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Abstract-
 
The behavior of self-organizing neural maps, which develop through a combination

 
of 

long and short-term memory, involves different time scales. Such a
 
neural network’s activity is 

characterized by a neural activity equation representing
 
the fast phenomenon and a synaptic 

information efficiency equation
 

representing the slow part of the neural system. The work 
reported here proposes

 
a new method to analyze the dynamics of self-organizing maps based

 on the flow-invariance principle, considering the performance of the system’s
 
different time 

scales. In this approach, the equilibrium point is determined
 
based on the estimate for the 

entropy at each iteration of the learning rule,
 
which is generally sufficient to analyze existence and 

uniqueness. In this
 
sense, the viewpoint reported here proves the existence and uniqueness of

 the equilibrium point on a fractional approach by using a Lyapunov method
 
extension for Caputo 

derivatives when 0 < 𝛼𝛼
 
< 1. Furthermore, the global

 
exponential stability of the equilibrium point 

is proven with a strict Lyapunov
 
function for the flow of the system with different time scales and 

some
 
numerical simulations.
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• Self-organizing neural maps develop through long and short-term mem-
ory and have fast and slow activity equations.

• Lyapunov method extended for Caputo derivatives helps estimate and
examine entropy behavior during learning.

• Self-organizing neural maps based on competitive differential equations
lack entropy-based synaptic efficiency.

• The final stage of training is not affected by external stimuli.

• Pattern learning has lower entropy-rate without external stimuli during
learning process.

Highlights 

Self-organizing neural maps, also known as competitive neural networks,
are an important class of neural networks. These networks focus on two key

Abstract- The behavior of self-organizing neural maps, which develop through a combination of 
long and short-term memory, involves different time scales. Such a neural network’s activity is 
characterized by a neural activity equation representing the fast phenomenon and a synaptic 
information efficiency equation representing the slow part of the neural system. The work reported 
here proposes a new method to analyze the dynamics of self-organizing maps based on the flow-
invariance principle, considering the performance of the system’s different time scales. In this 
approach, the equilibrium point is determined based on the estimate for the entropy at each 
iteration of the learning rule, which is generally sufficient to analyze existence and uniqueness. In 
this sense, the viewpoint reported here proves the existence and uniqueness of the equilibrium 
point on a fractional approach by using a Lyapunov method extension for Caputo derivatives when 
0 < 𝜶𝜶 < 1. Furthermore, the global exponential stability of the equilibrium point is proven with a 
strict Lyapunov function for the flow of the system with different time scales and some numerical 
simulations.
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aspects: the ability to store desired patterns as stable equilibrium points
and the mutual interference between neuron and learning dynamics. This re-
search examines how cortical cognitive maps work by using a self-organizing
map with differential equations for neural activity levels, short-term mem-
ory (STM), and synaptic information efficiency, long-term memory (LTM).

Notes
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Entropy-Based Stability of Fractional Self-Organizing Maps with Different Time Scales

STM and LTM models are usually based on classical Grossberg’s approach
or Amari’s model for primitive neural competition [1, 2]. These models often
involve mutually inhibitory neurons with fixed synaptic connections [3, 4, 1].
Researchers have studied competitive neural systems using flow invariance
theory and singular perturbation theory on large-scale networks. These net-
works have two types of state variables that describe the slow unsupervised
dynamics of synapses and the fast dynamics of neural activity. The fast dy-
namics are usually represented by the goal of the self-organizing map, such
as clustering or recognition. One example is the Willshaw-Malsburg model
[1, 5] of topographic formation, which uses solutions of equations of synap-
tic self-organization coupled with the field equation of neural excitations to
improve the understanding of the dynamics of cortical cognitive maps [4, 6].
However, the design using classical competitive differential equations is not
broad enough because the synaptic efficiency is not dependent on entropy.
Therefore, this paper extends these approaches to incorporate systems where
external stimuli can modify the synaptic information efficiency. This is done
by estimating the entropy of information transfer between neurons. In other
words, this research focuses on LTM in terms of how information transfer
evolves. Fractional differential equations are used to model synaptic effi-
ciency based on entropy estimation, which accurately improves the models
based on STM and LTM approaches [7, 8, 9, 10, 11].

The study proposes an alternate model for information transfer between
neurons based on entropy. It applies McMillan-Shannon’s approach to frac-
tional competitive differential equations to determine the mathematical con-
ditions for when STM and the estimation of entropy related to LTM have
bounded trajectories. The study uses an alternative version of Lyapunov
functions to examine exponential stability in fractional-order systems [7].
This proposal is more comprehensive than previous studies, such as those
conducted by [3, 4, 1, 8]. It presents a strict Lyapunov function for the neural
multi-time scale system, which demonstrates the existence and uniqueness of
the equilibrium point. Additionally, this proposal provides some conditions
for global exponential stability based on singular perturbation theory and
variable entropy-dependent synaptic efficiency.

The paper is structured as follows: In Section 2, the mathematical back-
ground related to self-organizing maps modeled by Caputo derivatives is
presented. This allows for the inclusion of fractional order in the differential
equations associated with STM and LTM dynamics. Section 3 analyzes the
equilibrium point from the perspective of synaptic efficiency, and covers the
existence and uniqueness of the equilibrium point. Section 4 presents numer-
ical simulations that provide findings about SOM’s equilibrium point and
entropy when exposed to external stimulus. Finally, Section 5 offers closing
remarks and final comments.

The synaptic information efficiency (SIE) can be defined according to
the existence of an ergodic process related to binned input and output spike

II. Mathematical Background
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trains whose length is N bins [4]. In computational experiments, N is asso-
ciated with iterations during the learning procedure on time domain. In this
way, by assuming mij the synaptic efficiency between i-th and the j-th neu-
ron then let Sin, Sout the binned input and output spike trains, respectively,
both defined by {σ1, . . . , σN}, where σi ∈ {0, 1} represents i-th bin, and
assume that this string is the realization of a stationary and ergodic stochas-
tic process. By using the Shannon-MacMillan-Brieman’s theorem [12, 13]
− 1

N
log2 p(σ1, . . . , σN) → H, where H is the entropy rate of X (events set)

and p(σ, . . . , σN) is the probability of obtaining the string (σ1, . . . , σN) as a
realization of X. In that sense, the estimate for the entropy at N -th iteration
will be represented by ĤN = − 1

N
log2 p̂(σ1, . . . , σN). So, for i-th neuron,

SIEi = ĤN(σ1, . . . , σN)i − ĤN(σ1, . . . , σN |Sin)i

=
1

N
log2 p̂i(σ1, . . . , σN |Sin)−

1

N
log2 p̂i(σ1, . . . , σN),

where ĤN(σ1, . . . , σN |Sin) is the estimated output spike train entropy given
the input spike train Sin, also known as conditional entropy (see [4]). In this
way, for N iterations,

mij =
1

N
log2 βij ≜

1

N
log2

p̂i(σ1, . . . , σN |Sin)p̂j(σ1, . . . , σN)

p̂j(σ1, . . . , σN |Sin)p̂i(σ1, . . . , σN)
. (1)

Nevertheless, on the time domain, βij can be represented as βij(t), for
t ≥ 0, since at N -th iteration there is some time related to the learning
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procedure. Sometimes, to guarantee coherence with symbolic representation
for N iterations, the notation βij is retained.

Since the nature of the transfer process related to synaptic information
becomes more precise using fractional differential equations, the Caputo def-
inition for the fractional derivative is more suitable because it incorporates
initial conditions and its integer order derivatives. Although there are sev-
eral definitions regarding the fractional derivative of order α ≥ 0, in the time
domain the general network equations describing the temporal evolution of
the STM and LTM states for the j-th neuron of M neurons are

ε

Γ(1− α)

∫ t

0

x
(m+1)
j (λ)

(t− λ)α
dλ = −ajxj +

M∑
i=1

Dijf(xi) +
Bj

N

P∑
i=1

log2 βijyi

1

NΓ(1− α)

∫ t

0

[log2 βij(λ)]
(m+1)

(t− λ)α
dλ = − 1

N
log2 βij + yif(xj),

where α is the Caputo’s fractional order defined by α = m + γ, m ∈ Z+,
0 < γ ≤ 1; Γ(·) is the Gamma function, xj is the current activity level (STM),

Ref

[4
]
M
.
L
on

d
on

,
A
.
S
ch
re
ib
m
an

,
M
.
H
äu
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aj is the time constant of the neuron, Bj is the contribution of the external
stimulus term, f(xi) is the neuron’s output, yi is the external stimulus, and
ε is the fast time-scale associated with the STM state. Dij represents a
synaptic connection parameter between the i-th neuron and j-th neuron.

According to the definition of mij in (1) and unlike [1, 9, 6], the self-
organizing map is implicitly modeled by a network of sources emitting input
signals with a prescribed probability distribution and external stimulus y ≜
[yi]. By using the dynamic transform wj = ⟨y, log2 βj⟩ the model gets as
follows:

ε

Γ(1− α)

∫ t

0

x
(m+1)
j (λ)

(t− λ)α
dλ = −ajxj +

M∑
i=1

Dijf(xi) +
Bj

N
wj (2)

1

NΓ(1− α)

∫ t

0

w
(m+1)
j (λ)

(t− λ)α
dλ = − 1

N
wj + ∥y∥2f(xj), (3)

where the external stimuli are assumed to be normalized vectors of unit
magnitude ∥y∥2 = 1.

As each string is the realization of a stationary and ergodic stochastic
process, it will be assumed a stochastic column matrix for each iteration
of βj, such that there exists P ≜ [p̄ij] ∈ RM×M , with

∑M
i=1 p̄ik = 1 and

βσ+1
j = Pβσ

j for (σ + 1)-th iteration. In this way, it can be noted that

β̇j = lim∆t→0
1

∆kt
(P − I)kβj, such that the sum of elements in each column

of (P − I)k ≜ [pij] is equal to zero, i.e.,

β
(k)
ij = lim

∆t→0

1

∆kt

M∑
s=1

pisβsj,
M∑
i=1

pik = 0, for ∀ k. (4)

The existence and uniqueness of the equilibrium point are given based on
flow-invariance while the global exponential stability will be based on a strict
Lyapunov function for fractional-order approaches. It is well-known that the
flow-invariance theory provides a qualitative viewpoint about the dynamics
of a system. To begin with, it will be defined the following theorem before
presenting the main results of this paper.

Consider the system of fractional differential equations:

1

Γ(1− α)

∫ t

0

x
(m+1)
i (λ)

(t− λ)α
dλ = −aixi +

M∑
j=1

Dijf(xj) +
Bi

N
wi, (5)

III. Equilibrium and Global Asymptotic Stability

Theorem 1. 

Notes
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1

Γ(1− α)

∫ t

0

w
(m+1)
i (λ)

(t− λ)α
dλ = − 1

N
wi + f(xi), , (6)

for i = 1, . . . ,M , where ai > 0 for all i = 1, . . . ,M , and f is locally Lipschitz
and bounded, that is, there exists a constant C > 0 such that −C ≤ f(x) ≤ C
for all x ∈ R. Then for any ε > 0 and for any initial condition {x(0), w(0)} ∈
R2M there exists a T ≥ 0 such that

wi(t) ∈ [−C − ε, C + ε], xi(t) ∈ [−li − ε, li + ε],

for all i = 1, . . . ,M , with equilibrium point e = [x̄i w̄i] = [x̄i ⟨y, log2 β̄i⟩],
where ∀ β̄ij ∈ β̄i satisfies∫ t

0

∫ λ

0

yj
β̄2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβ̄qjβ̄rj · dλ2 = 0 (7)

∫ t

0

yj
β̄2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβ̄qjβ̄rj · dλ = 0 (8)

Sm

M∑
s=1

pisβ̄sjyj =
yj

β̄ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβ̄qjβ̄rj, (9)

for m = 0, 1 and 2, respectively, and Sm ∈ Z+ for all t ≥ T .

Proof. Since f is Lipschitz, system (5)-(6) has local existence and uniqueness
of solutions. Furthermore, since f is uniformly bounded, there exist constants
K1, . . . , K5 such that

∣∣∣ 1

Γ(1− α)

∫ t

0

x
(m+1)
i (λ)

(t− λ)α
dλ
∣∣∣ ≤ K1 +K2∥xi(t)∥+K3∥wi(t)∥

∣∣∣ 1

Γ(1− α)

∫ t

0

w
(m+1)
i (λ)

(t− λ)α
dλ
∣∣∣ ≤ K4 +K5∥wi(t)∥,

thus all solutions are defined globally (for all t ≥ 0).
Given ε > 0, let δi > 0 be defined as

δi =

{
min

{
aiε
2|Bi| , ε

}
Bi ̸= 0

ε Bi = 0
,

such that −|Bi|δi + aiε ≥ aiε/2, for all i = 1, . . . ,M . Then for t ≥ 0 and for
wi(t) ≤ −C − δi the following inequality holds:

Notes
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1

Γ(1− α)

∫ t

0

w
(m+1)
i (λ)

(t− λ)α
dλ ≥ − 1

N
(−C − δi) + f(xi) =

1

N
δi+

[
f(xi) +

1

N
C

]
≥ δi > 0. (10)

Similarly, for t ≥ 0 and for wi(t) ≥ C + δi, the following inequality holds:

1

Γ(1− α)

∫ t

0

w
(m+1)
i (λ)

(t− λ)α
dλ ≤ − 1

N
(C + δi) + f(xi) = − 1

N
δi+

[
f(xi)−

1

N
C

]
≤ −δi < 0. (11)

Since α ≤ 1 then Γ(1 − α) > 0 and (t − λ)α > 0. In that sense, from

(10)-(11), both inequalities are guaranteed if and only if w
(m+1)
i (λ) > 0 and

w
(m+1)
i (λ) < 0, respectively.

By mathematical induction, it can be noted that

w
(m+1)
i =

M∑
j=1

[
m∑
k=0

Ak

βm+1−k
ij

(β̇ij)
m+1−ky

(k)
j +

Sk

βm+1−k
ij

β
(k+1)
ij y

(m−k)
j

]

+
dm−2

dλm−2

β̇ijβ̈ijyj
β2
ij ln 2

)
,

where Ak, Bk ∈ Z+. So, for wi(t) ≤ −C − δi and wi(t) ≥ C + δi,

M∑
j=1

[
m∑
k=0

Ak

βm+1−k
ij

(β̇ij)
m+1−ky

(k)
j +

Sk

βm+1−k
ij

β
(k+1)
ij y

(m−k)
j

]
>

− dm−2

dλm−2

β̇ijβ̈ijyj
β2
ij ln 2

)
, (12)

M∑
j=1

[
m∑
k=0

Ak

βm+1−k
ij

(β̇ij)
m+1−ky

(k)
j +

Sk

βm+1−k
ij

β
(k+1)
ij y

(m−k)
j

]
<

− dm−2

dλm−2

β̇ijβ̈ijyj
β2
ij ln 2

)
, (13)

respectively.

Notes
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By using (4) in (12), it can be obtained

lim
∆t→0

M∑
j=1

[
m∑
k=0

Ak

∆m−k−2tβm+1−k
ij

M∑
s=1

pisβsjy
(k)
j

+
Sk

∆k−2tβm+1−k
ij

M∑
s=1

pisβsjy
(m−k)
j

]
>

− lim
∆t→0

dm−2

dλm−2

yj
β2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqβqjpirβrj

)
.

For k < m, the evaluation of limits above yields,

∞ > − dm−2

dλm−2

yj
β2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqβqjpirβrj

)
, (14)

which represents an obvious condition. For k = m,

lim
∆t→0

M∑
j=1

[
Am∆

2t

βij

M∑
s=1

pisβsjy
(m)
j +

Sm

∆m−2tβij

M∑
s=0

pisβsjyj

]

> − lim
∆t→0

dm−2

dλm−2

yj
β2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqβqjpirβrj

)
.

Therefore, by evaluating the limits for m > 2, the inequality (14) is obtained
again. However, for 0 ≤ m ≤ 2 (i.e., m = 0, 1 and 2),

∫ t

0

∫ λ

0

yj
β2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβqjβrj

)
dλ2 > 0, (15)

∫ t

0

yj
β2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβqjβrj

)
dλ > 0, (16)

Sm

M∑
s=1

pisβsjyj <
yj

βij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβqjβrj, (17)

respectively. Since the operator dm−2/dλm−2 becomes an integral for m < 2.

Notes
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So, for wi(t) ≤ −C−δi, the inequalities (15)-(17) guarantee w
(m+1) > 0. The

same treatment applies to (13), it is only to change the less than symbol in
(15)-(17) by greater than symbol. Therefore, for any i ∈ {1, . . . ,M} there
exists a Ti > 0 such that

wi(t) ∈ [−C − δi, C + δi] ⊆ [−C − ε, C + ε], (18)

for all t ≥ Ti. So, the equilibrium point w̄i = ⟨y, log2 β̄i⟩ ∈ [−C − ε, C + ε],
where ∀ β̄ij ∈ β̄i satisfies

∫ t

0

∫ λ

0

yj
β̄2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβ̄qjβ̄rj

)
dλ2 = 0, (m = 0)

∫ t

0

yj
β̄2
ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβ̄qjβ̄rj

)
dλ = 0, (m = 1)

Sm

M∑
s=1

pisβ̄sjyj =
yj

β̄ij ln 2

M∑
r=1

M∑
q=1

M∑
s=1

pispsqpirβ̄qjβ̄rj (m = 2).

Defining TS = maxTi then wi(t) ∈ [−C−ε, C+ε] holds for all i ∈ {1, . . . ,M}
and for all t ≥ TS.

Now, let t ≥ TS. For xi(t) ≤ −li − ε, (5) and (18) imply that

1

Γ(1− α)

∫ t

0

x
(m+1)
i (λ)

(t− λ)α
dλ ≥ ai(li + ε) +

M∑
j=1

Dijf(xj)

+
Bi

N
(−C − δi) ≥ aili + aiε− C

M∑
j=1

|Dij|+
|Bi|
N

)
− |Bi|δi.

By defining li =
C
ai

(∑M
j=1 |Dij|+ 1

N
|Bi|

)
> 0, for i = 1, . . . ,M then

1

Γ(1− α)

∫ t

0

x
(m+1)
i (λ)

(t− λ)α
dλ ≥ −|Bi|δi + aiε ≥

aiε

2
> 0.

Similarly, for t ≥ TS and for xj(t) ≥ li + ε, (5) and (18) imply that

1

Γ(1− α)

∫ t

0

x
(m+1)
i (λ)

(t− λ)α
dλ ≤ |Bi|δi − aiε ≤ −aiε

2
< 0.

Notes
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Since α ≤ 1 then Γ(1− α) > 0 and (t− λ)α > 0. In that sense, both before

inequalities are guaranteed if and only if x
(m+1)
i (λ) > 0 and x

(m+1)
i (λ) < 0,

respectively. Therefore, for any i ∈ {1, . . . ,M} there exists a Ti > 0 such
that

xi(t) ∈ [−li − ε, li + ε]

for all t ≥ Ti. Defining TX = maxTi then xi(t) ∈ [−li − ε, li + ε] holds for all
i ∈ {1, . . . ,M} and for all t ≥ TX .

The system (5)-(6) is dissipative in R2M and therefore, it has a compact
global attractor

A ⊆ D =
M∏
i=1

[−li, li]×
M∏
i=1

[−C,C].

It follows from the proof of Theorem 1 that the set D is flow invariant under
(5)-(6). In other words, D is positively invariant set of (5)-(6), i.e., any
solution starting in D at t = 0 remains in D for all t ≥ 0. Furthermore,
from the proof of Theorem 1 the set H that contains D can be contracted
to a point, and since D is flow-invariant with respect to (5)-(6) then by the
Brower fixed point theorem implies that there exists a point e ∈ D is an
equilibrium point of (5)-(6).

Suppose that f(x) is C1 with |ḟ(x)| < k for all x and

ai > k
M∑
j=1

|Dij|+ |Bi|

)
, i = 1, . . . ,M, (19)

then the equilibrium e is unique.

Proof. At the equilibrium point, f(xi) =
1
N
wi from (6). Substituting these

expressions in (5), it is obtained

0 = −aixi +
M∑
j=1

Dijf(xj) +Bif(xi), for i = 1, . . . ,M .

Since ai > 0, xi can be expressed as

xi =
1

ai

M∑
j=1

Dijf(xj) +Bif(xi)

)
= Gi(x1, . . . , xM).

The inequality (19) implies that

|Gi(x
′
1, . . . , x

′
M)−Gi(x

′′
1, . . . , x

′′
M)| < k|(x′

1, . . . , x
′
M)− (x′′

1, . . . , x
′′
M)|,

Theorem 2. 

Notes
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i.e., G is a contracting map in RM . Consequently, there exists a unique fixed
point of G. The xi-coordinates of this fixed point uniquely determine the wi-
coordinates via f(xi) =

1
N
wi. Therefore, the equilibrium point is unique.

Now, let e = [x̄i w̄i] = [x̄i ⟨y, log2 β̄i⟩] be the equilibrium point of (5)-(6)
and introduce the change of variables ϕi = xi − x̄i, φi = wi − w̄i which shifts
e to the origin. Specifically, if fi(ϕi) = f(ϕi + x̄i)− 1

N
w̄i, then fi(0) = 0 and

(5)-(6) may be rewritten as

1

Γ(1− α)

∫ t

0

ϕ
(m+1)
i (λ)

(t− λ)α
dλ = −aiϕi +

M∑
j=1

Dijf(ϕj) +
Bi

N
φi, (20)

1

Γ(1− α)

∫ t

0

φ
(m+1)
i (λ)

(t− λ)α
dλ = − 1

N
φi + f(ϕi) for i = 1, . . . ,M. (21)

By assuming that there exists a Lyapunov function V (t, ϕi, φi) and class-
K functions γi (for i = 1, 2, 3) satisfying

γ1(|ϕi|, |φi|) ≤ V (t, ϕi, φi) ≤ γ1(|ϕi|, |φi|),

1

Γ(1− α)

∫ t

0

V (m+1)(λ, ϕi, φi)(λ)

(t− λ)α
dλ ≤ −γ3(|ϕi|, |φi|),

then the system (20)-(21) becomes asymptotically stable at equilibrium point
e [7].

[see [7]] Let r(t) ∈ R be a continuous and derivable function.
Then, for any time t ≥ t0

1

2Γ(1− α)

∫ t

0

[r2(λ)](m+1)

(t− λ)α
dλ ≤ r(t)

2Γ(1− α)

∫ t

0

r(λ)(m+1)(λ)

(t− λ)α
dλ.

Lemma 1. 

Notes
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Evolution of synaptic efficiencymij (for i = 1, j = 2, 3, 4) toward equilibrium
point (1.336, 1.336, 1.768) after N = 500 iterations when each neuron receives an external
stimulus based on neighborhood’s winner.

Evolution of synaptic efficiencymij (for i = 1, j = 2, 3, 4) toward equilibrium
point (1.316, 1.409, 1.779) after N = 500 iterations when each neuron updates its weights
without external stimulus.

Suppose that f(x) is C1 with |ḟ(x)| ≤ k for all x and ai > 0.

If

max
i

{
1

2

(
|Bi|
ai

+ k

)
+

M∑
j=1

1

2
k

(
|Dij|
ai

+
|Dji|
aj

)}
< 1 (22)

Figure 1: 

Figure 2: 

Theorem 3. 

then e is a global attractor for the system (20)-(21). Moreover, all solutions
of (20)-(21) converge to e exponentially fast as t → ∞.

Notes
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V (ϕi, φi) =
1

2

M∑
i=1

(
ϕ2
i

ai
+ φ2

i

)
,

then the fractional derivative for V (ϕi, φi) is defined by

1

Γ(1− α)

∫ t

0

V (m+1)(ϕi, φi)

(t− λ)ξ
dλ =

1

2Γ(1− α)

M∑
i=1

(
1

ai

∫ t

0

[ϕ2
i (λ)]

(m+1)

(t− λ)α
dλ+

∫ t

0

[φ2
i (λ)]

(m+1)

(t− λ)α
dλ

)
,

and by using the Lemma 1 together with (20)-(21) yields

1

Γ(1− α)

∫ t

0

V (m+1)(ϕi, φi)

(t− λ)α
dλ ≤ −

M∑
i=1

(
ϕ2
i + φ2

i

)
(23)

+
M∑
i=1

M∑
j=1

Dij
ϕi

ai
fj(ϕj) +

M∑
i=1

φi

(
ϕi

ai
Bi + fi(ϕi)

)
.

Since fi(0) = 0 and |ḟi(x)| = |ḟ(x+ x̄i)| < k, it is possible to have |fi(ϕi)| <
k|ϕi|. Consequently, with this last fact and the Minkowski inequality, (23)
can be replaced by the inequality

1

Γ(1− α)

∫ t

0

V (m+1)(ϕi, φi)

(t− λ)α
dλ < −

M∑
i=1

(
ϕ2
i + φ2

i

)

+
M∑
i=1

M∑
j=1

|Dij|k
1

ai
|ϕi||ϕj|+

M∑
i=1

(
|Bi|
ai

+ k

)
|φi||ϕi|.

The right-hand side of this inequality is given by the quadratic form with
the matrix −Q where Q has the following structure:

Q =



1− 1
2
k
(

|D11|
a1

+
|D11|
a1

)
− 1

2

(
|B1|
a1

+ k
)

− 1
2
k
(

|D12|
a1

+
|D21|
a2

)
0 . . .

− 1
2

(
|B1|
a1

+ k
)

1 0 0 . . .

− 1
2
k
(

|D21|
a2

+
|D12|
a1

)
0 1− 1

2
k
(

|D22|
a2

+
|D22|
a2

)
− 1

2

(
|B2|
a2

+ k
)

. . .

0 0 − 1
2

(
|B2|
a2

+ k
)

1 . . .

...
...

...
...

. . .


.

Proof. The global convergence will be proved by using a Lyapunov function
for (20)-(21). Let

Notes
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According to Gerschgorin’s theorem applied to −Q, there are M disks cen-

tered at z = −1 (in C-plane) with radius 1
2

(
|Bi|
ai

+ k
)
. In the same way, there

are M disks centered at z = 1
2
k
(

|Dii|
ai

+ |Dii|
ai

)
− 1 and radius 1

2

(
|Bi|
ai

+ k
)
+∑M

j=1
1
2
k
(

|Dij |
ai

+
|Dji|
aj

)
. If condition (22) is valid then all eigenvalues q of −Q

satisfy q < 1 or

1

2
k

(
|Dii|
ai

+
|Dii|
ai

)
− 2 < q <

1

2
k

(
|Dii|
ai

+
|Dii|
ai

)
.

Since 1
2
k
(

|Dii|
ai

+ |Dii|
ai

)
> 0 for ∀ i then −Q is positive definite and Q is

negative definite. Therefore, let ξ > 0 the smallest eigenvalue of −Q such
that

1

Γ(1− α)

∫ t

0

V (m+1)(ϕi, φi)

(t− λ)α
dλ < −ξ

M∑
i=1

(
ϕ2
i + φ2

i

)
,

and consequently, V is a strict Lyapunov function for (20)-(21). Moreover,
2V ≤

∑M
i=1 (ϕ

2
i + φ2

i ) thus

1

Γ(1− α)

∫ t

0

V (m+1)(ϕi, φi)

(t− λ)α
dλ < −2ξV.

This result implies that V converges to zero exponentially fast, and the
solutions (ϕi, φi) converge to the origin also exponentially fast, i.e., solu-
tions (x,w) in system (5)-(6) converges exponentially fast to equilibrium
e = [x̄ ⟨y, log2 β̄1⟩ . . . ⟨y, log2 β̄M⟩].

Comparing last iteration (N = 500 iterations) related to SOM for circle pattern
composed by 20 points.

To validate the proposed model, a self-organizing map with four neurons
(M = 4) is utilized in the following example. The aim is to find the best
updating of synaptic weights to adjust a circle shape that consists of 20

Figure 3: 

IV. Accessing Numerical Simulations
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patterns and has a radius of 0.5. This will be achieved using unsupervised
Hebb’s learning rule with N = 500 and a learning rate of 0.05. Let’s assume
that each neuron in a neural network has an activation value of aj = 0.5.
Two parameters, Dij and Bj, were set randomly for each neuron within the
range of 0 to 1. Additionally, α was set to 0.5, m to 0, and ε to 10−4. To
analyze the behavior of the equilibrium point in this model, the algorithm ran
for 500 iterations and observed how the equilibrium point behaves. Theorem
1 was used to determine the stability of this point. Our results show that
the model is locally stable, which means that it is capable of reaching an
equilibrium point and maintaining it over time.

In order to illustrate this point, Fig. 1 illustrates the equilibrium point
(1.336, 1.336, 1.768) after 500 iterations with no external stimulus, meaning
that ∥yi∥ = 0 and mij =

1
N
log2 βij for i = 1 and j = 2, 3, 4. This means that

all sequences (σ1, . . . , σ500) for events set X = ∅ between two neurons have a
probability of one, and the entropy Hi (i = 1, 2, 3, 4) approaches zero, which
is the ideal situation.

The following text describes the behavior of neurons when an external
stimulus is applied. So, let’s compare two figures - Fig. 1 and Fig. 2. The
former shows the neurons’ behavior when no external stimuli are applied,
while the latter shows their behavior when stimuli are applied. The amplitude
of the impulses generated by the stimuli is set at 0.001, and the stimuli
are defined by one impulse over the threshold. The sequences (σ1, . . . , σ500)
associated with each neuron are considered as a result of updating synaptic
weights according to the training rule at each iteration. In a neural network,
when a neuron is declared a winner and its weights are updated, the weights of
the neighboring neuron also need to be updated. Therefore, for each iteration
in the process, every neuron must have a term called σi in its sequence. This
term should be equal to one when the neuron is updated and zero when it
doesn’t receive any updates in its weights. Figure 3 illustrates that neurons
form a circular pattern consisting of 20 points; however, the final position of
neurons changes due to external stimuli during the last iteration.

For both cases in Figures 1 and 2, the equilibrium point (β̄12, β̄13, β̄14)
is represented by (1.336, 1.336, 1.768) and (1.316, 1.409, 1.779). By assum-
ing only the synaptic efficiencies m12,m13,m14, condition (7) becomes the
following three conditions:

p11
ln 2

M∑
s=1

p1sps1

∫ t

0

∫ λ

0

y4 · dλ2 = 0,

p11
ln 2

M∑
s=1

p1sps1

∫ t

0

∫ λ

0

y3 · dλ2 = 0,

p11
ln 2

M∑
s=1

p1sps1

∫ t

0

∫ λ

0

y2 · dλ2 = 0,

Notes
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On another side, it can be observed from Figs. 1 and 2 that the evolution
of m1j (j = 2, 3, 4) ensures the condition SIE1 > SIEj, more specifically,

Hi(σ1, . . . , σ500|Sin)−Hj(σ1, . . . , σ500|Sin)

> Hi(σ1, . . . , σ500)−Hj(σ1, . . . , σ500).

This result indicates that the motion of neurons without an external stimulus
is less disorganized than the motion of neurons with an external stimulus, as
expected.

The following paper establishes the global exponential stability of SOMs.
To this end, this proposal has used fractional order derivatives to describe
cognitive cortical maps that result from self-organization, with both LTM
and STM approaches. It applied McMillan-Shannon’s approach to fractional
competitive differential equations, which helps to understand the entropy
behavior of SOM in response to external stimuli. The proposal not only
proves the existence and uniqueness of the equilibrium point but also shows
how fractional order derivative operators can improve our understanding of
entropy associated with synaptic efficiency. Synaptic efficiency was modeled
by using sequences of updating impulses at each iteration, all of them as a
result of applying external stimuli, not only for the winner neuron but also
for neighbor neurons. In this way, the concept of conditional entropy plays
an important role in the proposal as it shows that it must be greater than
entropy to ensure convergence to the equilibrium point.

In future studies, it is hoped to investigate the correlation between the de-
velopment of information transfer and the division of fast dynamics into dis-
tinct time scales. This will involve integrating the Dynamic Confined Space
of Velocities criterion (DCSV) [14] into restricted self-organizing maps, which
are extensively utilized to address constrained multi-objective optimization
issues (CMOPs) [15].
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