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Completely integrable systems have been largely investigated during the past years. Some of them
possess much richer structures that are the subject of extensive research and are called algebraic
completely integrable system. This concept was introduced by Adler and van Moerbeke in [6]. An
integrable polynomial system is algebraic completely integrable (a.c.i.) if the complexified system
linearizes on an appropriate Abelian variety.

Many algebraic completely integrable systems possess matrix Lax representations whose spec-
tral curves admit symmetries; in particular, involutions. The Jacobians of these curves contain
Abelian subvarieties whose subsets are identified with the complex invariant manifolds of the sys-
tem. The list of such systems includes the well known integrable cases of the Henon-Heiles systems
[20], the integrable cases of quartic potentials [21], the Chaplygin top [8] and [14, 17], etc. A Lax
representation for these systems can be constructed in terms of a direct product of Lax operators
[20]. The literature on Lax equations is immense. The original references are [18, 15, 16, 4, 5]. In-
deed, in order to simplify quantum problems it would be more convenient to use Lax representations
in terms of 2× 2 matrices.

In this paper, we consider the c
(1)
2 Toda lattice. It is a algebraic completely integrable (a.c.i.)

system in the sense of Adler-van Moerbeke [2, 3] which means it can be linearized on a complex
algebraic torus Cr/∧ (∧ a lattice in Cr) i.e. an Abelian variety Tr. The aim is to find the separating
variables and to show how to construct for this system a Lax representation. To this end, we use the
algebraic structure of the problem. The separating variables give us a simple way of constructing
a Lax equation. These separating variables can be found by inspecting the Painleve expansions of
the solutions near some special divisor on the compactified invariant manifolds of the problem.

In two dimensional, T2 is a Abelian surface. If T2 is Jacobian surface i.e. contains a smooth
curve of genus two, then there exists a general procedure, due to Pol Vanhaecke [23] for finding the

separating variables. It turns out, however, that the Abelian surface in the case of the c
(1)
2 Toda
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Separability and a Lax Representation for the 𝐶𝐶2
(1) Toda Lattice

In this section, we recall some basic tools which will allow us to study algebraic completely integrable
(a.c.i.) systems [6]. Consider the Hamiltonian system

ẋ = J
∂H

∂x
≡ f(x), x ∈ Rm, (2.1)

where H is the Hamiltonian and J = J(x) is a skew-symmetric matrix with polynomial entries in x,

for which the corresponding Poisson bracket {Hi, Hj} =
〈
∂Hi
∂x , J

∂Hj

∂x

〉
satisfies the Jacobi identity.

The system (2.1) is integrable if it possesses n+k independent polynomial invariants H1, . . . ,Hn+k

of which k invariants are Casimirs, the n remaining ones are in involution and m = 2n + k. The
intersection

n+k⋂
i=1

{x ∈ Rm | Hi(x) = ci}

is invariant by Poisson-commutativity for the flows of all XH , and is smooth for generic values of
c = (c1, . . . , cm). By the well-known Arnold-Liouville theorem, the compact connected components
of these invariant manifolds are diffeomorphic to real tori. Moreover, the flows of vector field XH
are linear, when they are seen as flows on the tori using the diffeomorphism. The integer n is called
the dimension of the system.

The Poisson structure and the vector field are easily complexified, giving a Poisson-commuting
family of functions on Cm and for generic c = (c1, . . . , cn) in Cn+k, the invariant manifolds

Ac =
n+k⋂
i=1

{x ∈ Cm | Hi(x) = ci}

are smooth affine (algebraic) varieties. In this case, the integrable system will be called algebraic
completely integrable if these generic invariant manifolds Ac are smooth affine parts of an Abelian
variety Tnc and the flows of integrable vector fields are linear. This means that Ac = Tnc \Dc, where
Dc is the minimal divisor with the coordinate functions x(t), restricted to the invariant manifolds,
blow up for some value of t ∈ C and if the (complex) flow of the vector fields on Tc is linear [23].

In the two-dimensional case, that is n = 2, the invariant manifolds complete into Abelian
surfaces by adding one (or several) curves to the affine surfaces Ac. In this case, Vanhaecke
proposed in [23] a method which leads to an explicit linearization of the vector field of the a.c.i.
system. The computation of the first few terms of the Laurent solutions to the differential equations
enables us to construct an embedding of the invariant manifolds in the projective space PN . From
this embedding, one deduces the structure of the divisors Dc to be adjoined to the generic affine
Ac in order to complete them into Abelian surfaces Tc. Thus, the system is a.c.i.. The different
steps of the algorithm of Vanhaecke are given by:

lattice is not a Jacobian surface [12]. Furthemore, if one of the componentd is a 2:1 unramified
cover of a smooth curve of genus, the procedure still applies. We shall see this is the case for our

two-dimensional a.c.i. system c
(1)
2 Toda lattice.

© 2024 Global Journals
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II. Linearisation of Two-Dimensional Algebraic Completely Integrable

Systems
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(b) Otherwise, if one of the components of Dc is a d : 1 unramified cover Cc of a smooth
curve Γc of genus two, the map p : Cc → Γc extends to the map p̃ : T2

c → Jac(Γc). In this
case, let Cc denote the (non complete) linear system p̃∗ [2Γc] ⊂ [2Cc] which corresponds
to the complete linear system [2Cc] and compute now the Kummer surface Cc of Jac(Γc)
as image of φEc : T2

c → P3.

(c) Otherwise, change the divisor at infinity so as to arrive in cas (a) or (b). This can always
be done for any irreducible Abelian surface.

2. Choose a Weierstrass point W on the curve Γc and coordinates (z0 : z1 : z2 : z3) for P3 such
φ[2Γc](W ) = (0 : 0 : 0 : 1) in case 1.(a) and φEc(W ) = (0 : 0 : 0 : 1) in case 1.(b). Then this
point will be a singular point (node) for the Kummer surface Kc whose equation is

p2(zo, z1, z2)z2
3 + p3(zo, z1, z2)z3 + p4(zo, z1, z2) = 0,

where the pi are polynomials of degree i. After a projective transformation which fixes
(0 : 0 : 0 : 1), we may assume that p2(zo, z1, z2) = z2

1 − 4z0z2.

3. Finally, let x1 and x2 be the roots of the quadractic equation z0x
2 + z1x + z2 = 0, whose

discriminant is p2(zo, z1, z2), with the zi expressed in terms of the original variables. Then
the differential equations describing the vector field of the system are rewritten by direct
computation in the classical Weierstrass form

dx1√
f(x1)

+
dx2√
f(x2)

= α1dt,

x1dx1√
f(x1)

+
x2dx2√
f(x2)

= α2dt,

(2.2)

where α1 and α2 depend on c (i.e., on the torus). From it, the symmetric functions x1 +x2(=
−z1/z0), x1x2(= z2/z0) and the original variables can be written in terms of the Riemann
theta function associated to the curve y2 = f(x).

In this section, we recall some results relating the two-dimensional c
(1)
2 toda system. It is well

known that this system is a.c.i. (see [12]).

The Toda lattice associated to the twisted affine Lie algebra c
(1)
2 consists of three particles

interconnected by means of exponential springs and constrained to move on a circle. The motion
is determined by the following equations

ẋ0 = x0x3, ẋ3 = 2x0 − 2x1,

ẋ1 = x1x4, ẋ4 = −x0 + 2x1 − x2,

ẋ2 = x2x5, ẋ5 = 2x2 − 2x1.

(3.1)

on the hyperplane H =
{

(x0, x1, . . . , x5) ∈ C6 | x3 + 2x4 + x5 = 0
}

. We denote by V the vector
field defined by the above differentials equations (3.1).
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Separability and a Lax Representation for the 𝐶𝐶2
(1) Toda Lattice

1. (a) If one of the components of Dc is a smooth curve Γc of genus two, compute the image of
the rational map φ[2Γc] : T2

c → P3 which is a singular surface in P3, the Kummer surface
Kc of the the jacobian Jac(Γc) of the curve Γc.

III. The 𝐶𝐶2
(1) -Toda System: Algebraic Completely Integrability
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There are three independent constants of motion, namely

F1 = x0x
2
1x2,

F2 = x2
3 + x2

5 − 4x0 − 8x1 − 4x2,

F3 = (x2
3 − 4x0)(x2

5 − 4x2)− 8x1(x3x5 − 2x1). (3.2)

The field V is the Hamiltonian vector field with the function F2, with respect to the Poisson
structure defined by the following skew-symmetric matrix

J :=
1

4



0 0 0 2x0 −x0 0
0 0 0 −x1 x1 −x1

0 0 0 0 −x2 2x2

−2x0 x1 0 0 0 0
x0 −x1 x2 0 0 0
0 x1 −2x2 0 0 0

 . (3.3)

If we assign x0, x1 and x2 weight 2 and x3, x4 and x5 weight 1, then the invariants are all homo-
geneous with weights 8, 2 and 4 respectively. If we give time weight −1, the vector field V also
becomes weight homogeneous. It is shown in [6] that, for such vector field, it is easy to find the
weight homogeneous Laurent solutions to the differential equations. On C6 there are two involu-
tions σ and τ which preserve the constants of motion F1, F2 and F3. These involutions, restrict to
the hyperplane H, are given by

σ(x0, x1, x2, x3, x4, x5) = (x2, x1, x0, x5, x4, x3),

τ(x0, x1, x2, x3, x4, x5) = (x0, x1, x2,−x3,−x4,−x5). (3.4)

The involution σ preserves the vector field V (3.1) while the involution τ changes its sign. Both
involutions will have strong implications on the geometry of the integrable system [12]. We have
shown [12] that the set of regular values of the momentum map F is the Zariski open in C3 given
by

Ω = {(c1, c2, c3) ∈ C3 | c1 6= 0, c2
3 − 1024c1 6= 0 and (c2

2 − 4c3)2 − 16384c1 6= 0}. (3.5)

Throughout the rest, a generic point c = (c1, c2, c3) in C3 will be an element of the set Ω.

The involution σ simplifies the Painlevé analysis to the system. We show that the system of
differential equations (3.1) possesses three families of Laurent solutions depending on the maximal
number free parameters (4 in this case). Such families are called principal balances. The first
principal balance x(t,m0) is given by

x0(t;m0) =
1

t2
+ d+ et+O(t2),

x1(t;m0) = −2et+O(t2),

x2(t;m0) = c+ act+O(t2),

x3(t;m0) = −2

t
+ 2dt+ 3et2 +O(t3),

x4(t;m0) =
1

t
− a

2
− (c+ d)t− 1

2
(ac− 5e)t2 +O(t3),

x5(t;m0) = a+ 2ct+ (2e+ ac)t2 +O(t3),

(3.6)

© 2024 Global Journals
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where the four free parameters have been denoted by a, c, d and e. The second principal balance
x(t;m1) is given by

x0(t;m1) = βt2 +O(t3),

x1(t;m1) =
1

t2
+ γ +

1

10
(6γ2 − β − δ)t2 +O(t3),

x2(t;m1) = δt2 +O(t3)

x3(t;m1) =
2

t
+ α− 2γt− 1

15
(6γ2 − 11β − δ)t3 +O(t4),

x4(t;m1) = −2

t
+ 2γt− 2

5
(γ2 − β − δ)t3 +O(t4),

x5(t;m1) =
2

t
− α− 2γt− 1

15
(6γ2 − β − 11δ)t3 +O(t4).

(3.7)

where the four free parameters are denoted by α, β, γ and δ. The last principal balance x(t;m2) is
obtained from the above formulas for x(t;m0) by applying the involution σ. Using the majorant
method [6], one shows that these series are convergent for small |t| 6= 0.

Substituting the Laurent solution (3.6) into (3.2): F1 = c1, F2 = c2 and F3 = c3, and equaling
the t0-terms yieds c1 = 4ce2, c2 = a2−4c−12d, c3 = 48cd−12a2d−32ae. Eliminating c and d from
these equations leads to an equation connecting the two remaining parameters a and e. Namely,

Γ0
c : a4e4 − (2c1 + c2e

2)a2e2 + 32ae5 + c3e
4 + c1c2e

2 + c2
1 = 0. (3.8)

It is shown in [9, 12] that this curve can be compactified into a Riemann surface, denoted by Γ
0
c ,

by just adding six points at infinity and the genus of Γ
0
c is two. Upon computing the abstract

Painlevé divisor Γ2
c , which corresponds to the Laurent solution x(t,m2), we obtain the same equa-

tion (3.8), since the involution σ preserves the constants of motion, so that the Riemann surface

Γ
2
c is isomorphic to Γ

0
c .

At last, a direct substitution of the Laurent solution x(t;m1) (3.7) in the three equations
Fi = ci, i = 1, 2, 3; leads to the algebraic equations in terms of the four parameters α, β, γ and δ,
to wit

c1 = βδ, c2 = 2α2 − 24γ, c3 = α4 + 24α2γ + 144γ2 − 16β − 16δ.

Since c1 6= 0, by eliminating the parameters γ and δ in these equations, we find a curve Γ1
c whose

an equation is given, in the two remaining parameters α and β, by

64β2 + (4c3 − (4α2 − c2)2)β + 64c1 = 0.

For c generic, the affine curve Γ1
c is smooth and can be compactified into a Riemann surface, denoted

Γ
1
c , by adding two points at infinity ∞′ and ∞′′. A local parametrization of neighborhood of these

points is given by

∞′ : α =
1

ς
, β =

1

8ς4

(
2− c2ς

2 +
1

8
(c2

2 − 4c3)ς4 +O(ς6)

)
, (3.9)

∞′′ : α =
1

ς
, β = 4c1ς

4 + 2c1c2ς
6 +O(ς6). (3.10)
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The genus of the Riemann surface Γ
1
c is three. Indeed, by making the change of the variable

ξ = 128β + (4c3 − (4α2 − c2)2), we can see that the curve Γ
1
c is isomorphic to the smooth genus

three hyperelliptic Riemann surface C1
c : ξ2 = h(α) = ((4α2 − c2)2 − 4c3)2 − 16384c1.

The affine invariant surface

Fc := F−1(c) =

3⋂
i=1

{x ∈ H : Fi(x) = ci}

defined by the three constants of motion can be embedded in the projective space P17 means of
eighteen functions

z0 = 1, z1 = x3, z2 = x3 + x5,

z3 = 4x1 − x3x5, z4 = 4(x0 − x2) + x2
5 − x2

3, z5 = x3z3 + 4x0x5,

z6 = x5z3 + 4x2x3, z7 = x1x0, z8 = x1x2,

z9 = x3x5z4 + 4x1(x2
3 − x2

5), z10 = x1x2x3, z11 = x1x0x5,

z12 = x0x1x2, z13 = x1x0(x2
5 − 4x1), z14 = x1x2(x2

3 − 4x1),
(3.11)

z15 = x1x0(4x1(x3 − 2x5) + x5(x2
5 − 4x2)),

z16 = x1x2(4x1(x5 − 2x3) + x3(x2
3 − 4x0)),

z17 = x0x1x2(x2
3 + x2

5 − 4(x0 + x2)),

which behave like t−1 at worst when the three principal balances are substituted into them. Using
the embedding

ϕc : Fc → P17

(x0, x1, x2, x3, x4, x5) 7→ (1 : z1 : · · · : z17),
(3.12)

and the three principal balances, it is possible to show that the closure of the image of this affine
surface Fc is an Abelian surface T2

c for generic values c = (c1, c2, c3) ∈ Ω of constants of motion.
Indeed, the map ϕc induces three injective maps ϕic : Γic → P17 (i = 0, 1, 2) that define the divisor
Dc to be added to Fc for its completion into the Abelian suface T2

c . The closure of the image of
each of these maps, ϕic (Γic) will be denoted by Dic. We have the following result:

1. For generic points of C3, the invariant surface Fc is the affine part of an Abelian surface T2
c .

The divisor at infinity Dc on T2
c consists of three irreducible components D0

c , D1
c and D2

c

where

(a) D0
c and D2

c are both singular curves isomorphic to Γ
0
c defined by

e4a4 − (2c1 + c2e
2)e2a2 + 32e5a+ c3e

4 + c1c2e
2 + c2

1 = 0, (3.13)

(b) D1
c is isomorphic to the smooth hyperelliptic curve of genus three Γ

1
c defined by

64β2 + (4c3 − (4α2 − c2)2)β + 64c1 = 0. (3.14)

© 2024 Global Journals
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Separability and a Lax Representation for the 𝐶𝐶2
(1) Toda Lattice

Theorem 3.1. [12]

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

2. The system of differential equations (3.1) is algebraically completely integrable and the flows
of integrable vector fields are linear on the Abelian surfaces T2

c .

The divisor that completes the invariant surface Fc into Abelian surface is made up
by three curves Di := Dic. D1 intersects the over curves at one point each. The letter intersect each
other at four points.

This section is entirely devoted to the linearization of the system. As we have seen in the previous
section, a two-dimensional algebraic completely integrable system is linearizable if one of the com-
ponents of the divisor Dc (to be adjoined to Fc in order to complete Fc into an Abelian surface) is
a smooth curve of genus two; which is not the case for our system. Indeed, T2

c is not a Jacobian
surface because one of the components of Dc is not a smooth curve of genus two. We show in [12]
that T2

c is Prym variety of polarization of type (1, 2). In this situation, according to Vanhaecke,
the system is linearizable if one of the components of Dc is a d : 1 unramified Cc of a smooth curve

of genus two. In order to check this condition, we consider the curve Γ
1
c defined by

Γ
1
c : 64β2 + (4c3 − (4α2 − c2)2)β + 64c1 = 0, (4.1)

which is a component of the divisor Dc. For c ∈ Ω, the curve Γ
1
c is a smooth hyperelliptic curve of

genus three. The involution σ : (x0, x1, x2, x3, x4, x5) 7→ (x2, x1, x0, x5, x4, x3) acts on the parame-
ters α, β, γ and δ in the following way:

σ(α, β, γ, δ) = (−α, δ, γ, β).

For generic c, βδ = c1 6= 0. It follows that the map

σ : (α, β) 7→
(
−α, c1

β

)
(4.2)

G
lo
ba

l 
Jo

ur
na

l 
of
 S

ci
en

ce
 F

ro
nt
ie
r 
R
es
ea

rc
h 

 (
  
 )
  
X
X
IV

  
Is
su

e 
 I
  
V
er
si
on

  
I 

 Y
ea

r 
20

24

7

© 2024 Global Journals

 F
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is an involution for the curve Γ
1
c . Indeed, let σ be the involution which acts on the curve Γ

1
c , the

equation (4.1) becomes

64

(
c1

β

)2

+ (4c3 − (4α2 − c2)2)
c1

β
+ 64c1 = 0.

IV. Separation of the Variables

Remark 3.2.

Ref

[1
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,

p
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.
80

-9
7
.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Simplifying by c1
β , this leads to

64

(
c1

β

)
+ (4c3 − (4α2 − c2)2) + 64β = 0,

which can be written as

1

β

(
64β2 + (4c3 − (4α2 − c2)2)β + 64c1

)
= 0.

Since β 6= 0, we find the same initial equation of the curve Γ1
c . Namely,

64β2 + (4c3 − (4α2 − c2)2)β + 64c1 = 0.

The invariants of the involution σ are

Y = α2, X = β +
c1

β
and Z = α

(
β − c1

β

)
. (4.3)

Indeed, we have σ(Z) = −α
(
c1
β − β

)
= α

(
β − c1

β

)
= Z; cleary we have σ(Y ) = Y and

σ(X) = X.

Let Kc be the quotient of the curve Γ
1
c by the involution σ. For generic c, the

quotient curve Kc is a smooth curve of genus two and the map Γ
1
c → Kc is an unramified 2 : 1 map.

Proof. We determine the genus of the curve Kc := Γ
1
c/σ. We observe that the equation of Γ

1
c can

be written in the following form:

64

(
β +

c1

β

)
+ (4c3 − (4α2 − c2)2) = 0,

such that

64X − (4Y − c2)2 + 4c3 = 0.

We deduce that

X =
1

64

[
(4Y − c2)2 − 4c3

]
. (4.4)

On the other hand, we have

Z2 = α2

(
β − c1

β

)2

= Y

[(
β +

c1

β

)
− 2c1

β

]2

= Y

[(
β +

c1

β

)2

− 4
c1

β

(
β +

c1

β

)
+

4c2
1

β2

]

Z2 = Y
(
X2 − 4c1

)

(4.5)
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Remark 4.1.

Proposition 4.2.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Substituting (4.4) in (4.5), one obtains the equation of the curve Kc. Namely

Kc : Z2 = Y

(
1

4096

(
(4Y − c2)2 − 4c3

)2 − 4c1

)
.

Thus, the curve Kc is isomorphic to the hyperelliptic of genus two whose the equation is

z2 = h(y) = y
((

(y − c2)2 − 4c3

)2 − 16384c1

)
. (4.6)

For c ∈ Ω, this curve is smooth because the polynomial h(y) is without multiple roots; indeed, its
discriminant is equals , up to a constant, to

c2
1(c2

3 − 1024c1)2((c2
2 − 4c3)2 − 16384c1),

which does not vanish for c ∈ Ω. Finally let us show that the involution σ has no fixed point for
c ∈ Ω. A point (x0, x1, x2, x3, x4, x5) de Fc is a fixed point for involution σ if and only if x0 = x2

and x3 = x5. By substituting the coordinates x2 and x5 respectively by x0 and x3 in the functions
Fi = ci (for i = 1, 2, 3), one obtains the system

c1 = x2
0x

2
1,

c2 = 2x2
3 − 8(x0 + x1),

c3 = (x2
3 − 4x0)2 − 8x1(x2

3 − 2x1).

By a direct computation, we find the relation c2
2 − 4c3 = 128x0x1. This leads to the equality

(c2
2 − 4c3)2 − 16384c1 = 0,

which is impossible for a generic point c ∈ C3. Thus the involution σ has no fixed point in Fc.
Using (4.2), it is easy to verify that the points at infinity ∞′ and ∞′′ also aren’t fixed points for σ.
We have

g
(

Γ
1
c

)
= 2g (Kc)− 1.

We can conclude that the map π : Γ
1
c −→ Kc is an unramified double cover.

The vector field V (3.1) extends to a linear vector field on the Abelian surface T2
c

and the Jacobi form for the differentials equation can be written as

dµ1√
f(µ1)

+
dµ2√
f(µ2)

= 0,

µ1dµ1√
f(µ1)

+
µ2dµ2√
f(µ2)

=
1

i
√

2
dt,

where f(µ) =
(
µ4 − 2c3µ

2 − 1024c1 + c2
3

) (
µ− 1

2c2

)
; and the curve v2 = f(µ) is birational equiva-

lent to the hyperelliptic curve of genus two Kc (4.6).
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Theorem 4.3.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Proof. The demonstration is based on the Vanhaecke’s procedure described above. We first con-
struct, following [7], an explicit map from the generic fiber Fc into the Jacobian of the Riemann

surface Γ
1
c .

We consider the functions which have at worst a double pole along the component D1
c of the

divisor Dc on Jac(Γ
1
c), and no others poles. These functions are obtained by constructing those

polynomials on H which have at worst a double pole in t when the principal balance x(t,m1) is
substituted into them and no poles when the other principal balances are substituted.

From (3.7), we easily show that the space of such polynomials is spanned by

s0 = 1

s1 = x1

s2 = x2
5 − x2

3 − 4(x2 − x0)

s3 = x1(x3 − x5)

s4 = x1(4x1 − x3x5)

s5 = x1(x3
3 − x3

5 + x0x3 − 4x2x5 + 12x1x3 − 12x1x5)

s6 = x2
1x0

s7 = x2
1(x0 + x2)

The leading terms are given by

(s0, s1, . . . , s7) =

(
1,

1

t2
,−2α

t
,
α

t2
,
α2 + 12γ

t2
,
2α(−α2 + 36γ)

t2
,
β

t2
,
β + δ

t2

)
.

Among these functions, only the following are invariants by the involution σ:

θ0 := 1, θ2 := x1(4x1 − 4x3x5),

θ1 := x1, θ3 := x2
1(x0 + x2).

(4.7)

The above functions allow us to embed the Kummer surface of Jac(Kc) in the projective space P3.
Consider now the Koidara map which correspond to these functions.

ϕc : Jac(Kc) \ D1
c → P3

p = (x0, x1, x2, x3, x5) 7→ (θ0(p) : θ1(p) : θ2(p) : θ3(p)).
(4.8)

Since the functions θi correspond to the sections of the line bundle
[
2D1

c

]
, the map ϕc maps the

Jac(Kc) into its Kummer surface, which is a singular quartic in the projective space P3.

An equation for this quartic surface, in terms of θi, can be computed by eliminating the variables
x0, x1, x2, x3, x5 from (4.7) and from the equations

c1 = x0x
2
1x2,

c2 = x2
3 + x2

5 − 4x0 − 8x1 − 4x2,

c3 = (x2
3 − 4x0)(x2

5 − 4x2)− 8x1(x3x5 − 2x1).

(4.9)
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The result is a quartic equation of the Kummer surface of Jac(Kc) which it can be put in the
following form :

((8θ1)2 − 4(8θ2 − c3))θ2
3 + P3(θ1, θ2)θ3 +

1

4
P4(θ1, θ2) = 0, (4.10)

where P3 (respectively P4) is a polynomial of degree three (respectively four) in θ1 and θ2, given
by

P3(θ1, θ2) = (8θ1 + c2)(c3θ
2
1 − θ2

2 + 16c2
1),

P4(θ1, θ2) = c2
3θ

4
1 + 256c1c2θ

3
1 + (16c1(32θ2 + c2

2 − 2c3)− 2c3θ
2
2)θ2

1 + (θ2
2 − 16c1)2.

The coefficient of θ3 in (4.10) can be written, in terms of the initial variables x0, x1, x2, x3 and x5,
as follows:

θ3 = (8x1)2 − 4(8x1(4x1 − x3x5)− c3).

Let µ1 and µ2 be roots of the polynomial

f(µ) = µ2 + 8x1µ+ 8x1(4x1 − x3x5)− c3.

By [23, Theorem 9], the vector field V defining the Toda lattice linearizes upon the setting

µ1 + µ2 = −8x1,

µ1µ2 = 8x1(4x1 − x3x5)− c3,
(4.11)

which implies, with respect to the vector field V, that

µ̇1 + µ̇2 = 4x1(x3 + x5),

µ̇1µ2 + µ1µ̇2 = −4x1((x3 + x5)(x3x5 − 4x1) + 4(x0x5 + x2x3)).
(4.12)

Substituting (4.11) and (4.12) in the invariants (4.9) and eliminating the variables x0, x1, x2, x3 and
x5, two quadratic polynomials in µ̇2

1 and µ̇2
2 are found. Solving them for in µ̇2

1 and µ̇2
2 yields

µ̇2
i =

(
µ4
i − 2c3µ

2
i − 1024c1 + c2

3

)
(µi − c2/2)

4(µ1 − µ2)2
, i = 1, 2.

It follows that

dµ1√
f(µ1)

+
dµ2√
f(µ2)

= 0,

µ1dµ1√
f(µ1)

+
µ2dµ2√
f(µ2)

=
1

i
√

2
dt,

(4.13)

where f is the polynomial

f(µ) =
(
µ4 − 2c3µ

2 − 1024c1 + c2
3

)(
µ− 1

2
c2

)
.

Integrating (4.13) we see that the field V is a linear vector field on Fc which obviously extends to
linear vector field on the Jacobian variety of the curve Kc and the factor of its generic complex
invariant manifold Fc by σ is an open subset of Jac (Kc) .
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By using [19, Theorem 5.3], we show that the symmetric functions µ1, µ2 and the original phase
variables can be written in terms of theta functions.

In this connection, a natural question is how the curve Kc and the curve v2 = f(µ) are re-
lated. The answer comes out immediately when we observe that the curves v2 = f(µ) and Kc are
birationally equivalent. Indeed, setting u = µ− c2/2, we obtain the following:

v2 = u

(
1

16

(
(2u+ c2)2 − 4c3

)2 − 1024c1

)
. (4.14)

Next, putting y = −2u, and z = 4i
√

2v, we obtain the equation

z2 = y
((

(y − c2)2 − 4c3

)2 − 16384c1

)
of the curve Kc whose the jacobian is canonically associated to the Abelian surface T2

c .

In this Section, we shall find a new Lax pair for the c
(1)
2 Toda lattice.

Let u, v and w be functions in t whith the property uw + v2 = c, c is a constant. Then the
following obvious identity holds

d

dt
X = [X,Y ] , [X,Y ] = XY − Y X, (5.1)

where

X =

(
v u
w −v

)
, Y =

1

2v
=

(
0 d

dtu

− d
dtw 0

)
.

Suppose that a completely integrable Hamiltonian system is given which linearizes on a Jacobian
variety Jac (Γ) of a hyperelliptic curve Γ : y2 = f(λ), where f(λ) is a polynomial with coefficients
depending upon the constant of motion. Then, as it has been first by Fairbanks [13] and also Pol
Vanhaecke [23], we may take c = f(λ), and define u, v, w to be the Jacobi polynomials on Jac (Γ).
Thus we obtain a Lax pair (5.1) depending on a spectral parameter λ, and the coefficients of f(λ)
(and hence the first integrals) are reconstruted from the identies

det (X − yI) = y2 − v2 − uv = y2 − f(λ) = constant.

Suppose first that the curve Γ is a genus 2 curve. Let p1 and p2 be points on Γ and denote
µ1 = λ(p1), µ2 = λ(p2). Then the Jacobi polynomials associated with Γ read

u(λ) = (λ− µ1)(λ− µ2), v(λ) =

√
f(µ1)(λ− µ2)−

√
f(µ2)(λ− µ1)

µ1 − µ2
,

Note that w(λ) is in fact a polynomial in λ.

© 2024 Global Journals
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V. Lax Pairs
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u(λ)
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Let us find now a new Lax pair for the c
(1)
2 Toda lattice. According to Mumford’s description

of hyperelliptic Jacobians (see [19, Section 3.1]), if Γ a hyperelliptic curve of genus two then the
Riemann surface Γ is embedded in its jacobian in a such way that Jac(Γ) \ Γ is isomorphic to the
space of pairs of polynomials (u(λ), v(λ)) such that u(λ) is a monic of degree two, v(λ) is of degree

less than two and f(λ)− v2(λ) is divisible by u(λ). Let us describe the map from Fc into Jac(Γ
1
c)

in terms of these polynomoials. Let µ1 and µ2 be the roots of the polynomial u(λ). From (4.11),
we can conclude that

u(λ) = λ2 + 8x1λ+ 16(x2
1 − x0x2) + 4(x0x

2
5 + x2x

2
3)− x2

3x
2
5.

The polynomial v(λ) is defined as the derivative, suitable normalised, of u(λ) in the direction of
the vector field V (3.1), we find out that

v(λ) = 4i
√

2 [−x1(x3 + x5)λ+ x1((x3 + x5)(x3x5 − 4x1)− 4x1(x0x5 + x2x3)] .

It is easy to check that the expression f(λ)−v2(λ) is divisible by u(λ) such that the above formulas

define a point of Jac(Γ
1
c) \ Γ1

c . Let’s put

w(λ) =
f(λ)− v2(λ)

u(λ)
.

w(λ) is a polynomial in λ of degree 3 = deg u+ 1. By direct calculation, we find

w(λ) = λ3 + w2λ
2 + w1λ+ w0,

where

w2 = −1

2
(x2

3 + x2
5) + 2x0 − 4x1 + 2x2,

w1 = 4x1(x2
3 + x2

5 − 4x0 − 4x1 − 4x2 + 4x3x5)− (x2
3 − 4x0)(x2

5 − 4x2)

and

w0 =
1

2
(x2

3 + x2
5 − 4x0 − 8x1 − 4x2)(x2

3 − 4x0)(x2
5 − 4x2)

+ 8x1

(
8x2

1 + 4(x0 + x2)(x1 + x3x5) + (x2
3 + x2

5)(3x1 − x3x5)
)
.

Based on above and [22, Chapter VII.2], the linearizing variables (4.11) and (4.12) suggest a

morphism φ from the c
(1)
2 Toda lattice to genus 2 odd Mumford system:

M =

{(
v(λ) u(λ)
w(λ) −v(λ)

)
∈M2(C[λ]) | deg(u) = 2 = deg(w)− 1,

deg(v) < 2; u,wmonic

}
∼= C7.

It is well known that the Mumford system M is algebraic completely integrable. The morphism
φ : H → C7 is given by

(x0, x1, x2, x3, x5) 7→


u(λ) = λ2 + u1λ+ u0,

v(λ) = v1λ+ v0,

w(λ) = λ3 + w2λ
2 + w1λ+ w0.

The form of the Lax pair then follows from [23]. We have:
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The Lax equation for the Hamiltonian vector field V is given by

Ẋ(λ) = [X(λ), Y (λ)]

by taking

X(λ) =

(
v(λ) u(λ)
w(λ) −v(λ)

)
and Y (λ) =

(
0 1
b(λ) 0

)
,

where u(λ), v(λ) and w(λ) are the polynomials defined above. The coefficient b(λ) of the matrix
Y (λ) is the polynomial part of the rational function w(λ)/u(λ).

By direct computation, one finds

b(λ) = λ− 1

2
(x2

3 + x2
5) + 2x0 − 12x1 + 2x2.

And we can show that the characteristic polynomial of the matrix X(λ) is precisely the poly-
nomial which defines the curve Kc.

We grateful to Pol Vanhaecke for stimulating discussions and suggestions we had together on
this paper. We wish to express our thanks to an anonymous referee for his valuable helful comments
and suggestions
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