete-Wave Movements And Drift Of Continents". Geotectonics 2006, No.1, Pp. 3-13.
18. Danilov V.I. "Vestnik Of Perm University. Geology" 2022, Vol. 21, No. 3. <http://Geology-Vestnik.Psu.Ru/Index.Php/Geology/Article/View/457/362>
19. loganson L.I. "Rotation Factors Of Tectogenesis - The History Of The Question And The Current State". In The Book: "Rotation Processes In Geology And Physics". Ed. E.E. Milanovsky. M. Komkniga, 2007. Pp. 505-522.

GLOBAL JOURNALS GUIDELINES HANDBOOK 2023


WWW.GLOBALJOURNALS.ORG

MEMBERSHIPS

FELLOWS/ASSOCIATES OF SCIENCE FRONTIER RESEARCH COUNCIL

FSFRC/ASFRC MEMBERSHIPS

INTRODUCTION

FSFRC/ASFRC is the most prestigious membership of Global Journals accredited by Open Association of Research Society, U.S.A (OARS). The credentials of Fellow and Associate designations signify that the researcher has gained the knowledge of the fundamental and high-level concepts, and is a subject matter expert, proficient in an expertise course covering the professional code of conduct, and follows recognized standards of practice. The credentials are designated only to the researchers, scientists, and professionals that have been selected by a rigorous process by our Editorial Board and Management Board.

Associates of FSFRC/ASFRC are scientists and researchers from around the world are working on projects/researches that have huge potentials. Members support Global Journals' mission to advance technology for humanity and the profession.

FSFRC

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL is the most prestigious membership of Global Journals. It is an award and membership granted to individuals that the Open Association of Research Society judges to have made a 'substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Fellows are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Fellow Members.

BENEFIT

TO THE INSTITUTION

GET LETTER OF APPRECIATION

Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

EXCLUSIVE NETWORK

GET ACCESS TO A CLOSED NETWORK

A FSFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Fellows can reach out to other members or researchers directly. They should also be open to reaching out by other.

Career

Credibility

Exclusive

Reputation

CERTIFICATE

RECEIVE A PRINTED COPY OF A CERTIFICATE

Fellows receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Career

Credibility

Exclusive

Reputation

DESIGNATION

GET HONORED TITLE OF MEMBERSHIP

Fellows can use the honored title of membership. The "FSFRC" is an honored title which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., FSFRC or William Walldroff, M.S., FSFRC.

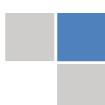
Career

Credibility

Exclusive

Reputation

RECOGNITION ON THE PLATFORM


BETTER VISIBILITY AND CITATION

All the Fellow members of FSFRC get a badge of "Leading Member of Global Journals" on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All fellows get a dedicated page on the website with their biography.

Career

Credibility

Reputation

FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS

Fellows receive discounts on future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

Career

Financial

GJ INTERNAL ACCOUNT

UNLIMITED FORWARD OF EMAILS

Fellows get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

Career

Credibility

Reputation

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS

To take future researches to the zenith, fellows and associates receive access to all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

Financial

CONFERENCES & EVENTS

ORGANIZE SEMINAR/CONFERENCE

Fellows are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

Career

Credibility

Financial

EARLY INVITATIONS

EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES

All fellows receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.

Exclusive

PUBLISHING ARTICLES & BOOKS

EARN 60% OF SALES PROCEEDS

Fellows can publish articles (limited) without any fees. Also, they can earn up to 60% of sales proceeds from the sale of reference/review books/literature/publishing of research paper. The FSFRC member can decide its price and we can help in making the right decision.

Exclusive

Financial

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES

Fellow members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

Financial

ACCESS TO EDITORIAL BOARD

BECOME A MEMBER OF THE EDITORIAL BOARD

Fellows may join as a member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer. Additionally, Fellows get a chance to nominate other members for Editorial Board.

Career

Credibility

Exclusive

Reputation

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE

All members get access to 5 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 10 GB free secure cloud access for storing research files.

ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL

ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL is the membership of Global Journals awarded to individuals that the Open Association of Research Society judges to have made a 'substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Associate membership can later be promoted to Fellow Membership. Associates are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Associate Members.

BENEFIT

TO THE INSTITUTION

GET LETTER OF APPRECIATION

Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

EXCLUSIVE NETWORK

GET ACCESS TO A CLOSED NETWORK

A ASFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Associates can reach out to other members or researchers directly. They should also be open to reaching out by other.

Career

Credibility

Exclusive

Reputation

CERTIFICATE

RECEIVE A PRINTED COPY OF A CERTIFICATE

Associates receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Career

Credibility

Exclusive

Reputation

DESIGNATION

GET HONORED TITLE OF MEMBERSHIP

Associates can use the honored title of membership. The "ASFRC" is an honored title which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., ASFRC or William Walldroff, M.S., ASFRC.

Career

Credibility

Exclusive

Reputation

RECOGNITION ON THE PLATFORM

BETTER VISIBILITY AND CITATION

All the Associate members of ASFRC get a badge of "Leading Member of Global Journals" on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All associates get a dedicated page on the website with their biography.

Career

Credibility

Reputation

FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS

Associates receive discounts on the future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

Career

Financial

GJ INTERNAL ACCOUNT

UNLIMITED FORWARD OF EMAILS

Associates get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

Career

Credibility

Reputation

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS

To take future researches to the zenith, fellows receive access to almost all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

Financial

CONFERENCES & EVENTS

ORGANIZE SEMINAR/CONFERENCE

Associates are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

Career

Credibility

Financial

EARLY INVITATIONS

EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES

All associates receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.

Exclusive

PUBLISHING ARTICLES & BOOKS

EARN 30-40% OF SALES PROCEEDS

Associates can publish articles (limited) without any fees. Also, they can earn up to 30-40% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.

Exclusive

Financial

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES

Associate members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

Financial

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE

All members get access to 2 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 5 GB free secure cloud access for storing research files.

ASSOCIATE	FELLOW	RESEARCH GROUP	BASIC
<p>\$4800 lifetime designation</p> <p>Certificate, LoR and Momento 2 discounted publishing/year</p> <p>Gradation of Research 10 research contacts/day</p> <p>1 GB Cloud Storage</p> <p>GJ Community Access</p>	<p>\$6800 lifetime designation</p> <p>Certificate, LoR and Momento Unlimited discounted publishing/year</p> <p>Gradation of Research Unlimited research contacts/day</p> <p>5 GB Cloud Storage</p> <p>Online Presense Assistance</p> <p>GJ Community Access</p>	<p>\$12500.00 organizational</p> <p>Certificates, LoRs and Momentos Unlimited free publishing/year</p> <p>Gradation of Research Unlimited research contacts/day</p> <p>Unlimited Cloud Storage</p> <p>Online Presense Assistance</p> <p>GJ Community Access</p>	<p>APC per article</p> <p>GJ Community Access</p>

PREFERRED AUTHOR GUIDELINES

We accept the manuscript submissions in any standard (generic) format.

We typeset manuscripts using advanced typesetting tools like Adobe In Design, CorelDraw, TeXnicCenter, and TeXStudio. We usually recommend authors submit their research using any standard format they are comfortable with, and let Global Journals do the rest.

Alternatively, you can download our basic template from <https://globaljournals.org/Template.zip>

Authors should submit their complete paper/article, including text illustrations, graphics, conclusions, artwork, and tables. Authors who are not able to submit manuscript using the form above can email the manuscript department at submit@globaljournals.org or get in touch with chiefeditor@globaljournals.org if they wish to send the abstract before submission.

BEFORE AND DURING SUBMISSION

Authors must ensure the information provided during the submission of a paper is authentic. Please go through the following checklist before submitting:

1. Authors must go through the complete author guideline and understand and *agree to Global Journals' ethics and code of conduct*, along with author responsibilities.
2. Authors must accept the privacy policy, terms, and conditions of Global Journals.
3. Ensure corresponding author's email address and postal address are accurate and reachable.
4. Manuscript to be submitted must include keywords, an abstract, a paper title, co-author(s') names and details (email address, name, phone number, and institution), figures and illustrations in vector format including appropriate captions, tables, including titles and footnotes, a conclusion, results, acknowledgments and references.
5. Authors should submit paper in a ZIP archive if any supplementary files are required along with the paper.
6. Proper permissions must be acquired for the use of any copyrighted material.
7. Manuscript submitted *must not have been submitted or published elsewhere* and all authors must be aware of the submission.

Declaration of Conflicts of Interest

It is required for authors to declare all financial, institutional, and personal relationships with other individuals and organizations that could influence (bias) their research.

POLICY ON PLAGIARISM

Plagiarism is not acceptable in Global Journals submissions at all.

Plagiarized content will not be considered for publication. We reserve the right to inform authors' institutions about plagiarism detected either before or after publication. If plagiarism is identified, we will follow COPE guidelines:

Authors are solely responsible for all the plagiarism that is found. The author must not fabricate, falsify or plagiarize existing research data. The following, if copied, will be considered plagiarism:

- Words (language)
- Ideas
- Findings
- Writings
- Diagrams
- Graphs
- Illustrations
- Lectures

- Printed material
- Graphic representations
- Computer programs
- Electronic material
- Any other original work

AUTHORSHIP POLICIES

Global Journals follows the definition of authorship set up by the Open Association of Research Society, USA. According to its guidelines, authorship criteria must be based on:

1. Substantial contributions to the conception and acquisition of data, analysis, and interpretation of findings.
2. Drafting the paper and revising it critically regarding important academic content.
3. Final approval of the version of the paper to be published.

Changes in Authorship

The corresponding author should mention the name and complete details of all co-authors during submission and in manuscript. We support addition, rearrangement, manipulation, and deletions in authors list till the early view publication of the journal. We expect that corresponding author will notify all co-authors of submission. We follow COPE guidelines for changes in authorship.

Copyright

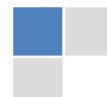
During submission of the manuscript, the author is confirming an exclusive license agreement with Global Journals which gives Global Journals the authority to reproduce, reuse, and republish authors' research. We also believe in flexible copyright terms where copyright may remain with authors/employers/institutions as well. Contact your editor after acceptance to choose your copyright policy. You may follow this form for copyright transfers.

Appealing Decisions

Unless specified in the notification, the Editorial Board's decision on publication of the paper is final and cannot be appealed before making the major change in the manuscript.

Acknowledgments

Contributors to the research other than authors credited should be mentioned in Acknowledgments. The source of funding for the research can be included. Suppliers of resources may be mentioned along with their addresses.


Declaration of funding sources

Global Journals is in partnership with various universities, laboratories, and other institutions worldwide in the research domain. Authors are requested to disclose their source of funding during every stage of their research, such as making analysis, performing laboratory operations, computing data, and using institutional resources, from writing an article to its submission. This will also help authors to get reimbursements by requesting an open access publication letter from Global Journals and submitting to the respective funding source.

PREPARING YOUR MANUSCRIPT

Authors can submit papers and articles in an acceptable file format: MS Word (doc, docx), LaTeX (.tex, .zip or .rar including all of your files), Adobe PDF (.pdf), rich text format (.rtf), simple text document (.txt), Open Document Text (.odt), and Apple Pages (.pages). Our professional layout editors will format the entire paper according to our official guidelines. This is one of the highlights of publishing with Global Journals—authors should not be concerned about the formatting of their paper. Global Journals accepts articles and manuscripts in every major language, be it Spanish, Chinese, Japanese, Portuguese, Russian, French, German, Dutch, Italian, Greek, or any other national language, but the title, subtitle, and abstract should be in English. This will facilitate indexing and the pre-peer review process.

The following is the official style and template developed for publication of a research paper. Authors are not required to follow this style during the submission of the paper. It is just for reference purposes.

Manuscript Style Instruction (Optional)

- Microsoft Word Document Setting Instructions.
- Font type of all text should be Swis721 Lt BT.
- Page size: 8.27" x 11", left margin: 0.65, right margin: 0.65, bottom margin: 0.75.
- Paper title should be in one column of font size 24.
- Author name in font size of 11 in one column.
- Abstract: font size 9 with the word "Abstract" in bold italics.
- Main text: font size 10 with two justified columns.
- Two columns with equal column width of 3.38 and spacing of 0.2.
- First character must be three lines drop-capped.
- The paragraph before spacing of 1 pt and after of 0 pt.
- Line spacing of 1 pt.
- Large images must be in one column.
- The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10.
- The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10.

Structure and Format of Manuscript

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers are reports of significant research (typically less than 7,000 words, including tables, figures, and references)

A research paper must include:

- a) A title which should be relevant to the theme of the paper.
- b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.
- c) Up to 10 keywords that precisely identify the paper's subject, purpose, and focus.
- d) An introduction, giving fundamental background objectives.
- e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition, sources of information must be given, and numerical methods must be specified by reference.
- f) Results which should be presented concisely by well-designed tables and figures.
- g) Suitable statistical data should also be given.
- h) All data must have been gathered with attention to numerical detail in the planning stage.

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned unrefereed.

- i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also be summarized.
- j) There should be brief acknowledgments.
- k) There ought to be references in the conventional format. Global Journals recommends APA format.

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow instructions. They will also be published with much fewer delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity.

FORMAT STRUCTURE

It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

All manuscripts submitted to Global Journals should include:

Title

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) where the work was carried out.

Author details

The full postal address of any related author(s) must be specified.

Abstract

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon.

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Keywords

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining, and indexing.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list of possible keywords and phrases to try.

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search should be as strategic as possible.

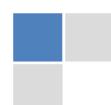
One should start brainstorming lists of potential keywords before even beginning searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in a research paper?" Then consider synonyms for the important words.

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, the keywords under which a research paper is abstracted are listed with the paper.

Numerical Methods

Numerical methods used should be transparent and, where appropriate, supported by references.

Abbreviations


Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them.

Formulas and equations

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality image.

Tables, Figures, and Figure Legends

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable format and not as images. References to these tables (if any) must be mentioned accurately.

Figures

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it.

PREPARATION OF ELECTRONIC FIGURES FOR PUBLICATION

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/ photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings). Please give the data for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi.

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a Color Work Agreement form before your paper can be published. Also, you can email your editor to remove the color fee after acceptance of the paper.

TIPS FOR WRITING A GOOD QUALITY SCIENCE FRONTIER RESEARCH PAPER

Techniques for writing a good quality Science Frontier Research paper:

1. Choosing the topic: In most cases, the topic is selected by the interests of the author, but it can also be suggested by the guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is "yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So present your best aspect.

2. Think like evaluators: If you are in confusion or getting demotivated because your paper may not be accepted by the evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

3. Ask your guides: If you are having any difficulty with your research, then do not hesitate to share your difficulty with your guide (if you have one). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list of essential readings.

4. Use of computer is recommended: As you are doing research in the field of science frontier then this point is quite obvious. Use right software: Always use good quality software packages. If you are not capable of judging good software, then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can get through the internet.

5. Use the internet for help: An excellent start for your paper is using Google. It is a wondrous search engine, where you can have your doubts resolved. You may also read some answers for the frequent question of how to write your research paper or find a model research paper. You can download books from the internet. If you have all the required books, place importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should strictly follow here.

6. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right? It is a good habit which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will make your search easier.

7. Revise what you wrote: When you write anything, always read it, summarize it, and then finalize it.

8. Make every effort: Make every effort to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any important thing like making a research paper, you should always have backup copies of it either on your computer or on paper. This protects you from losing any portion of your important data.

9. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant to science, use of quotes is not preferable.

10. Use proper verb tense: Use proper verb tenses in your paper. Use past tense to present those events that have happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete.

11. Pick a good study spot: Always try to pick a spot for your research which is quiet. Not every spot is good for studying.

12. Know what you know: Always try to know what you know by making objectives, otherwise you will be confused and unable to achieve your target.

13. Use good grammar: Always use good grammar and words that will have a positive impact on the evaluator; use of good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice.

Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. Put together a neat summary.

14. Arrangement of information: Each section of the main body should start with an opening sentence, and there should be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain your arguments with records.

15. Never start at the last minute: Always allow enough time for research work. Leaving everything to the last minute will degrade your paper and spoil your work.

16. Multitasking in research is not good: Doing several things at the same time is a bad habit in the case of research activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a particular part in a particular time slot.

17. Never copy others' work: Never copy others' work and give it your name because if the evaluator has seen it anywhere, you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and food.

18. Go to seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

19. Refresh your mind after intervals: Try to give your mind a rest by listening to soft music or sleeping in intervals. This will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you acquire colleagues, they can give you ideas which will be helpful to your research.

20. Think technically: Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think and then print: When you go to print your paper, check that tables are not split, headings are not detached from their descriptions, and page sequence is maintained.

21. Adding unnecessary information: Do not add unnecessary information like "I have used MS Excel to draw graphs." Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Never oversimplify: When adding material to your research paper, never go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review.

22. Report concluded results: Use concluded results. From raw data, filter the results, and then conclude your studies based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include examples.

23. Upon conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print for the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects of your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form which is presented in the guidelines using the template.
- Please note the criteria peer reviewers will use for grading the final paper.

Final points:

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the following sections, submitted in the order listed, with each section starting on a new page:

The introduction: This will be compiled from reference material and reflect the design processes or outline of basis that directed you to make a study. As you carry out the process of study, the method and process section will be constructed like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar intellectual paths throughout the data that you gathered to carry out your study.

The discussion section:

This will provide understanding of the data and projections as to the implications of the results. The use of good quality references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings.

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record-keeping are the only means to make straightforward progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear: Adhere to recommended page limits.

Mistakes to avoid:

- Insertion of a title at the foot of a page with subsequent text on the next page.
- Separating a table, chart, or figure—confine each to a single page.
- Submitting a manuscript with pages out of sequence.
- In every section of your document, use standard writing style, including articles ("a" and "the").
- Keep paying attention to the topic of the paper.
- Use paragraphs to split each significant point (excluding the abstract).
- Align the primary line of each section.
- Present your points in sound order.
- Use present tense to report well-accepted matters.
- Use past tense to describe specific results.
- Do not use familiar wording; don't address the reviewer directly. Don't use slang or superlatives.
- Avoid use of extra pictures—include only those figures essential to presenting results.

Title page:

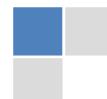
Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have acronyms or abbreviations or exceed two printed lines.

Abstract: This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in itself. Do not cite references at this point.

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any summary. Try to limit the initial two items to no more than one line each.

Reason for writing the article—theory, overall issue, purpose.


- Fundamental goal.
- To-the-point depiction of the research.
- Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of any numerical analysis should be reported. Significant conclusions or questions that emerge from the research.

Approach:

- Single section and succinct.
- An outline of the job done is always written in past tense.
- Concentrate on shortening results—limit background information to a verdict or two.
- Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else.

Introduction:

The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable of comprehending and calculating the purpose of your study without having to refer to other works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here.

The following approach can create a valuable beginning:

- Explain the value (significance) of the study.
- Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it.
- Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose them.
- Briefly explain the study's tentative purpose and how it meets the declared objectives.

Approach:

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad view.

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases.

Procedures (methods and materials):

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section.

When a technique is used that has been well-described in another section, mention the specific item describing the way, but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad procedures so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

Materials may be reported in part of a section or else they may be recognized along with your measures.

Methods:

- Report the method and not the particulars of each process that engaged the same methodology.
- Describe the method entirely.
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures.
- Simplify—detail how procedures were completed, not how they were performed on a particular day.
- If well-known procedures were used, account for the procedure by name, possibly with a reference, and that's all.

Approach:

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third person passive voice.

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences.

What to keep away from:

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings—save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to present consequences most efficiently.

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if requested by the instructor.

Content:

- Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables.
- In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation of an exacting study.
- Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or manuscript.

What to stay away from:

- Do not discuss or infer your outcome, report surrounding information, or try to explain anything.
- Do not include raw data or intermediate calculations in a research manuscript.
- Do not present similar data more than once.
- A manuscript should complement any figures or tables, not duplicate information.
- Never confuse figures with tables—there is a difference.

Approach:

As always, use past tense when you submit your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report.

If you desire, you may place your figures and tables properly within the text of your results section.

Figures and tables:

If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and include a heading. All figures and tables must be divided from the text.

Discussion:

The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded based on problems with the discussion. There is no rule for how long an argument should be.

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of results should be fully described.

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."

Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.

- You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea.
- Give details of all of your remarks as much as possible, focusing on mechanisms.
- Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was correctly restricted. Try to present substitute explanations if they are sensible alternatives.
- One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

When you refer to information, differentiate data generated by your own studies from other available information. Present work done by specific persons (including you) in past tense.

Describe generally acknowledged facts and main beliefs in present tense.

THE ADMINISTRATION RULES

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc.

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to avoid rejection.

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and do not rephrase someone else's analysis. Do not allow anyone else to proofread your manuscript.

Written material: You may discuss this with your guides and key sources. Do not copy anyone else's paper, even if this is only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read your paper and file.

CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)
BY GLOBAL JOURNALS

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals.

Topics	Grades		
	A-B	C-D	E-F
Abstract	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form Above 200 words	No specific data with ambiguous information Above 250 words
Introduction	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
Methods and Procedures	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
Result	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
Discussion	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
References	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring

INDEX

A

Anomalies · 18, 26

B

Bulging · 23

D

Dissipation · 16

G

Geoid · 12, 23

I

Ingestion · 20, 2, 3

Irreversible · 9, 11, 12, 15, 16, 17, 3

M

Meteorites · 32

P

Periodicities · 24

R

Rigorous · 1, 5

S

Stratospheric · 31

T

Tectonic · 13, 27, 28, 30

save our planet

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org
or email us at helpdesk@globaljournals.org

ISSN 9755896

© Global Journals