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fragment of generalized modal syllogistic that contains the quantifiers in Square{all} and Square{most}. On the basis of 
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I.

 

Introduction

 

Syllogism is one of the significant forms of reasoning in natural language and 
human thinking. There are various kinds of syllogisms, such as Aristotelian syllogisms 

(Patzig, 1969; Long, 2023; Hui, 2023), Aristotelian modal syllogisms (Johnson, 2004; 

Łukasiewicz, 1957; Cheng and Xiaojun, 2023), generalized syllogisms (Murinová

 

and 

Novák, 2012; Xiaojun and Baoxiang, 2021; Endrullis and Moss, 2015), and generalized 

modal syllogisms (Jing and Xiaojun, 2023).

 

Although many generalized modal syllogisms exist in natural language, there is 

little literature on their reducibilities. Therefore, this paper mainly focuses on them. 
The four Aristotelian quantifiers (that is, not all, all, some

 

and no) constitute 

Square{all}. And ‘most’

 

and its three negative (i.e. inner, outer and dual), fewer than 

half of the,

 

at most half of the,

 

and at least half of the,

 

form

 

Square{most}. The 
generalized modal syllogisms studied in this paper only involve the quantifiers in 

Square{all}

 

and Square{most}.
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II.  Preliminaries  

In this paper, let w, v  and z  be the lexical variables, which are elements in the 

set W, V  and Z respectively, D be the domain of lexical variables, ∣W∣  the cardinality of 

the set W, and m, n, s  and t  propositional variables. Q  stands for any generalized 

quantifiers, ¬Q  and Q¬  for  the outer and inner negative quantifier of Q  respectively. 

The generalized modal syllogisms discussed in this paper comprise the following 
sentences as follows: ‘all ws are vs’, ‘no ws are vs’, ‘some ws are vs’, ‘not all ws are vs’, 
‘most ws are vs’, ‘fewer than half of the ws are vs’, ‘at most half of the ws are vs’, and 

‘at least half of the ws are vs’. They can be denoted as: all(w, v),  no(w, v),  some(w, v),  

not all(w, v),  most(w, v),  fewer than half of the(w, v),  at most half of the(w, v),  at least 

half of the(w, v), and are respectively abbreviated as Proposition A, E, I, O, M, F, H
 and S.

 A non-trivial generalized modal syllogism includes at least one and at most three 
non-

 

overlapping modalities (possible modality (◇) or necessary modality ()) and non-
trivial generalized quantifiers, such as the quantifiers in Square{most}.

 Example 1:

 
Major premise: No grapes are necessarily blueberries.

 
Minor premise: Most grapes are purple fruits.

 
Conclusion: Not all purple fruits are possibly blueberries.

 Let w be the lexical variable for a blueberry in the domain, v be the lexical 

variable for a grape in the domain, and z

 

be the lexical variable for a purple fruit in the 

domain. Then the syllogism in example 1 can be formalized as: no(v, w)∧most         

(v, z)→◇not all(z, w), which abbreviated as EM◇O-3.

 
According to generalized quantifier theory, set theory (Halmos, 1974) and 

possible world semantics (Chellas, 1980), the truth value definitions of sentences with 

quantification, relevant facts and rules used in the paper are as follows:

 Definition 1

 

(truth value definitions):

 
(1.1) all(w, v) is true when and only when W⊆V

 

is true in all real worlds.

 
(1.2) no(w, v) is true when and only when W∩V=∅

 

is true in all real worlds.

 
(1.3) some(w, v) is true when and only when W∩V≠∅

 

is true in all real worlds.

 

(1.4) not all(w, v) is true when and only when W⊈V

 

is true in all real worlds.

 

(1.5) most(w, v) is true when and only when ∣W∩V∣>0.5∣W∣

 

is true in all real worlds.

 

(1.6) all(w, v) is true when and only when W⊆V

 

is true in all possible worlds.

 

(1.7) ◇all(w, v) is true when and only when W⊆V

 

is true in some possible worlds.

 

(1.8) no(w, v) is true when and only when W∩V=∅

 

is true in all possible worlds.
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(1.9) ◇no(w, v) is true when and only when W∩V=∅ is true in some possible worlds.

(1.10) some(w, v) is true when and only when W∩V≠∅ is true in all possible worlds.

Notes



  

  

(1.11) ◇some(w, v)

 

is true when and only when W∩V≠∅

 

is true in some possible 
worlds.

 

(1.12) not all(w, v)

 

is true when and only when W⊈V

 

is true in all possible worlds.

 

(1.13) ◇not all(w, v)

 

is true when and only when W⊈V

 

is true in some possible worlds.

 

(1.14) most(w, v)

 

is true when and only when ∣W∩V∣>0.5∣W∣

 

is true in all possible 
worlds.

 

(1.15) ◇most(w, v)

 

is true when and only when ∣W∩V∣>0.5∣W∣

 

is true in some possible 

worlds.

 

Definition 2

 

(inner negation): Q¬(w, v)=defQ(w, D-v).

 

Definition 3

 

(outer negation): ¬Q(w, v)=defIt is not that Q(w, v).

 

Fact 1

 

(inner negation):

 

(1.1) ⊢all(w, v)↔no¬(w, v);                   

 

(1.2) ⊢no(w, v)↔all¬(w, v);

 

(1.3) ⊢some(w, v)↔not all¬(w, v);              

 

(1.4) ⊢not all(w, v)↔some¬(w, v);

 

(1.5) ⊢fewer than half of the(w, v)↔most¬(w, v);  

 

(1.6) ⊢most(w, v)↔fewer than half of the¬(w, v);

 

(1.7) ⊢at most half of the(w, v)↔at least half of the¬(w, v);

 

(1.8) ⊢at least half of the(w, v)↔at most half of the¬(w, v).

 

Fact 2

 

(outer negation):

 

(2.1) ⊢¬not all(w, v)↔all(w, v);

 

(2.2) ⊢¬all(w, v)↔not all(w, v);

 

(2.3) ⊢¬no(w, v)↔some(w, v);

 

(2.4) ⊢¬some(w, v)↔no(w, v);

 

(2.5) ⊢¬most(w, v)↔at most half of the(w, v);

 

(2.6) ⊢¬at most half of the(w, v)↔most(w, v);

 

(2.7)

 

⊢¬fewer than half of the(w, v)↔at least half of the(w, v);

 

(2.8) ⊢¬at least half of the(w, v)↔fewer than half of the(w, v).

 

Fact 3

 

(dual): 

 

(3.1) ⊢¬Q(w, v)↔◇¬Q(w, v);

 

(3.2) ⊢¬◇Q(w, v)↔¬Q(w, v).

 
Fact 4

 

(symmetry):

 
(4.1) ⊢some(w, v)↔some(v, w);
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(4.2) ⊢no(w, v)↔no(v, w).

Notes



 Fact 5

 

(subordination): 

 (5.1) ⊢Q(w, v)→Q(w, v);

 (5.2) ⊢Q(w, v)→◇Q(w, v);

 (5.3) ⊢Q(w, v)→◇Q(w, v);

 (5.4) ⊢all(w, v)→some(w, v);

 (5.5) ⊢no(w, v)→not all(w, v).

 
Rule 1

 

(subsequent weakening): If ⊢(m∧n→s) and ⊢(s→t), then ⊢(m∧n→t).

 
Rule 2

 

(anti-syllogism): If ⊢(m∧n→s), then ⊢(¬s∧m→¬n) or ⊢(¬s∧n→¬m).

 
III.

 
The

 

Validity

 

of

 

the

 

Syllogism

 

EM◇O-3

 
In order to discuss the reducibility of generalized modal syllogisms based on the 

syllogism EM◇O-3, it is necessary to prove the validity of the syllogism EM◇O-3.

 
Theorem 1

 

(EM◇O-3):

 

The generalized modal syllogism no(v, w)∧most                

(v, z)→◇not all(z, w)

 

is valid.

 Proof:

 

According to Example 1, EM◇O-3

 

is the abbreviation of the syllogism no(v, 

w)∧most(v, z)→◇not all(z, w). Suppose that no(v, w) and most(v, z) are true, then 

in virtue of

 

Definition (1.8), no(v, w) is true when and only when V∩W=∅
 

is true in 

all possible worlds. Similarly, in line with Definition (1.5), most(v, z) is true when and 

only when ∣V∩Z∣>0.5∣V∣
 

is true in all real worlds. Real worlds are elements in the set of 

all possible worlds. Thus, it

 

is easily seen that V∩W=∅
 

and ∣V∩Z∣>0.5∣V∣
 

are true in 

some possible worlds. Then, it is clear that Z⊈W is true in some possible worlds. ◇not 

all(z, w) is true in terms of Definition (1.13). The above proves that the syllogism 

no(v, w)∧most(v, z)→◇not all(z, w) is valid.

 
IV.

 
The

 
Other

 
Generalized

 
Modal

 
Syllogisms

 
Derived

 
From

 
Em◇O-3

 
Theorem 1 states that EM◇O-3 is valid, and ‘EM◇O-3→EM◇O-4’

 
in

 
Theorem 2(1) expresses that the validity of syllogism EM◇O-4 is deduced from that 

of syllogism EM◇O-3. That is to show that there are reducible relations between 

these two syllogisms, and the others are similar.
 

Theorem 2:
 

There are at least the following 29 valid generalized modal syllogisms 

obtained from EM◇O-3:
 

(1)  EM◇O-3→EM◇O-4
 

(2)  EM◇O-3→AEH-2
 

(3)  EM◇O-3→AM◇I-1
 

(4)  EM◇O-3→AM◇I-3
 

© 2024 Global Journals
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Notes



(5) EM◇O-3→EM◇O-4→AEH-4 

(6) EM◇O-3→EM◇O-4→MA◇I-4 

(7) EM◇O-3→AEH-2→EAH-2 

(8) EM◇O-3→AM◇I-1→EM◇O-1 

(9) EM◇O-3→AM◇I-3→MA◇I-3 

(10) EM◇O-3→AEH-2→EAH-2→EAH-1 

(11) EM◇O-3→AM◇I-1→EM◇O-1→EM◇O-2 

(12) EM◇O-3→AM◇I-3→MA◇I-3→FA◇O-3 

(13) EM◇O-3→AEH-2→EAH-2→EAH-1→AAS-1 

(14) EM◇O-3→AM◇I-1→EM◇O-1→EM◇O-2→AF◇O-2 

(15) EM◇O-3→AEH-2→AE◇H-2 

(16) EM◇O-3→AEH-2→AE◇H-2→AE◇H-4 

(17) EM◇O-3→AEH-2→AE◇H-2→AM◇I-1 

(18) EM◇O-3→AEH-2→AE◇H-2→EM◇O-3 

(19) EM◇O-3→AEH-2→AE◇H-2→EA◇H-2 

(20) EM◇O-3→AEH-2→AE◇H-2→AE◇H-4→MA◇I-4 

(21) EM◇O-3→AEH-2→AE◇H-2→AE◇H-4→EM◇O-4 

(22) EM◇O-3→AEH-2→AE◇H-2→AM◇I-1→EM◇O-1 

(23) EM◇O-3→AEH-2→AE◇H-2→EM◇O-3→AM◇I-3 

(24) EM◇O-3→AEH-2→AE◇H-2→EA◇H-2→EA◇H-1 

(25) EM◇O-3→AEH-2→AE◇H-2→AM◇I-1→EM◇O-1 

       → EM◇O-2 

(26) EM◇O-3→AEH-2→AE◇H-2→EM◇O-3→AM◇I-3 

      →MA◇I-3 

(27) EM◇O-3→AEH-2→EAH-2→EAH-1→AAS-1→AA◇S-1 

(28) EM◇O-3→AEH-2→EAH-2→EAH-1→AAS-1→AA◇S-1 

→AF◇O-2 

(29) EM◇O-3→AEH-2→EAH-2→EAH-1→AAS-1→AA◇S-1 

→FA◇O-3 

Proof: 

[1] ⊢no(v, w)∧most(v, z)→◇not all(z, w)                (i.e. EM◇O-3, Theorem 1)    

[2] ⊢no(w, v)∧most(v, z)→◇not all(z, w)       (i.e. EM◇O-4, by [1] and Fact (4.2)) 

[3] ⊢¬◇not all(z, w)∧no(v, w)→¬most(v, z)                              (by [1] and Rule 2) 

[4] ⊢¬not all(z, w)∧no(v, w)→¬most(v, z)                         (by [3] and Fact (3.2)) 

[5] ⊢all(z, w)∧no(v, w)→at most half of the(v, z) 

                                            (i.e. AEH-2, by [4], Fact (2.1) and Fact (2.5)) 
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Notes



[6] ⊢¬◇not all(z, w)∧most(v, z)→¬no(v, w)                          (by [1] and Rule 2)  

[7] ⊢¬not all(z, w)∧most(v, z)→◇¬no(v, w)           (by [6], Fact (3.1) and Fact (3.2))  

[8] ⊢all(z, w)∧most(v, z)→◇some(v, w)      

                                              (i.e. AM◇I-1, by [7], Fact (2.1) and Fact (2.3)) 

[9] ⊢all¬(v, w)∧most(v, z)→◇some¬(z, w)             (by [1], Fact (1.2) and Fact (1.4))  

[10] ⊢all(v, D-w)∧most(v, z)→◇some(z, D-w)(i.e. AM◇I-3, by [9] and Definition 2)  

[11] ⊢¬◇not all(z, w)∧no(w, v)→¬most(v, z)                             (by [2] and Rule 2) 

[12] ⊢¬not all(z, w)∧no(w, v)→¬most(v, z )                      (by [11] and Fact (3.2))  

[13] ⊢all(z, w)∧no(w, v)→at  most half of the(v, z)   

                                           (i.e. AEH-4, by [12], Fact (2.1) and Fact (2.5)) 

[14] ⊢¬◇not all(z, w)∧most(v, z)→¬no(w, v)                             (by [2] and Rule 2) 

[15] ⊢¬not all(z, w)∧most(v, z)→◇¬no(w, v)        (by [14], Fact (3.1) and Fact (3.2))  

[16] ⊢all(z, w)∧most(v, z)→◇some(w, v)       

                                           (i.e. MA◇I-4, by [15], Fact (2.1) and Fact (2.3)) 

[17] ⊢no¬(z, w)∧all¬(v, w)→at  most half of the(v, z)       

                                                            (by [5], Fact (1.1) and      Fact (1.2))  

[18] ⊢no(z, D-w)∧all(v, D-w)→at  most half of the(v, z)     

                                                       (i.e. EAH-2, by [17] and Definition 2) 

[19] ⊢no¬(z, w)∧most(v, z)→◇not all¬(v, w)         (by [8], Fact (1.1) and Fact (1.3))  

[20] ⊢no(z, D-w)∧most(v, z)→◇not all(v, D-w)     

                                                         (i.e. EM◇O-1, by [19] and Definition 2) 

[21] ⊢all(v, D-w)∧most(v, z)→◇some(D-w, z) (i.e. MA◇I-3, by [10] and Fact (4.1))  

[22] ⊢no(D-w, z)∧all(v, D-w)→at  most half of the(v, z)  

                                                          (i.e. EAH-1, by [18] and Fact (4.2)) 

[23] ⊢no(D-w, z)∧most(v, z)→◇not all(v, D-w)    

                                                          (i.e. EM◇O-2, by [20] and Fact (4.2)) 

[24] ⊢all(v, D-w)∧fewer than half of the¬(v, z)→◇not all¬(D-w, z)     

                                                                (by [21], Fact (1.6) and Fact (1.3))             

[25] ⊢all(v, D-w)∧fewer than half of the(v, D-z)→◇not all(D-w, D-z) 

                                                       (i.e. FA◇O-3, by [24] and Definition 2) 

[26] ⊢all¬(D-w, z)∧all(v, D-w)→at least half of the¬(v, z) 

                                                               (by [22], Fact (1.2) and Fact (1.7))  

© 2024 Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 S

ci
en

ce
 F

ro
nt
ie
r 
R
es
ea

rc
h 

 (
  
 )
  
X
X
IV

  
Is
su

e 
 I
  
V
er
si
on

  
I 

 Y
ea

r 
20

24

40

 F
 

The Validity of Generalized Modal Syllogisms with the Generalized Quantifiers in Square{most}

Notes



[27] ⊢all(D-w, D-z)∧all(v, D-w)→at least half of the(v, D-z) 

                                                         (i.e. AAS-1, by [26] and Definition 2) 

[28] ⊢all¬(D-w, z)∧fewer than half of the¬(v, z)→◇not all(v, D-w) 

                                                               (by [23], Fact (1.2) and Fact (1.6)) 

[29] ⊢all(D-w, D-z)∧fewer than half of the(v, D-z)→◇not all(v, D-w) 

                                                       (i.e. AF◇O-2, by [28] and Definition 2)    

[30] ⊢all(z, w)∧no(v, w)→◇at most half of the(v, z)   

                                              (i.e. AE◇H-2, by [5], Fact (5.3) and Rule 1) 

[31] ⊢all(z, w)∧no(w, v)→◇at most half of the(v, z) 

                                                       (i.e. AE◇H-4, by [30] and Fact (4.2))       

[32] ⊢¬◇at most half of the(v, z)∧all(z, w)→¬no(v, w)            (by [30] and Rule 2) 

[33] ⊢¬at most half of the(v, z)∧all(z, w)→◇¬no(v, w)    

                                                                   (by [32], Fact (3.1) and Fact (3.2)) 

[34] ⊢most(v, z)∧all(z, w)→◇some(v, w)   

                                         (i.e. AM◇I-1, by [33], Fact (2.6) and Fact (2.3)) 

[35] ⊢¬◇at most half of the(v, z)∧no(v, w)→¬all(z, w)            (by [30] and Rule 2)  

[36] ⊢¬at most half of the(v, z)∧no(v, w)→◇¬all(z, w)    

                                                                (by [35], Fact (3.1) and Fact (3.2)) 

[37] ⊢most(v, z)∧no(v, w)→◇not all(z, w) 

                                         (i.e. EM◇O-3, by [36], Fact (2.6) and Fact (2.2)) 

[38] ⊢no¬(z, w)∧all¬(v, w)→◇at most half of the(v, z)    

                                                                 (by [30], Fact (1.1) and Fact (1.2)) 

[39] ⊢no(z, D-w)∧all(v, D-w)→◇at most half of the(v, z)   

                                                     (i.e. EA◇H-2, by [38] and Definition 2) 

[40] ⊢¬◇at most half of the(v, z)∧all(z, w)→¬no(w, v)            (by [31] and Rule 2)  

[41] ⊢¬at most half of the(v, z)∧all(z, w)→◇¬no(w, v)    

                                                                (by [40], Fact (3.1) and Fact (3.2)) 

[42] ⊢most(v, z)∧all(z, w)→◇some(w, v)      

                                         (i.e. MA◇I-4, by [41], Fact (2.6) and Fact (2.3)) 

[43] ⊢¬◇at most half of the(v, z)∧no(w, v)→¬all(z, w)            (by [31] and Rule 2)  

[44] ⊢¬at most half of the(v, z)∧no(w, v)→◇¬all(z, w)   (by [43], Fact (3.1) and 

Fact (3.2)) 

[45] ⊢most(v, z)∧no(w, v)→◇not all(z, w)   
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                                        (i.e. EM◇O-4, by [44], Fact (2.6) and Fact (2.2))  

[46] ⊢most(v, z)∧no¬(z, w)→◇not all¬(v, w)     (by [34], Fact (1.1) and Fact (1.3))                                  

[47] ⊢most(v, z)∧no(z, D-w)→◇not all(v, D-w)  

                                                     (i.e.EM◇O-1, by [46] and Definition 2)  

[48] ⊢most(v, z)∧all¬(v, w)→◇some¬(z, w)       (by [37], Fact (1.2) and Fact (1.4))  

[49] ⊢most(v, z)∧all(v, D-w)→◇some(z, D-w)  

                                                      (i.e.AM◇I-3, by [48] and Definition 2)  

[50] ⊢no(D-w, z)∧all(v, D-w)→◇at  most half of the(v, z)  

                                                       (i.e. EA◇H-1, by [39] and Fact (4.2))  

[51] ⊢most(v, z)∧no(D-w, z)→◇not all(v, D-w)  

                                                         (i.e. EM◇O-2, by [47] and Fact (4.2))  

[52] ⊢most(v, z)∧all(v, D-w)→◇some(D-w, z)  

                                                        (i.e. MA◇I-3, by [49] and Fact (4.1))  

[53] ⊢all(D-w, D-z)∧all(v, D-w)→◇at least half of the(v, D-z)              

                                              (i.e. AA◇S-1, by [27], Fact (5.3) and Rule 1)  

[54] ⊢¬◇at least half of the(v, D-z)∧all(D-w, D-z)→¬all(v, D-w)  

                                                                                   (by [53] and Rule 2)  

[55] ⊢¬at least half of the(v, D-z)∧all(D-w, D-z)→◇¬all(v, D-w)  

                                                                 (by [54], Fact (3.1) and Fact (3.2))  

[56] ⊢fewer than half of the(v, D-z)∧all(D-w, D-z)→◇not  all(v, D-w)  

                                         (i.e. AF◇O-2, by [55],  Fact (2.8) and Fact (2.2))  

[57] ⊢¬◇at least half of the(v, D-z)∧all(v, D-w)→¬all(D-w, D-z)      

                                                                                  (by [53] and Rule 2) 

[58] ⊢¬at least half of the(v, D-z)∧all(v, D-w)→◇¬all(D-w, D-z)  

                                                               (by [57], Fact (3.1) and Fact (3.2))  

[59] ⊢fewer than half of the(v, D-z)∧all(v, D-w)→◇not  all(D-w, D-z)  

                                        (i.e. FA◇O-3, by [58], Fact (2.8) and Fact (2.2))  

Now, the other 29 generalized modal syllogisms have been deduced from the 

validity of EM◇O-3. Similarly, more valid syllogisms can be inferred from it. This 

indicates that there are
 

reducible relations between/among these syllogisms.
 

Their 

validity can be proven similar to Theorem 1.
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V. Conclusion 

Due to the large number of generalized quantifiers in the English language, this 
paper only studies the fragment of generalized modal syllogistic that contains the 
quantifiers in Square{all} and Square{most}. This paper proves that there are reducible 

relations between/ among
 
the generalized modal syllogism EM◇O-3

 
and at least the 

above 29 valid generalized modal syllogisms. To be specific, this paper firstly proves the 
validity of EM◇O-3 on the basis of generalized quantifier theory, possible-world 
semantics, and set theory. Then, according to some facts and inference rules, the above 

29 valid generalized modal syllogisms are derived from EM◇O-3. 

 
This method can also be used to study syllogisms with other generalized 

quantifiers, such as at most

 

1/3 of the, more than

 

1/3 of the, at least

 

2/3 of the, fewer 
than

 

2/3 of the. It is obvious that the above results obtained by deduction have not 
only consistency, but also

 

theoretical value for

 

the development of inference theory in 
artificial intelligence.
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