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I.

 

Introduction

 
As one of the most well-known natural laws, Newton's second law of motion can 

be expressed in the form of a second-order differential equation. In order to preserve the 
energy conservation property of the original system, it is very important to use the 
conservative numerical methods to solve these equations with initial conditions

 

[1-4]. In 
recent years

 

some conservative numerical methods [1-3]

 

have been developed to solve the 
following second-order initial value problem,

                                                             

 

            

 

           (1.1)

 where

 

, and

 

.

 

Introduce the potential function 

 

of ,

 

 
then the energy conservation equation is derived as [1-2]
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Applying iterative computation, Greenspan [1] proposed two conservative implicit 

numerical methods to solve problem (1.1). According to the energy conservation 
equation (1.2), Qin [2] constructed an explicit energy-conserving method by using sign 

function, Sövegjártó

 

[3] also developed conservative spline methods to solve this problem 
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numerically.  In these methods [2-3], the function value at the current temporal node is 
numerically calculated first, and then the derivative value at the current temporal node is 
numerically computed, in which the sign function is used to  prejudge the sign of the 
derivative value.  We design an energy conservation method(numerical method I), which 
first calculates the derivative value and then calculates the function value, without  using 
the sign function.  Moreover, we use the  -continuous piecewise-quadratic functions [5-6] 

to approximate the true solution of problem (1.1), and construct a -continuous  energy 
conservation numerical method(numerical method II), these approximate solutions are 
global  - smooth on the entire temporal interval. Under a linear force assumption of the 
initial value problems, a priori error estimate for the numerical method II is deduced, 
which shows that the method has first-order convergence accuracy.  

The remainder of the paper is organized as follows. In Section II and Section III,  we 
propose two novel conservative numerical methods. We derive a priori error estimate for 
numerical method II in Section IV. The numerical experiments demonstrating the 
promising features of the conservative methods are displayed in Section V.  

II.  Numerical  Method  I  

Let 
 

be a subdivision of .  Define
 

 

denote the numerical solution 
 

and
  

for 
 

and , respectively.
 

We construct the following numerical scheme satisfying (1.2) for problem (1.1).
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III.

 

Numerical

 

Method

 

II

 

We apply the piecewise second-order polynomial 

 

to approximate the 

true solution

  

of problem (1.1). In each subinterval   set

 

 

                                                       

 

                   

 

       (3.1)

 

with

  

And the coefficients and   are yet to 

be computed. Noting the continuity condition , we have
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From second equation of (2.1), can be determined by Newton’s method [7], 

where the initial guess of is computed by the following equation,
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Inserting (3.2) into (1.2), we get
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IV.
 

Error
 
Analysis

 

In this section, we assume [8] and deduce the convergent result for 

numerical method (3.1)-(3.3).

 

On one hand, from (3.2) we have
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and hence,  
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On the other hand, since ,

 

applying (3.2), (4.1), and the energy 

conservation equation (1.2) we obtain
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From (3.3), can be computed by Newton’s method, where the initial guess of 

is determined by .
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Together with (4.2)-(4.3), this yields
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 It is easy to conclude that method (4.4) is stable, of order 2 [9].

 
Furthermore, using (3.2) and (4.3) we have

 

 
i.e.,

 

 

recall the Taylor’s formula

 

 
we get

 

 

 

 
 

 
Theorem 4.1:

 

Let     and 

 

be the functions given by (3.1) and (1.1), respectively. Assume 

that , then we have the following error estimates,
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which implies the starting values have second-order accuracy. Hence, by using 
Theorem 10.6 of chapter III in [9], we conclude that the convergent order of method (4.4)
is 1 . Thus, we obtain the following convergent theorem for numerical method II.

0 1, 



V. Numerical Tests 

We shall apply our two methods to solve three problems given in [1, 8] and display 
the error results. 

Example 1 [1].  

Example 2 [1].  

              

  

 Table 1:

 

Example 1:

 Numerical results for numerical method I

 

  1/2

 

4.31e-1

 1/4

 

1.76e-1

 1/8

 

5.79e-2

 1/16

 

1.66e-2

 

 Example 3 [8]. 
 

We apply numerical method II to solve Example 3 with different . The errors 
and the convergent order are displayed in Table 3, where Error:=

 
.
 
These 

results validate
 
Theorem 4.1.

 Table 2:

 

Example 2:

 Numerical results for numerical method I
 

   
1/2  1.43e-2  
1/4  4.32e-3  
1/8  1.16e-3  
1/16  3.01e-4  

 
Table 3:

 
Example 3:

 
Numerical results for numerical method II  

  

  

 1/1000

 

2.83e-1

 

---

 1/2000

 

1.39e-1

 

1.03

 1/4000

 

6.87e-2

 

1.02
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Notes
In our numerical experiments, we use numerical method I to calculate Example 1 

and Example 2. In Tables 1-2 we give the error results with different , where 
Error:= . These results indicate that numerical method I is effective.

h
|| (1) Nx x

 the conclusion in 

Error

Error

Error Convergent order

h

h

h

h
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