

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: C

Biological Science

Botany & Zoology

Assessment of Morphological

Insights for Germplasm Conservation

Highlights

Disturbs Translation Machinery

Spark of First Life and Consciousness

Discovering Thoughts, Inventing Future

VOLUME 24

ISSUE 1

VERSION 1.0

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: C
BIOLOGICAL SCIENCE
BOTANY & ZOOLOGY

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: C
BIOLOGICAL SCIENCE
BOTANY & ZOOLOGY

VOLUME 24 ISSUE 1 (VER. 1.0)

OPEN ASSOCIATION OF RESEARCH SOCIETY

All rights reserved.

This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website <http://globaljournals.us/terms-and-condition/menu-id-1463/>

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374
Import-Export Code: 1109007027
Employer Identification Number (EIN):
USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; **Reg. Number: 0423089**)
Sponsors: [Open Association of Research Society](#)
[Open Scientific Standards](#)

Publisher's Headquarters office

Global Journals® Headquarters
945th Concord Streets,
Framingham Massachusetts Pin: 01701,
United States of America
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Journals Incorporated
2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey,
Pin: CR9 2ER, United Kingdom

Packaging & Continental Dispatching

Global Journals Pvt Ltd
E-3130 Sudama Nagar, Near Gopur Square,
Indore, M.P., Pin:452009, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org
Investor Inquiries: investors@globaljournals.org
Technical Support: technology@globaljournals.org
Media & Releases: media@globaljournals.org

Pricing (Excluding Air Parcel Charges):

Yearly Subscription (Personal & Institutional)
250 USD (B/W) & 350 USD (Color)

EDITORIAL BOARD

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Dr. John Korstad

Ph.D., M.S. at Michigan University, Professor of Biology, Department of Biology Oral Roberts University, United States

Dr. Sahraoui Chaieb

Ph.D. Physics and Chemical Physics, M.S. Theoretical Physics, B.S. Physics, cole Normale Suprieure, Paris, Associate Professor, Bioscience, King Abdullah University of Science and Technology United States

Andreas Maletzky

Zoologist University of Salzburg, Department of Ecology and Evolution Hellbrunnerstraße Salzburg Austria, Universitat Salzburg, Austria

Dr. Mazeyar Parvinzadeh Gashti

Ph.D., M.Sc., B.Sc. Science and Research Branch of Islamic Azad University, Tehran, Iran Department of Chemistry & Biochemistry, University of Bern, Bern, Switzerland

Dr. Richard B Coffin

Ph.D., in Chemical Oceanography, Department of Physical and Environmental, Texas A&M University United States

Dr. Xianghong Qi

University of Tennessee, Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge National Laboratory, Knoxville, TN 37922, United States

Dr. Shyny Koshy

Ph.D. in Cell and Molecular Biology, Kent State University, United States

Dr. Alicia Esther Ares

Ph.D. in Science and Technology, University of General San Martin, Argentina State University of Misiones, United States

Tuncel M. Yegulalp

Professor of Mining, Emeritus, Earth & Environmental Engineering, Henry Krumb School of Mines, Columbia University Director, New York Mining and Mineral, Resources Research Institute, United States

Dr. Gerard G. Dumancas

Postdoctoral Research Fellow, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK United States

Dr. Indranil Sen Gupta

Ph.D., Mathematics, Texas A & M University, Department of Mathematics, North Dakota State University, North Dakota, United States

Dr. A. Heidari

Ph.D., D.Sc, Faculty of Chemistry, California South University (CSU), United States

Dr. Vladimir Burtman

Research Scientist, The University of Utah, Geophysics Frederick Albert Sutton Building 115 S 1460 E Room 383, Salt Lake City, UT 84112, United States

Dr. Gayle Calverley

Ph.D. in Applied Physics, University of Loughborough, United Kingdom

Dr. Bingyun Li

Ph.D. Fellow, IAES, Guest Researcher, NIOSH, CDC, Morgantown, WV Institute of Nano and Biotechnologies West Virginia University, United States

Dr. Matheos Santamouris

Prof. Department of Physics, Ph.D., on Energy Physics, Physics Department, University of Patras, Greece

Dr. Fedor F. Mende

Ph.D. in Applied Physics, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

Dr. Yaping Ren

School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China

Dr. T. David A. Forbes

Associate Professor and Range Nutritionist Ph.D. Edinburgh University - Animal Nutrition, M.S. Aberdeen University - Animal Nutrition B.A. University of Dublin-Zoology

Dr. Moaed Almeselmani

Ph.D in Plant Physiology, Molecular Biology, Biotechnology and Biochemistry, M. Sc. in Plant Physiology, Damascus University, Syria

Dr. Eman M. Gouda

Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

Dr. Arshak Poghossian

Ph.D. Solid-State Physics, Leningrad Electrotechnical Institute, Russia Institute of Nano and Biotechnologies Aachen University of Applied Sciences, Germany

Dr. Baziotis Ioannis

Ph.D. in Petrology-Geochemistry-Mineralogy Lipson, Athens, Greece

Dr. Vyacheslav Abramov

Ph.D in Mathematics, BA, M.Sc, Monash University, Australia

Dr. Moustafa Mohamed Saleh Abbassy

Ph.D., B.Sc, M.Sc in Pesticides Chemistry, Department of Environmental Studies, Institute of Graduate Studies & Research (IGSR), Alexandria University, Egypt

Dr. Yihun Shang

Ph.d in Applied Mathematics, Shanghai Jiao Tong University, China

Dr. Bing-Fang Hwang

Department of Occupational, Safety and Health, College of Public Health, China Medical University, Taiwan Ph.D., in Environmental and Occupational Epidemiology, Department of Epidemiology, Johns Hopkins University, USA Taiwan

Dr. Giuseppe A Provenzano

Irrigation and Water Management, Soil Science, Water Science Hydraulic Engineering , Dept. of Agricultural and Forest Sciences Universita di Palermo, Italy

Dr. Claudio Cuevas

Department of Mathematics, Universidade Federal de Pernambuco, Recife PE, Brazil

Dr. Qiang Wu

Ph.D. University of Technology, Sydney, Department of Mathematics, Physics and Electrical Engineering, Northumbria University

Dr. Lev V. Eppelbaum

Ph.D. Institute of Geophysics, Georgian Academy of Sciences, Tbilisi Assistant Professor Dept Geophys & Planetary Science, Tel Aviv University Israel

Prof. Jordi Sort

ICREA Researcher Professor, Faculty, School or Institute of Sciences, Ph.D., in Materials Science Autonomous, University of Barcelona Spain

Dr. Eugene A. Permyakov

Institute for Biological Instrumentation Russian Academy of Sciences, Director Pushchino State Institute of Natural Science, Department of Biomedical Engineering, Ph.D., in Biophysics Moscow Institute of Physics and Technology, Russia

Prof. Dr. Zhang Lifei

Dean, School of Earth and Space Sciences, Ph.D., Peking University, Beijing, China

Dr. Hai-Linh Tran

Ph.D. in Biological Engineering, Department of Biological Engineering, College of Engineering, Inha University, Incheon, Korea

Dr. Yap Yee Jiun

B.Sc.(Manchester), Ph.D.(Brunel), M.Inst.P.(UK)
Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia

Dr. Shengbing Deng

Departamento de Ingeniera Matemtica, Universidad de Chile. Facultad de Ciencias Fsicas y Matemticas. Blanco Encalada 2120, Piso 4., Chile

Dr. Linda Gao

Ph.D. in Analytical Chemistry, Texas Tech University, Lubbock, Associate Professor of Chemistry, University of Mary Hardin-Baylor, United States

Angelo Basile

Professor, Institute of Membrane Technology (ITM) Italian National Research Council (CNR) Italy

Dr. Bingsuo Zou

Ph.D. in Photochemistry and Photophysics of Condensed Matter, Department of Chemistry, Jilin University, Director of Micro- and Nano- technology Center, China

Dr. Bondage Devanand Dhondiram

Ph.D. No. 8, Alley 2, Lane 9, Hongdao station, Xizhi district, New Taipei city 221, Taiwan (ROC)

Dr. Latifa Oubedda

National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco, Lotissement Elkhier N66, Bettana Sal Marocco

Dr. Lucian Baia

Ph.D. Julius-Maximilians, Associate professor, Department of Condensed Matter Physics and Advanced Technologies, Department of Condensed Matter Physics and Advanced Technologies, University Wrzburg, Germany

Dr. Maria Gullo

Ph.D., Food Science and Technology Department of Agricultural and Food Sciences, University of Modena and Reggio Emilia, Italy

Dr. Fabiana Barbi

B.Sc., M.Sc., Ph.D., Environment, and Society, State University of Campinas, Brazil Center for Environmental Studies and Research, State University of Campinas, Brazil

Dr. Yiping Li

Ph.D. in Molecular Genetics, Shanghai Institute of Biochemistry, The Academy of Sciences of China Senior Vice Director, UAB Center for Metabolic Bone Disease

Nora Fung-yee TAM

DPhil University of York, UK, Department of Biology and Chemistry, MPhil (Chinese University of Hong Kong)

Dr. Sarad Kumar Mishra

Ph.D in Biotechnology, M.Sc in Biotechnology, B.Sc in Botany, Zoology and Chemistry, Gorakhpur University, India

Dr. Ferit Gurbuz

Ph.D., M.SC, B.S. in Mathematics, Faculty of Education, Department of Mathematics Education, Hakkari 30000, Turkey

Prof. Ulrich A. Glasmacher

Institute of Earth Sciences, Director of the Steinbeis Transfer Center, TERRA-Explore, University Heidelberg, Germany

Prof. Philippe Dubois

Ph.D. in Sciences, Scientific director of NCC-L, Luxembourg, Full professor, University of Mons UMONS Belgium

Dr. Rafael Gutirrez Aguilar

Ph.D., M.Sc., B.Sc., Psychology (Physiological), National Autonomous, University of Mexico

Ashish Kumar Singh

Applied Science, Bharati Vidyapeeth's College of Engineering, New Delhi, India

Dr. Maria Kuman

Ph.D, Holistic Research Institute, Department of Physics and Space, United States

CONTENTS OF THE ISSUE

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Contents of the Issue

- 1. *rpl-11.1* Knock-Down Disturbs Translation Machinery and Proteostasis in *Caenorhabditis elegans*. **1-7**
- 2. Assessment of Morphological Diversity in Cassava (*Manihot Esculenta Crantz*) Core Collection: Insights for Germplasm Conservation and Breeding in Togo. **9-25**
- 3. Spark of First Life and Consciousness. **27-32**

- v. Fellows
- vi. Auxiliary Memberships
- vii. Preferred Author Guidelines
- viii. Index

*rpl-11.1 Knock-Down Disturbs Translation Machinery and Proteostasis in *Caenorhabditis elegans**

By Zishuo Sam Li, Jocelyne Mills, Dennis Bonal & Callie Millette

Brown University

Summary- An array of human chronic diseases, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, are related to defects in cellular proteostasis and the formation of protein aggregates. Using *Caenorhabditis elegans* PP563, a model organism developed for studying proteostasis stress, we can elucidate the biological role of specific genes and proteins involved in translation and proteostasis, advancing our understanding of relevant pathologies and therapeutics. Here, we report the knockdown of *rpl-11.1* in *C. elegans* leads to disturbance in protein translation and proteostasis pathways, including the Ubiquitin-Proteosome System (UPS) and selective autophagy. We confirmed the importance of *rpl-11.1* in ensuring correct ribosome biogenesis and translation accuracy.

Keywords: *rpl-11.1*, *caenorhabditis elegans*, *RNAi*, *ubiquitin-proteosome system*, *selective autophagy*, *germline apoptosis*.

GJSFR-C Classification: LCC: QH302.5

Strictly as per the compliance and regulations of:

rpl-11.1 Knock-Down Disturbs Translation Machinery and Proteostasis in *Caenorhabditis elegans*

Zishuo Sam Li ^α, Jocelyne Mills ^α, Dennis Bonal ^ρ & Callie Millette ^ω

Summary An array of human chronic diseases, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, are related to defects in cellular proteostasis and the formation of protein aggregates. Using *Caenorhabditis elegans* PP563, a model organism developed for studying proteostasis stress, we can elucidate the biological role of specific genes and proteins involved in translation and proteostasis, advancing our understanding of relevant pathologies and therapeutics. Here, we report the knockdown of *rpl-11.1* in *C. elegans* leads to disturbance in protein translation and proteostasis pathways, including the Ubiquitin-

Proteosome System (UPS) and selective autophagy. We confirmed the importance of *rpl-11.1* in ensuring correct ribosome biogenesis and translation accuracy. We also demonstrated that both the UPS and selective autophagy are involved in the clearance of misfolded and aggregated proteins. A minor experiment in this study revealed the importance of *rpl-11.1* in germline proliferation.

Keywords: *rpl-11.1*, *caenorhabditis elegans*, *RNAi*, *ubiquitin-proteosome system*, *selective autophagy*, *germline apoptosis*.

Graphical Abstract

Author ^α p: 171 Meeting St., Providence, RI, USA. Written at Brown University, in the course: *Characterizing C. elegans Using Reverse Genetics*. e-mail: lizishuo703100@gmail.com

Author ^α: instructor, 171 Meeting St., Providence, RI, USA. Written at Brown University, in the course: *Characterizing C. elegans Using Reverse Genetics*.

Author ^ω: Teaching Assistants, 171 Meeting St., Providence, RI, USA. Written at Brown University, in the course: *Characterizing C. elegans Using Reverse Genetics*.

I. INTRODUCTION

Protein degradation is a major cellular process that maintains proteostasis and cellular physiology (Papaevgeniou & Chondrogianni, 2014). It primarily consists of degrading normal proteins in excessive amounts or eliminating damaged proteins, which might be a result of disturbances to normal

protein synthesis in the ribosomes. A major proteostasis pathway in charge of this role is the Ubiquitin-Proteosome System (UPS), which tags damaged or misfolded proteins with ubiquitin and digests them with the 26S proteosome complex (Kipreos, 2005).

Since the genes involved in UPS are generally evolutionarily conserved, their biological roles can be investigated in simple model organisms such as *Caenorhabditis elegans*, a well-studied nematode for understanding fundamental biological mechanisms. A specific strain of *C. elegans*, PP563, has been developed to specifically investigate the UPS pathway of proteostasis. Having a GFP linked to the ubiquitin protein, *C. elegans* PP563 provides a direct approach to monitoring UPS activity in nematodes through fluorescence signals (McCue et al., 2015). In a genetic screen that uses RNAi to silence 35 genes at the post-transcriptional level in *C. elegans* PP563, we discovered a particular gene, *rpl-11.1*, whose knockdown causes a marked increase in fluorescence signal in both intensity and localization. Such phenotype led us to deduce that *rpl-11.1* knockdown causes excessive UPS activity by increasing the number of active ubiquitin tags, which in turn disrupts proteostasis at the organismal level.

The biological role of *rpl-11.1*, a gene primarily expressed in the germline cells and pharyngeal muscle cells of *C. elegans* (Bgee, 2024), is still not completely elucidated. It was predicted to encode the 60S ribonucleoprotein L11-1 (RPL-11.1) in *C. elegans*, a homolog of ribosomal protein L11 (RPL-11) in humans (WormBase, 2022). RPL-11.1 constitutes a part of the large ribosomal subunit, which contains the peptidyl transferase center that catalyzes the formation of peptide bonds during mRNA translation (UniProt, 2024). Thereby, *rpl-11.1* knockdown might lead to the absence of RPL-11.1 in the ribonucleoprotein complex, affecting the biogenesis of ribosomes and forming a defect in translation machinery. The incorrectly assembled ribosomes will produce misfolded proteins with altered thermodynamic stability that may be functionally damaged or prone to aggregation after exposing hydrophobic regions. An excess of misfolded proteins and protein aggregates can be the source of proteostasis disturbance observed previously: a plethora of proteins are tagged with active ubiquitin and hence emit a substantial amount of fluorescence signal.

We thereby hypothesize that knocking down *rpl-11.1* via RNAi in *C. elegans* results in structurally incomplete ribosomes, which might produce misfolded proteins, recruit excessive ubiquitin for tagging and clearing through the UPS pathway, and ultimately overwhelm the proteostasis. Answering this hypothesis would reveal the biological role of *rpl-11.1* more clearly and possibly shed light on its relationship with translation efficiency and proteostasis regulation. To verify the hypothesis, two aims have been formulated: first, to determine if *rpl-11.1* has a role in ensuring

correct protein synthesis. This will be achieved by conducting protein assays such as SDS-PAGE to compare the pattern of protein expression in *rpl-11.1* knockdown and that in *C. elegans* PP563 on an empty vector (L4440). We will further examine whether the other pathway of proteostasis that also makes use of ubiquitin tagging, selective autophagy, is involved in the clearance of *rpl-11.1* knockdown-induced protein aggregates and misfolded proteins as well. This would require knocking down *rpl-11.1* in *C. elegans* MAH215, which is built for studying autophagy (Chang et al., 2017), and conducting a double-gene RNAi knockdown in *C. elegans* PP563 for comparison with *rpl-11.1* single knockdown. Another minor aim of this study would be to determine the role of *rpl-11.1* in protecting germline cells. The human orthologue of *C. elegans* RPL-11.1 is involved in p53 pathway regulation through RPL11-MDM2 antagonism and acts as a tumor suppressor (Chène, 2003). Similarly, *C. elegans* also has a p53-like pathway (*cep-1*) that regulates DNA damage-induced apoptosis in germline cells (Derry, 2001). We hypothesize that knocking down *rpl-11.1* will inhibit *cep-1* stabilization and hence germline apoptosis after UV-induced DNA damage, allowing increased germline cell proliferation and more egg deposition. This will be investigated through a F1 progeny count following parent generation exposure to UV.

As mentioned, the functionality and mechanism of *rpl-11.1* in *C. elegans* is not fully clarified in literature. Some of the earliest genome-wide screens indicate that *rpl-11.1* knockdown resulted in phenotypes such as life-span extension (Hsin & Kenyon, 1999) and gigantism (Patel et al., 2002). More recent studies have focused on the germline proliferation aspect of the gene as well as its evolutionary history in the *C. elegans* genome (Maciejowski et al., 2005). A more interesting study, without any experimental evidence, suggested the potential involvement of the gene in mitochondrial activity (Sun et al., 2019). These various studies seemingly covered the role of *rpl-11.1* in *C. elegans* from a broad perspective, but none of them point out the specific mechanism by which this gene works in terms of its fundamental role: encoding a ribosomal protein. Additionally, none of the prior research exclusively focused on studying *rpl-11.1*. Here, we solely investigated *rpl-11.1* knockdown from the perspective of translation and proteostasis disturbance and germline proliferation. Elucidating the biological role of *rpl-11.1* in nematodes is of great importance as it can give insight into similar mechanisms in the translation machinery and UPS pathway of humans. A substantial homogeneity exists between humans and *C. elegans* (Lai, 2000), so confirming the gene's role in the nematode can potentially pave the way to developing therapeutic strategies for diseases related to protein aggregation and irregular proteostasis, such as Alzheimer's disease,

Huntington's disease, Parkinson's disease, and prion disorders(Papaevgeniou & Chondrogianni, 2014).

II. METHODS

Culture of C. elegans. *C. elegans* PP563 and *C. elegans* MAH215 were used in this study and obtained from the *Caenorhabditis* Genetics Center (University of Minnesota, St. Paul, MN, USA). They were maintained at 25°C under standard conditions on nematode growth media (NGM; 2% (w/v) agar, 0.3% (w/v) NaCl, 0.25% (w/v) peptone, 1 mM CaCl₂, 5 µg ml⁻¹ cholesterol, 25 mM KH₂PO₄, 1 mM MgSO₄) agar plates(Sun et al., 2019). Nematodes were fed on *E. coli* OP50.

PP563 RNAi screen. The following screen protocol was followed:

Day 1. 100 µL of cultures of the Htt115 strain of *E. coli* containing the L4440 plasmid alone or containing an RNAi sequence targeting a specific gene were seeded onto NGM + carbenicillin p6 plates and allowed to dry overnight. Each plate has one targeting RNAi. (Refer to these plates as RNAi p6s.)

Day 2. All RNAi p6s had 50 µL of IPTG added to enhance expression of the RNAi. This was allowed to dry (~1 hour). Gravid worms were bleached to obtain a synchronized population of eggs. Approximately 50 eggs were plated onto the RNAi p6s and were allowed to develop to adulthood (~3 days) at 20°C.

Day 5. About 10 worms were randomly selected from each RNAi p6, immobilized with sodium azide, and aligned for imaging. Micrographs were imaged at 150x magnification and 20ms exposure with LED at 16 and white-balanced. For the GFP signal, *C. elegans* PP563 was imaged at 800 ms exposure, and *C. elegans* MAH215 was imaged at 500 ms exposure. For the mCherry signal, *C. elegans* MAH215 was imaged at 500 ms exposure.

We conducted a preliminary screen for *C. elegans* PP563 with 36 different RNAi knockdowns. Of all the knockdowns that showed some degree of change in fluorescence signal in comparison to the L4440 genetic control, the *rpl-11.1* knockdown displayed the most drastic increase in both signal intensity and localization. We therefore decided to follow up on our investigation on the *RPL-11.1* knockdown exclusively.

The knockdown efficiency of *rpl-11.1* RNAi was confirmed using RT qPCR, where the mRNA level of the housekeeping gene *ama* was used as the internal reference. Primers for the target genes were designed by primer-BLAST (NCBI, 2019) and synthesized by a commercial company. The RT qPCR result showed that *rpl-11.1* RNAi achieved a near-complete (0.0025 fold change) knockdown of *rpl-11.1* in *C. elegans* PP563. It should be noted that the same gene knockdown in *C. elegans* MAH215 was not verified by RT qPCR.

Nematode population maintenance: Nematodes were synchronized by hypochlorite bleaching (2% sodium hypochlorite and 0.5 mol/L NaOH) according to standard protocols (Stiernagle, 2006). Approximately 1,000 extracted worm eggs were cultured on one NGM plate for protein isolation and RNA isolation (for RT qPCR cDNA synthesis).

Protein isolation: Proteins from *C. elegans* PP563 *rpl-11.1* knockdown and L4440 are isolated by washing the worms off the plate following standard protocols (Stiernagle, 2006), lysing through RIPA (50mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% or 5% SDS, tablet of protease inhibitor), centrifugation and incubation on ice. Proteins treated with 1% SDS are generally small-sized and soluble, while the 5% SDS aims to separate out proteins that are large-sized or aggregated.

SDS-PAGE: RIPA-treated proteins (including 1% SDS-treated and 5% SDS-treated) were loaded onto protein gel to run SDS-PAGE at 170V for the first 10 minutes and then at 200V for 1 hour. The gel was destained and visualized in imaging system.

Rpl-11.1 RNAi knockdown in C. elegans MAH215: *C. elegans* MAH215 were fed with *rpl-11.1* RNAi-expressing bacteria during development. Procedure similar to PP563 RNAi screen was followed. Micrographs were imaged at 31.6 ms exposure and 2x gain. GFP and mCherry fluorescence signal are later overlayed to create merged fluorescence micrographs.

Double-gene RNAi knockdown: Two genes (*rpn-6* and *lgg-1*, *rpl-11.1* and *lgg-1*, *rpn-6* and *rpl-11.1*) were knocked down via RNAi at once in *C. elegans* PP563 to evaluate the involvement of UPS and autophagy pathways of proteostasis in translation-defect cells' protein degradation. Bacteria expressing both types of RNAi are used as food source for worms and the procedure is similar to PP563 RNAi screen. Micrographs were imaged at 31.6 ms exposure and 2x gain.

UV radiation exposure: Two plates of *rpl-11.1* knockdown *C. elegans* PP563 and two plates of L4440 *C. elegans* PP563 were placed under a UV source (imaging system), with one plate exposed to UV for 30 sec and the other for 120 sec. Then, 5 adult worms from each plate is transferred to new plates seeded with *E. coli* OP50 and cultured for 3 days at 25°C till the F1 progeny reaches adulthood. The number of worms on each plate was then counted manually. After worm (population) count, 10 worms from each group were transferred to new plate, immobilized and imaged under fluorescent microscope.

III. RESULTS

a) 5% SDS-PAGE Reveals Potential Protein Aggregation
In Figure 1, it is observed that under 1% SDS treatment, which separates out smaller proteins, there is

no clear difference between the bands of *rpl-11.1* knockdown and the control (L4440). Nonetheless, under 5% SDS treatment that targets larger proteins, *rpl-11.1* knockdown exhibits markedly more bands and higher intensity in comparison with the control. These extra bands might be protein aggregates accumulated in the cells.

b) Rpl-11.1 Knockdown in MAH215 Induces More Merged Fluorescence Signal

In Figure 2, merged micrographs generally reveal more stand-alone mCherry fluorescence in the control (L4440) and more merged fluorescence (mCherry and GFP) in *rpl-11.1* knockdown. One exception is that there are two nematodes in *rpl-11.1* knockdown that exhibit GFP fluorescence unaccompanied by any mCherry fluorescence. These two nematodes were believed to be dead by the time of imaging and were displaying auto-fluorescence because the GFP signal must be accompanied by the mCherry signal in *C. elegans* MAH215. Other than the two abnormalities, *rpl-11.1* knockdown displays mostly merged fluorescence.

It should be noted that in an attempt to verify if the autophagy pathway of proteostasis is involved in misfolded protein clearance, a double-gene knockdown experiment was also performed (refer to *Methods*). However, no valid results were obtained because there is minimal difference between the control and experiment groups (Figure 3).

c) Rpl-11.1 Knockdown Produces Less F1 Progeny after UV Exposure

Figure 4A reveals that there is no obvious difference between UV-treated *rpl-11.1* knockdown and the control (L4440) in terms of F1 progeny phenotype (fluorescence, size, mobility, etc.). However, when a worm count was conducted, it turned out that in both the 30s and 120s UV exposure groups, there are more nematodes surviving in the control group, with a 6.4-fold increase in the 30s exposure and a 2.5-fold increase in the 120s exposure. The knockdown of *rpl-11.1* inhibits nematode proliferation after UV exposure.

IV. DISCUSSION

a) Protein Aggregation as a Result of Error in Translation Machinery

Our SDS-PAGE experiment substantiated that there are protein aggregates formed in *C. elegans* PP563 cells after *rpl-11.1* knockdown, as indicated by extra bands of proteins that are not seen in the control (Figure 1). Moreover, although the expression of smaller proteins appears to be similar in both the control and the *rpl-11.1* knockdown, we observed an overexpression of larger proteins (5% SDS-treated) in the *rpl-11.1* knockdown, suggesting a difference in protein expression pattern. This aligns with our hypothesis that

abnormal protein synthesis will arise due to the absence of RPL-11.1 ribonucleoprotein in ribosome biogenesis. The abnormality can take the form of producing misfolded polypeptides that have altered thermodynamic stability, which are prone to exposing their hydrophobic regions and hence become aggregated (Berrill et al., 2011). Alternatively, the abnormal protein synthesis might also simply result in an overexpression of a group of large, insoluble proteins. Both outcomes will cause severe disruption to the UPS because excessive amounts of ubiquitin will be tagged to abnormal proteins, overwhelming the proteostasis pathway.

It is confirmed that knocking down *rpl-11.1* makes a difference in cellular protein synthesis in *C. elegans*. Next, we will attempt to identify which specific proteins are affected (overexpressed, misfolded, or become prone to aggregation) by such errors in translation machinery. Our preliminary RNAi screen indicated that most proteostasis defects occur in *C. elegans* intestinal cells after knocking down *rpl-11.1*. We will select a set of proteins whose expressions may be disturbed by the knockdown and use immunoblotting to confirm their identity. In addition, we will evaluate the degree of impact on ribosome biogenesis and translation efficiency caused by knocking down *rpl-11.1* through RT qPCR on rRNAs and polysome profiling, respectively.

b) Autophagy Pathway is Disturbed by Rpl-11.1 Knockdown Alongside UPS

Alongside UPS, the selective autophagy pathway of proteostasis also makes use of ubiquitin tagging to achieve protein degradation (Kocaturk & Gozuacik, 2018). We indeed observed a disturbance to the autophagy pathway in the *C. elegans* MAH215 *rpl-11.1* knockdown (Figure 2). The abundant mCherry signal in the control suggests that most GFP tagged to the autophagosomes has been quenched after fusing with the lysosome in the autophagy pathway. Conversely, in *rpl-11.1* knockdown, an increase in merged fluorescence signal indicates that autophagosomes are not efficiently undergoing lysosomal fusion, suggesting a delay in protein degradation and a buildup of protein waste. This is likely attributable to the protein aggregates and other large misfolded proteins generated by the translation error. Therefore, the hypothesis that selective autophagy is also involved in this knockdown-induced proteostasis disturbance is supported. Interestingly, autophagy differs from the UPS in that it primarily degrades long-lived proteins, insoluble protein aggregates, and organelles, whereas the UPS pathway targets short-lived proteins and soluble misfolded proteins (Kocaturk & Gozuacik, 2018). This aligns with our findings from the protein assay, which show that knocking down *rpl-11.1* produces protein aggregates and other insoluble large proteins,

necessitating the involvement of selective autophagy in maintaining proteostasis.

Our hypothesis could be better supported with results from the double-gene knockdown experiment. If simultaneously knocking down *rpl-11.1* and *lgg-1*, a key gene involved in autophagy (Romane Leboutet et al., 2023), produces a result that is no different from knocking down *rpl-11.1* alone, we could conclude that the autophagy pathway of proteostasis is already disturbed by knocking down *rpl-11.1* in addition to the UPS. However, unfortunately, the experiment did not yield valid data to draw any conclusions. We suspect that the RNAi knockdown efficiency might be problematic, resulting in an incomplete silencing of the targeted gene. To ensure validity in re-performing the double-gene knockdown experiment, we will include a confirmation of RNAi knockdown efficiency using RT qPCR.

c) *Rpl-11.1* Might Be Integral to Germline Proliferation

We previously predicted that knocking down *rpl-11.1* will lead to more F1 offspring as germline apoptosis is inhibited by the deactivation of *cep-1*, which is under RPL-11.1 regulation (Schumacher et al., 2001). However, the experiment result indicates that *rpl-11.1* knockdown produces much less F1 progeny in comparison with the control after UV exposure for either 30s or 120s. The original hypothesis is hence rejected. We need to reconsider the role of *rpl-11.1* in maintaining germline proliferation.

According to Chang et al. (2017), *cep-1*, while activating DNA damage-induced germline apoptosis, is also required for meiotic chromosome segregation in the germline. Hence, it is reasonable that knocking down *rpl-11.1*, the stabilizer of *cep-1*, leads to less progeny after UV-induced DNA damage in the parent generation. Also, the mechanism by which *cep-1* is stabilized by RPL-11.1 in *C. elegans* might be different from how p53 (the human homolog of *cep-1*) is stabilized by RPL-11 (the human homolog of RPL-11.1) in humans, requiring us to figure out the specific mechanism of *cep-1* activation before making predictions. It can be concluded that *rpl-11.1* might be integral to germline proliferation in *C. elegans* in the face of radiation stress, based on the UV exposure experiment result.

In further investigation, we attempt to monitor the process of meiotic chromosome segregation in the germline of *rpl-11.1* knockdown *C. elegans* using live microscopy imaging. We will observe the gonads of the nematodes under fluorescent microscopes after their chromosomes are stained with fluorescent markers. This will allow us to evaluate our new hypothesis.

In conclusion, our original hypothesis was partially supported. The role of *rpl-11.1* in ensuring correct protein synthesis in *C. elegans* is confirmed. We believe the selective autophagy pathway of proteostasis

is involved in the clearance of misfolded proteins alongside UPS, but evidence from the double-gene RNAi knockdown experiment is lacking. On the other hand, the role of *rpl-11.1* in protecting germline cells requires re-consideration and further investigation. It appears that the gene may be a necessity for meiotic chromosome segregation, as it plays an important role in nematode reproduction after radiation-induced DNA damage.

Due to the substantial homogeneity between humans and *C. elegans* (Lai, 2000), it is of utter importance to continue elucidating the biological role of *rpl-11.1* and its protein product in translation and cellular proteostasis, which relates closely to an array of human diseases involving proteomic defects. We would like to further evaluate the disturbance caused by RPL-11.1 dysfunction to translation efficiency by conducting polysome profiling and rRNA qPCR. The immunoblotting of specific proteins involved in the disturbance is equally crucial for developing therapeutic strategies toward relevant proteomic diseases.

ACKNOWLEDGEMENT

We would like to thank Dr. Mills for her invaluable guidance in research design and support in experimental work throughout this research. We are also grateful to Dennis Bonal and Callie Millette for their assistance in our lab work and for correcting any issues in our research with patience. We express our gratitude to the MAH215 group for providing us with the MAH215 strain for conducting our investigation and to all other groups for their insightful advice given to our research design. Last but not least, special thanks to the MDL staff for providing us all the necessary equipment and materials for our experiments, without which we could not have completed this research.

Abbreviations

UPS	Ubiquitin-Proteosome System
RNAi	Ribonucleic acid interference
mRNA	Messenger ribonucleic acid
DNA	Deoxyribonucleic acid
GFP	Green fluorescent protein
UV	Ultraviolet
SDS-PAGE	Sodium dodecyl-sulfate polyacrylamide gel electrophoresis
RT qPCR	Quantitative reverse transcription polymerase chain reaction
NGM	Nematode growth medium

REFERENCES RÉFÉRENCES REFERENCIAS

1. Berrill, A., Biddlecombe, J., & Bracewell, D. (2011). Product Quality During Manufacture and Supply. *Peptide and Protein Delivery*, 313–339. <https://doi.org/10.1016/B978-0-12-384935-9.10013-6>.
2. Bgee. (2024). Gene : *rpl-11.1* - WBGene00004422 - *Caenorhabditis elegans* (nematode). Bgee.org. <https://www.bgee.org/gene/WBGene00004422#xrefs>.
3. Chang, J. T., Kumsta, C., Hellman, A. B., Adams, L. M., & Hansen, M. (2017). Spatiotemporal regulation of autophagy during *Caenorhabditis elegans* aging. *ELife*, 6. <https://doi.org/10.7554/elife.18459>.
4. Chène, P. (2003). Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. *Nature Reviews Cancer*, 3(2), 102–109. <https://doi.org/10.1038/nrc991>.
5. Derry, W. B. (2001). *Caenorhabditis elegans* p53: Role in Apoptosis, Meiosis, and Stress Resistance. *Science*, 294(5542), 591–595. <https://doi.org/10.1126/science.1065486>.
6. Hsin, H., & Kenyon, C. (1999). Signals from the reproductive system regulate the lifespan of *C. elegans*. *Nature*, 399(6734), 362–366. <https://doi.org/10.1038/20694>.
7. Kipreos, E. (2005). Ubiquitin-mediated pathways in *C. elegans*. *WormBook*. <https://doi.org/10.1895/wormbook.1.36.1>.
8. Kocaturk, N. M., & Gozuacik, D. (2018). Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. *Frontiers in Cell and Developmental Biology*, 6(128). <https://doi.org/10.3389/fcell.2018.00128>.
9. Lai, C.-H. . (2000). Identification of Novel Human Genes Evolutionarily Conserved in *Caenorhabditis elegans* by Comparative Proteomics. *Genome Research*, 10(5), 703–713. <https://doi.org/10.1101/gr.10.5.703>.
10. Maciejowski, J., Ahn, J. H., Patricia Giselle Cipriani, Killian, D. J., Chaudhary, A. L., Ji Inn Lee, RoumenVoutev, Johnsen, R., Baillie, D. L., Gunsalus, K. C., Fitch, D., & Albert, J. (2005). Autosomal Genes of Autosomal/X-Linked Duplicated Gene Pairs and Germ-Line Proliferation in *Caenorhabditis elegans*. *Gene Duplication and Germ-Line Function*, 169(4), 1997–2011. <https://doi.org/10.1534/genetics.104.040121>.
11. McCue, H. V., Chen, X., Barclay, J. W., Morgan, A., & Burgoyne, R. D. (2015). Expression profile of a *Caenorhabditis elegans* model of adult neuronal ceroid lipofuscinosis reveals down regulation of ubiquitin E3 ligase components. *Scientific Reports*, 5(1), 14392. <https://doi.org/10.1038/srep14392>.
12. NCBI. (2019). *Primer designing tool*. Nih.gov. <https://www.ncbi.nlm.nih.gov/tools/primer-blast/>.
13. Papaevgeniou, N., & Chondrogianni, N. (2014). The ubiquitin proteasome system in *Caenorhabditis elegans* and its regulation. *Redox Biology*, 2, 333–347. <https://doi.org/10.1016/j.redox.2014.01.007>.
14. Patel, M. N., Knight, C. G., ConstantinaKarageorgi, & Leroi, A. M. (2002). Evolution of germ-line signals that regulate growth and aging in nematodes. *Proceedings of the National Academy of Sciences of the United States of America*, 99(2), 769–774. <https://doi.org/10.1073/pnas.012511099>.
15. Romane Leboutet, Céline Largeau, Müller, L., Prigent, M., Grégoire Quinet, Rodriguez, M. S., Marie-Hélène Cuif, Hoppe, T., Culetto, E., Lefebvre, C., & Renaud Legouis. (2023). LGG-1/GABARAP lipidation is not required for autophagy and development in *Caenorhabditis elegans*. *ELife*, 12. <https://doi.org/10.7554/elife.85748>.
16. Schumacher, B., Hofmann, K., Boulton, S., & Gartner, A. (2001). The *C. elegans* homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. *Current Biology*, 11(21), 1722–1727. [https://doi.org/10.1016/s0960-9822\(01\)00534-6](https://doi.org/10.1016/s0960-9822(01)00534-6).
17. Stiernagle, T. (2006). Maintenance of *C. elegans*. *WormBook: The online review of *C. elegans* biology [Internet]*.
18. Sun, Y., Huang, X., Wang, Y., Shi, Z., Liao, Y., & Cai, P. (2019). Lipidomic alteration and stress-defense mechanism of soil nematode *Caenorhabditis elegans* in response to extremely low-frequency electromagnetic field exposure. *Ecotoxicology and*

Environmental Safety, 170(170), 611–619. <https://doi.org/10.1016/j.ecoenv.2018.11.137>.

19. UniProt. (2024). Q94300: *RL111_CAEEL*. Uniprot.org. <https://www.uniprot.org/uniprotkb/Q94300/entry>

20. WormBase. (2022). *rpl-11.1*. Wormbase.org. https://wormbase.org//species/c_elegans/gene/WBGene00004422#0-9fg-10.

This page is intentionally left blank

Assessment of Morphological Diversity in Cassava (*Manihot esculenta* Crantz) Core Collection: Insights for Germplasm Conservation and Breeding in Togo

By Gmakouba Tighankoumi, Dzidzienyo K. Daniel, Some Koussao, Tongoona Pangirayi & Asante I. Kwame

University of Kara

Abstract- *Objectives:* Assessing genetic diversity within crop germplasm is essential for effective breeding programs. This study aimed to assess morphological diversity within Togo's cassava germplasm to guide conservation and breeding efforts.

Materials and Methods: The one hundred forty nine (149) cultivars phenotyped were collected across the country and planted in an augmented block design, with five improved and released varieties used as checks. In total, thirty two (32) qualitative traits were collected based on the cassava crop ontology. Multivariate analyses of the data collected were run (descriptive analysis, Multiple Correspondance Analysis and Cluster Analysis) using SAS 9.4 and XLSTAT software.

Keywords: *phenotypic variability, core collection, qualitative trait, germplasm conservation, breeding programs, cassava, togo.*

GJSFR-C Classification: ASFA: Q1 01403

Strictly as per the compliance and regulations of:

Assessment of Morphological Diversity in Cassava (*Manihot esculenta* Crantz) Core Collection: Insights for Germplasm Conservation and Breeding in Togo

Gmakouba Tighankoumi^a, Dzidzienyo K. Daniel^a, Some Koussao^b, Tongoona Pangirayi^c
& Asante I. Kwame^{*}

Abstract- Objectives: Assessing genetic diversity within crop germplasm is essential for effective breeding programs. This study aimed to assess morphological diversity within Togo's cassava germplasm to guide conservation and breeding efforts.

Materials and methods: The one hundred forty nine (149) cultivars phenotyped were collected across the country and planted in an augmented block design, with five improved and released varieties used as checks. In total, thirty two (32) qualitative traits were collected based on the cassava crop ontologie. Multivariate analyses of the data collected were run (descriptive analysis, Multiple Correspondance Analysis and Cluster Analysis) using SAS 9.4 and XLSTAT software.

Results and implications: Overall, high morphological diversity was observed among the cultivars for all the traits evaluated. The most diverse traits included petiole color, leaf color, leaf vein color, flowering and seed set abilities, branching levels, end branch color, stem epidermis color, lobe margins, and growth habit of stem. Seven morphotypes with interesting features were identified through cluster analysis. Morphotype 1 is made of unflowering and unbranching cultivars with greenish-red petioles. Morphotype 2 is composed of varieties exhibiting purple petioles, three levels of branching, dichotomous branching habit, good flowering and seed set ability. Morphotype 3 made of only one cultivar was considered as outlier. Morphotype 4 cultivars are characterized by red petioles, compact plants, white root pulp and bad seed set ability; whereas cultivars belonging to morphotype 5 exhibited green petiole, good flowering and seed set abilities. Morphotype 6 is made of cultivars with sessile peduncle root, conical cylindrical root, orange root pulp, short distance between leaf scars, good flowering and seed set ability. Morphotype 7 genotypes exhibited dark green apical leaves, cream stem epidermis, two levels of branching, good flowering and seed set ability. The most diverse traits identified in this study could be used for genetic resources

Author a: Laboratory of Applied Agronomic and Biological Sciences (LaSABA), High Institute of Agricultural Professions (ISMA), University of Kara, BP 404 Kara, Togo. Togolese Institute of Agronomic Research (ITRA), BP 2318 Lomé, Togo. Agronomist & PhD. in Genetics and Plant Breeding, Lecturer, University of Kara.

e-mail: tgmakouba@wacci.ug.edu.gh

Author a & c: West Africa Centre for Crop Improvement (WACCI), University of Ghana (UG), PMB 30, Accra, Ghana.

Author b: Institute for Environment and Agricultural Research (INERA /CREAF-Kamboinsé), 01 BP 470 Ouagadougou 01, Burkina Faso.

identification. Parent cultivars could be selected from morphotypes harbouring good flowering and seed set abilities.

Keywords: phenotypic variability, core collection, qualitative trait, germplasm conservation, breeding programs, cassava, Togo.

I. INTRODUCTION

Cassava belongs to the family of Euphorbiaceae and includes 98 species. The crop is native to the American continent, being distributed from the USA to Africa. The main diversity center of cassava (Brazil) posses at least 78 species, approximately 80% of the total number of species. *M. esculenta* is its only domesticated species (Rogers and Appan, 1973).

Cassava plays an essential part in the food security of millions of families in tropical and subtropical regions of Africa. It is one of the main sources of carbohydrates, especially in developing regions, where it is grown as subsistence crop (FAO, 2023). Cassava has a wide range of uses in the so-called '4Fs' of: (i) food for human consumption, (ii) feed for animals, (iii) fuel, which in the form of ethanol is produced from cassava, and (iv) factories, where it is used to make alcohol, citric acid, clothing, medicines, paper, and chemicals. For many years, global demand for cassava has grown strongly due to its many industrial uses and the fact that it has often been cheaper than other starchy crops. This has then lifted it to the status of being the world's 5th most important crop, after corn, wheat, rice, and potatoes.

In 2022, 303 million tons of cassava were produced globally worldwide, grown on 23.87 million hectares, with an average yield of 11.24 t ha⁻¹ (FAO, 2023). In Togo, cassava used to be a crop of the poor for a long time, but of late it is becoming more of a staple crop especially in the areas of production (Sogbedji et al., 2015). Across the country, 10,297 hectares were occupied by cassava plantations, and 38,542 tons of cassava root were harvested in 2022, with an average yield of 4 t ha⁻¹, 75% lower than the global productivity (DSID, 2022).

Cassava is a diploid ($2n=36$ chromosomes) and monoicous species, with predominantly allogamous fertilization, making it highly heterozygotic (Pootakhan et al. 2014) and giving it high genetic diversity, even though it propagates vegetatively (Costa et al. 2013). Cassava can adapt to different edapho climatic conditions, such as drought and low-fertility soils (Vidal et al. 2015). Because of these characteristics, cassava cultivation is attractive to farmers with limited resources in Togo.

Despite the importance of cassava as a staple crop (Sogbedji et al., 2015), its genetic diversity is poorly documented and consequently the genetic improvement of this crop is limited in Togo (Kombaté et al., 2017). The study of Kombaté et al. (2017) using ethnobotanical survey and morphological descriptors revealed the existence of high diversity. However, ethnobiological studies involving farmers' knowledge in varietal classification have shown large variations according to Agre et al.(2017). Also, there is no consistency in the naming of varieties by farmers. This results in the possibilities of duplicates and mislabelling within the local varieties collected from farmers' fields. Additionally, the number of local varieties with different features and names, most often planted together in a single field, suggest the existence of high diversity within this crop (Siqueira et al., 2009; Rabbi et al., 2015b), which is important for plant breeding and genetic resources programs. This substantial genetic variability is due to the high heterozygosity of the crop, ease of natural cross pollination, fruit dehiscence, and to the volunteer seedlings in farmers fields (Rabbit et al., 2015b; Ceballos et al., 2016). Besides, the informal plant material exchange between farmers promotes a large number of new cultivars and expand cassava genetic diversity (Peprah et al., 2020).

From a point of breeding, small-farm cultivation of cassava is of great importance to the conservation of genetic resources. Exploring the morphological diversity of a given germplasm is fundamental to guide its conservation, management and use in conventional breeding programs (Ceballos et al., 2016).

In West Africa, genetic diversity studies have been carried out for cassava germplasm management and breeding using both morphological descriptors (Adjebeng-Danquah et al., 2016; Agre et al., 2017; Kamanda et al., 2020) and molecular markers (Rabbit et al., 2014; Soro et al., 2024). In addition, multivariate analyses allows for the simultaneous integration of data for multiple traits and has been widely used to quantify the phenotypic diversity in several crops (Kamanda et al., 2020, Soro et al., 2024).

Morphological descriptors are inexpensive and easy to record for most breeders compare to molecular markers. They are strongest determinants of taxonomic classification and agronomic value of varieties (Soyode and Oyetundi, 2009; Rabbit et al., 2015b).

The objective of this study was to explore the phenotypic diversity in a core collection of cassava cultivars based on thirty two (32) morphological traits.

II. MATERIAL AND METHODS

a) Plant Material

A core collection (Table 1) made of: i.one hundred (100) cultivars obtained from major cassava growing areas across the country, ii. thirty five (35) improved varieties introduced from IITA cassava breeding program, iii. seven (7) cultivars sourced from the gene bank of the Laboratory of Virology and Biotechnology of the University of Lome and iv. two (2) varieties obtained from the cassava gene bank of Embrapa Mandioca Fruticultura (Cruz das Almas, BA, Brazil) was used in this study. Five improved varieties (high yielding and CMD resistant) namely Gbazekoute, TMS 96_0409, TMS 96_0166, CRI Sika Bankye and CRI Ampong bankye, recently released by the national cassava breeding unit were used as checks.

b) Experimental Site

The experiment was run at the Togolese Agronomic Research Institute (ITRA) station of Davié (latitude: $6^{\circ} 23' 5''$ North; longitude: $1^{\circ} 12' 18''$ East; altitude: 76 meters) located in the cassava production belt. This site is representative of typical cassava-growing conditions in Togo and is characterized by a bimodal rainfall pattern. During the experimentation, a total rainfall of 1231.5 mm was recorded for 80 rainy days. July was the highest monthly rainfall with 207.8 mm for 14 rainy days, while November was the lowest monthly rainfall with 8.7 mm for 4 days rainy days. The annual average temperature was 28.5°C . The vegetation is characterized by herbaceous vegetation (Banito et al., 2010). The site's soil, suitable for cassava cultivation (Ezui, 2017) and known as 'Terres de Barre,' is characterized as sandy-clay with 70% sand, 3.8% silt, 8.1% clay, acid pH (H_2O 1:1) 5.5, 1.05% organic matter, 0.41% total nitrogen (N), 10 ppm available phosphorus (P), and cation exchange capacity (CEC) of 2.89 milliequivalents (meq)/100g of soil in the top 15 cm samples (Sogbedji et al. 2015).

c) Experimental Design, Field Layout and Maintenance

The experiment was laid out in an augmented block design with one hundred fourty four (144) cultivars as tested genotypes and five (5) checks varieties, distributed in twelve (12) blocks. Each block was delimited after ploughing and harrowing of the site. Distance of 1.5 m separated adjacent blocks and plots. The experimental unit was composed of four rows of 4 m with 16 plants of a genotype. A spacing of 1 m between plants and rows was adopted. The experiment was carried under rainfed conditions. Neither herbicide nor fertilizers were applied. The experiment was kept weed free by regular hand weeding. The trial was harvested twelve months after planting.

Table 1: List of Togo's Cassava Germplasm Cultivars Characterized

Nº	Cultivar	Type	Origin	Nº	Cultivar	Type	Origin
1	CRI Sika Bankye	Improved	Ghana	27	TMS 92_0326	Improved	Togo
2	CRI Ampong Bankye	Improved	Ghana	28	TMS 96_1708	Improved	Togo
3	TMS 95_0166	Improved	IITA	29	TMS 98_2132	Improved	Togo
4	TMS 96_0409	Improved	IITA	30	TMS 99_0554	Improved	Togo
5	Gbazekoute	Landrace	Togo	31	Agbede	Landrace	Togo
6	TMS 01_0006	Improved	IITA	32	Agou	Landrace	Togo
7	TMS 00_0354	Improved	IITA	33	Aguidagba	Landrace	Togo
8	TMS 00_0364	Improved	IITA	34	Akaleyo	Landrace	Togo
9	TMS 01_0034	Improved	IITA	35	Akebou	Landrace	Togo
10	TMS 01_0046	Improved	IITA	36	Akoss	Landrace	Togo
11	TMS 01_0093	Improved	IITA	37	Ankra atihe	Landrace	Togo
12	TMS 01_0098	Improved	IITA	38	Akpadjin Fet'o	Landrace	Togo
13	TMS 01_0131	Improved	IITA	39	Alagno	Landrace	Togo
14	TMS 01_0379	Improved	IITA	40	Ankra 3	Landrace	Togo
15	TMS 01_1085	Improved	IITA	41	Ankra Atiyibo	Landrace	Togo
16	TMS 01_1086	Improved	IITA	42	Assiatoe	Landrace	Togo
17	TMS 01_1097	Improved	IITA	43	Atidjin1	Landrace	Togo
18	TMS 01_1206	Improved	IITA	44	Atidjin 2	Landrace	Togo
19	TMS 01_1224	Improved	IITA	45	Atidjin Poli	Landrace	Togo
20	TMS 01_1368	Improved	IITA	46	Atidokpo	Landrace	Togo
21	TMS 01_1368(2)	Improved	IITA	47	Atihe1	Landrace	Togo
22	TMS 01_1371	Improved	IITA	48	Atiyibo 1	Landrace	Togo
23	TMS 01_1610	Improved	IITA	49	Atiyobo2	Landrace	Togo
24	TMS 01_1662	Improved	IITA	50	Awou	Landrace	Togo
25	TMS 01_1797	Improved	IITA	51	Awouye	Landrace	Togo
Nº	Cultivar	Type	Origin	Nº	Cultivar	Type	Origin
53	Badjogou	Landrace	Togo	79	Kanbom Bantchi	Landrace	Togo
54	Bazoka	Landrace	Togo	80	Kanigbeli 1	Landrace	Togo
55	Bob	Landrace	Togo	81	Kanigbeli 2	Landrace	Togo
56	Bob Assou	Landrace	Togo	82	Kataoli	Landrace	Togo
57	Bob Yegue	Landrace	Togo	83	Katawole	Landrace	Togo
58	BRS Caipira	Landrace	Brazil	84	Kidirondi	Landrace	Togo
59	Degaule	Landrace	Togo	85	Kisseimou Koutowou	Landrace	Togo
60	Djakoagni	Landrace	Togo	86	Kola	Landrace	Togo
61	Djeble	Landrace	Togo	87	Kolaoung	Landrace	Togo
62	Djolaoba	Landrace	Togo	88	Kolmon kamkam	Landrace	Togo
63	Djoliba	Landrace	Togo	89	Kossikouma	Landrace	Togo
64	Donmoyibo	Landrace	Togo	90	Koutowou 2	Landrace	Togo
65	Fetonegbodji	Landrace	Togo	91	Kperoung Felgou	Landrace	Togo
66	Flawavi	Landrace	Togo	92	Kperoung Mamougue	Landrace	Togo
67	Gabonvi-ESA	Landrace	Togo	93	Kpla	Landrace	Togo
68	Gbadovi	Landrace	Togo	94	Loki	Landrace	Togo
69	Gbaze- ESA	Landrace	Togo	95	M'beou	Landrace	Togo
70	Vivigbaze	Landrace	Togo	96	MM96/5280	Improved	Togo
71	Ghana spana	Landrace	Togo	97	MM96/JW2	Improved	Togo
72	Gnidou	Landrace	Togo	98	Nigeria Fleur	Landrace	Togo

73	Hogninvo 1	Landrace	Togo	99	Nigeria Kikpaou	Landrace	Togo
74	Hogninvo 2	Landrace	Togo	100	Nigeria Kissaimon	Landrace	Togo
75	Inconnu	Landrace	Togo	101	N'tossou	Landrace	Togo
76	IRAT- Davie	Landrace	Togo	102	Ankra atihe	Landrace	Togo
77	Jhonson	Landrace	Togo	103	Okpoli	Landrace	Togo
78	Kalba	Landrace	Togo	104	Pela	Landrace	Togo
Nº	Cultivar	Type	Origin	Nº	Cultivar	Type	Origin
105	Peloumkoute	Landrace	Togo	131	D00_126	Improved	IITA
106	Penivi	Landrace	Togo	132	D00_54	Improved	IITA
107	Sabe	Landrace	Togo	133	D00_166	Improved	IITA
108	Sankara	Landrace	Togo	134	Toma 9	Landrace	Togo
109	Sassakawa	Landrace	Togo	135	CVTM4	Landrace	Togo
110	Sorad	Landrace	Togo	136	Toma 162	Landrace	Togo
111	Sawa	Landrace	Togo	137	Unknown 02	Landrace	Togo
112	Spana Assou	Landrace	Togo	138	TMS 96_1317	Improved	Togo
113	Spana Yegue	Landrace	Togo	139	TMS 96_0304	Improved	Togo
114	BRS Tapioqueira	Landrace	Brazil	140	TMS 96_0102	Improved	Togo
115	Tassiodo	Landrace	Togo	141	TMS 96_0869	Improved	Togo
116	Tchigouevi	Landrace	Togo	142	TMS 96_1642	Improved	Togo
117	Tetetidadjin	Landrace	Togo	143	TMS 96_0590	Improved	Togo
118	TME 419	Improved	Togo	144	TMS 96_539	Improved	Togo
119	TM1	Improved	Togo	145	TMS 96_1565	Improved	Togo
120	TME1	Improved	Togo	146	TMS 96_0603	Improved	Togo
121	TME 696	Improved	Togo	147	TMS 30572	Improved	IITA
122	Touwevi	Landrace	Togo	148	KPEM_10_03	Improved	Togo
123	Tuaka Atsu	Landrace	Togo	149	TMS 4(2) 1425	Improved	IITA
124	Tuaka komi Mami	Landrace	Togo	129	D00_208	Improved	IITA
125	Yabaka	Landrace	Togo	130	D00_14	Improved	IITA
126	D00_8300	Improved	IITA	52	Unknown	Landrace	Togo
127	M94_0583	Improved	IITA				
128	D00_137	Improved	IITA				

d) Phenotypic Data Collection

Thirty two (32) morphological traits were recorded using the cassava descriptor (Guevara et al., 2010) at three (3), six (6), nine (9) and twelve (12) months after planting (MAP). Data were recorded from the plants within the whole plot, and the most frequent occurrence variant was noted. At 12 MAP, the inner eight (8) plants within each plot were uprooted and observations on roots were taken. The traits assessment date, and method of assessment are summarized in Table 2.

Table 2: List of Morphological Traits recorded in Togo's Cassava Germplasm

Nº	Trait	Code	Assessment date	¹ Assessment scale
1	Colour of apical leaves	ColApLea	3 MAP	3, 5, 7 or 9
2	Pubescence on apical leaves	PubApLea	3 MAP	0 or 1
3	Lobe margins	LoMar	6 MAP	3 or 5
4	Colour of leaf vein	ColLeaVe	6 MAP	3, 5, 7 or 9
5	Petiole Colour	PetCol	6 MAP	1, 2, 3, 5, 7 or 9
6	Leaf color	LeaCol	6 MAP	3, 5, 7 or 9
7	Number of leaf lobes	NLeaLo	6 MAP	3, 5, 7, 9 or 11
8	Shape of central leaflet	ShaCeLea	6 MAP	1-10
9	Orientation of petiole	OriPet	6 MAP	1, 3, 5 or 7
10	Flowering habitability	FlHa	6 MAP	0 or 1
11	Pollen	Pol	6 MAP	0 or 1
12	Leaf retention	LeaRet	6 MAP	1-5
13	Stipule margin	StiMar	9 MAP	1 or 2
14	Length of stipule	LenSti	9 MAP	3 or 5
15	Color of stem cortex	ColStCor	9 MAP	1-3
16	Colour of stem epidermis	ColStEpi	9 MAP	1, 2, 3, or 4
17	Colour of stem exterior	ColStExt	9 MAP	3, 4, 5, 6, 7, 8 or 9
18	Colour of end branches of adult plant	CoEBrAn	9 MAP	3, 5, or 7
19	Growth habit of stem	GrHaSt	9 MAP	1 or 2
20	Distance between leaf scars	DisLeaSca	9 MAP	3, 5, or 7
21	Prominence of foliar scars	ProFoSca	9 MAP	3 or 5
22	Fruit	Frt	9 MAP	0 or 1
23	Levels of branching	LeBran	12 MAP	0, 1, 2 or 3
24	Branching habit	BranHab	12 MAP	1, 2, 3 or 4
25	Root constrictions	RoCons	12 MAP	1-3
26	Colour of root cortex	ColRoCor	12 MAP	1-4
27	Colour of root pulp	ColRoPu	12 MAP	1-5
28	External colour of storage root	ExColRo	12 MAP	1-4
29	Extent of root peduncle	ExRoPed	12 MAP	0, 3 or 5
30	Shape of plant	ShaPl	12 MAP	1-4
31	Root shape	RoSha	12 MAP	1-4
32	Texture of root epidermis	TexRoEpi	12 MAP	3, 5, or 7

¹ Each phenotypic trait had distinct phenotypes which were depicted by the values ranging from 0 to 9. Images associated with these scale values can be found in Fukuda et al. (2010). MAP = months after planting

e) Phenotypic Diversity Analyses

The morphological diversity of the core collection was assessed following two approaches. Traits distribution was determined using Microsoft Excel (2016) in the first approach. In the second approach, morphological data were subjected to Multiple Correspondence Analysis (MCA) for identification of relevant traits contributing mostly to the germplasm diversity (Giles et al. 2018). From the MCA results, traits that presented the highest variability were used as active variables to perform cluster analysis for morphotypes identification within the germplasm using the Ward's method (Kawuki et al. 2011). The optimal number of clusters was determined using the distribution of the variance function methods. The morphological diversity of the germplasm was visualized by plotting the factors scores for individual genotype in the first factorial plan in order to assess the relationship among cultivars (Selamawit Abebe et al. 2021). Analyses were run in SAS version 9.4.

III. RESULTS

a) Descriptive Analysis of Morphological Traits

The variability observed for qualitative traits among cassava cultivars is given in figure 1. In all 37.58% cultivars showed purplish green colour, 22.82% had purple, 3.36% showed dark green and 36.24% had purplish green colour. About 45% of the cultivars had pubescence on apical leaves, while 55% had not (Figure 1). Approximately 25% of cultivars had yellowish green petioles, 22.82% purple petioles, 16.78% red petioles, 15.54% reddish-green petioles, 11.41% green petioles and 8.72% accessions showed greenish-red petioles (Figure 1). Nearly half of the cultivars (47.65%) had green leaf vein, 28.19% cultivars showed reddish-green leaf vein in less than half of the lobe, 13.42% had reddish-green leaf vein in more than half of the lobe and 10.74% had red leaf vein. Four morphotypes were observed in the germplasm based on the leaves colour. The first morphotype with dark green leaves was

represented by 51.68% of the cultivars, the second morphotype had light green leaves and was represented by 22.82% of the cultivars, the third morphotype exhibited purple green leaves and was represented by 14.76% of the cultivars and the fourth one had purple leaves was represented by 10.74% of the cultivars. The petioles of most cultivars in the collection were horizontal (50.34%), the irregular type was observed in 29.53% cultivars. 12.75% cultivars showed petioles inclined downwards while 7.38% cultivars had petioles inclined upward. About 40.27% accessions had lanceolate central leaflet, 32.88% had elliptic-lanceolate, 10.07% accessions had oblong-lanceolate central leaflet, 10.74% had obovate-lanceolate, 4.03% had ovoid, 0.67% had linear, 0.67% had pandurate and 0.67% had linear pandurate central leaflet (Figure 1). Most cultivars (66.44%) showed a winding lobe margin and 33.56% cultivars in the germplasm had a smooth lobe margin. In the germplasm, 61.07% cultivars had nine leaf lobes, 28.19% had seven leaf lobes, 8.05% had eleven and 2.69% five leaf lobes. For the leaves retention trait, 31.54% cultivars exhibited very poor leaf retention, 33.56% cultivars showed less than the average leaf retention, 19.46% exhibited average leaf retention while 15.44% cultivars exhibited better than average leaf retention (Figure 1).

With regards to stem related traits, 31.54% cultivars showed an upright growth habit of the stems, while the cultivars exhibiting a zigzag growth habit were observed in 68.46% cultivars. About 44% of the characterized cultivars had green end branches, 42.95% cultivars had green-purple and 12.75% had purple end branches. Four morphotypes were observed in the germplasm with regard to the stem epidermis colour (Figure 1). About 33.56% cultivars had light brown stem epidermis, 25.5% had dark brown, 24.83% had orange and 16.11% showed light-green stem epidermis. The colours of stem cortex observed were dark green (61.07% cultivars), orange (22.82% cultivars) and light green (16.11% cultivars). Approximately 30% cultivars had silver stem exterior, 17.45% had greenish-yellowish stem exterior, 14.17% showed gray stem, 12.08% orange stem, 10.74% dark brown stem, 9.39% light brown stem and 6.04% golden stem exterior. Majority of

the cultivars (63.09%) exhibited prominent foliars scars while 36.91% had semi-prominent foliar scars. The distance between leaf scars was short for 92.63% cultivars characterized, medium for 6.04% cultivars and long for 1.34% cultivars. About 69.80% of the cultivars had long stipules while 30.20% cultivars had short stipules. The stipule margin of 61.74% cultivars was split or forked and entire for 38.26% cultivars (Figure 1).

Differences in the flowering ability among cultivars were observed. About 50% of the cultivars produced flowers while remaining did not flower. At harvest, seeds were observed on 42.28% of cultivars. Cultivars exhibiting zero level of branching (47%) and three level of branching (34.23%) were predominant. About 60.40% cultivars showed trichotomous branching habit, 26.85% cultivars showed dichotomous type, 8 cultivars had tetrachotomous type while only 4 cultivars showed an erect type. Cassava cultivars examined phenotypically based on their plant shape exhibited variation with umbrella (39.60% cultivars), compact (33.56%), open (12.64%) and cylindrical (6.04%) shapes. (Figure 1)

At harvest, the external colour of storage root also exhibited variation with dark brown (40.82%), light brown (35.37%), yellow (12.93%), and white or cream (10.88%) colours. The root cortex colour showed high variability among cultivars and four morphotypes were observed. Majority (49.0%) had white or cream root cortex colour, followed by yellow (22.2%), pink (11.1%) and purple (8.9%) colours. Root epidermis was white or cream for 47.62% cultivars, yellow (18%), pink (20.41%) and purple (6.52%). Based on the colour of root pulp cultivars exhibited variation with cream (48.98%), yellow (30.61%), white (14.29%), and pink (6.12%) colours. In the germplasm, 69% cultivars had conical cylindrical root shape, 18.37% cylindrical, 9.52% conical and 3.4% had irregular root shape. Cultivars with few (50.34%) and some (30.61%) root constrictions were predominant. Majority of the cultivars (77.55%) had sessile roots, whereas 14.29% had pedunculate roots. The mixed type was recorded on 8.16% of the cultivars. The texture of root epidermis exhibited variation with rough (33.33%), smooth (34%), and intermediate (32.65%) textures. (Figure 1).

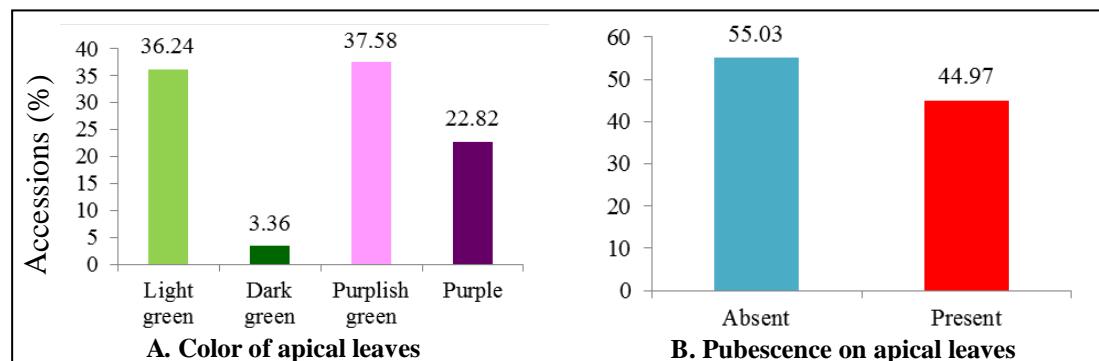


Figure 1: Frequency Distribution of 149 Cassava Cultivars based on Morphological Traits

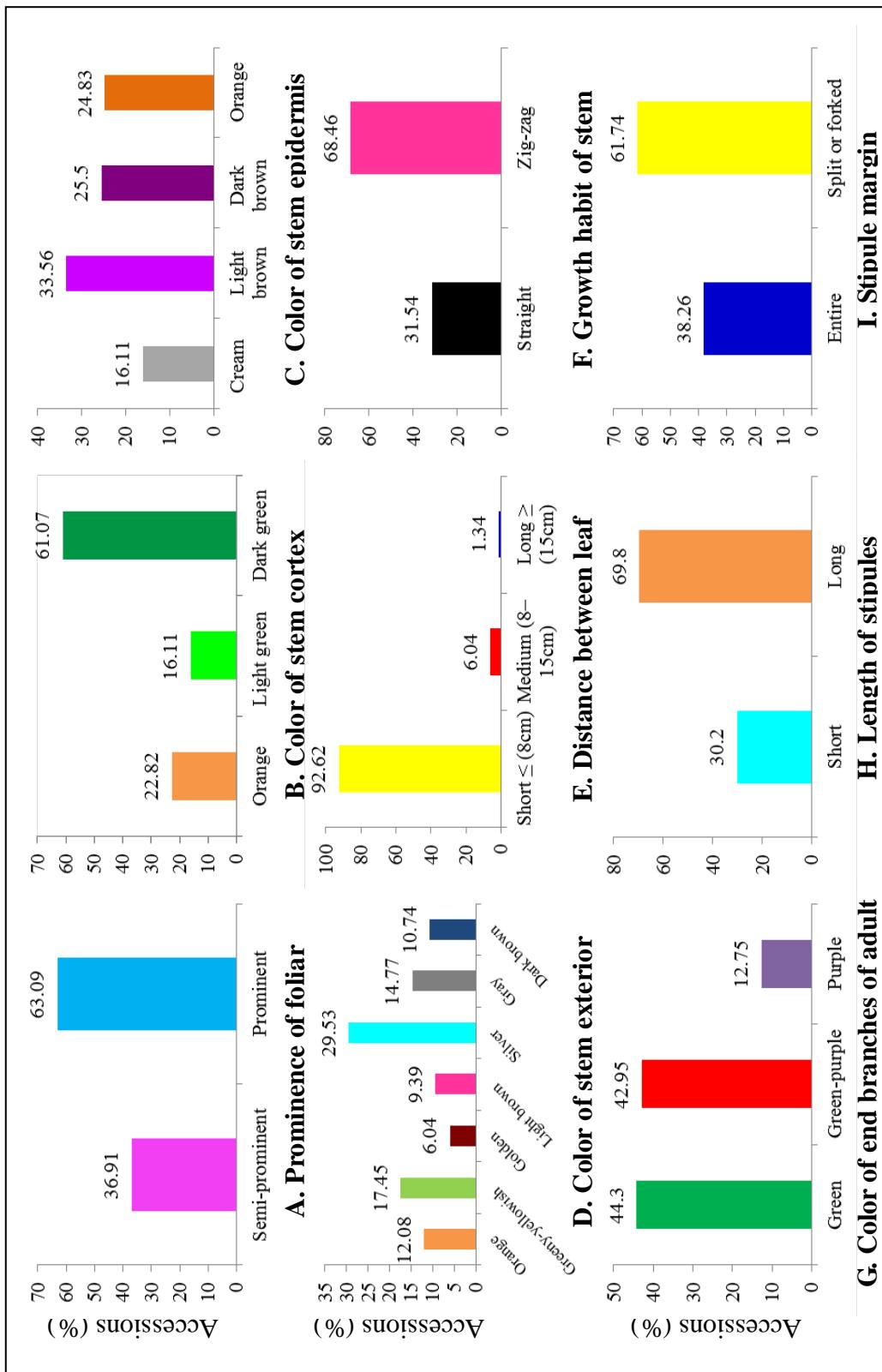


Figure 1. Count Frequency Distribution of 149 Cassava Cultivars based on Morphological Traits

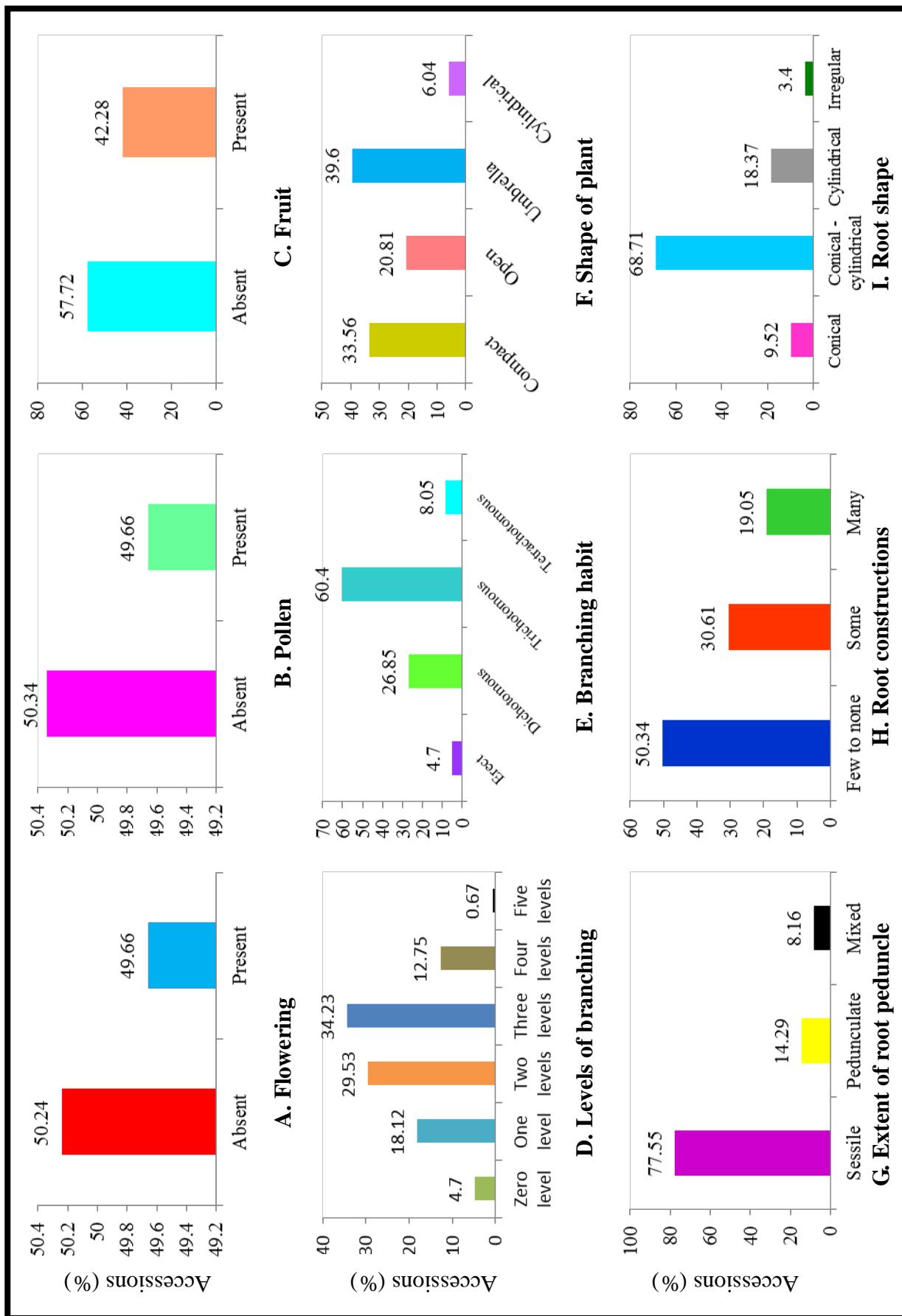


Figure 1. Frequency Distribution of 149 Cassava Cultivars based on Morphological Traits

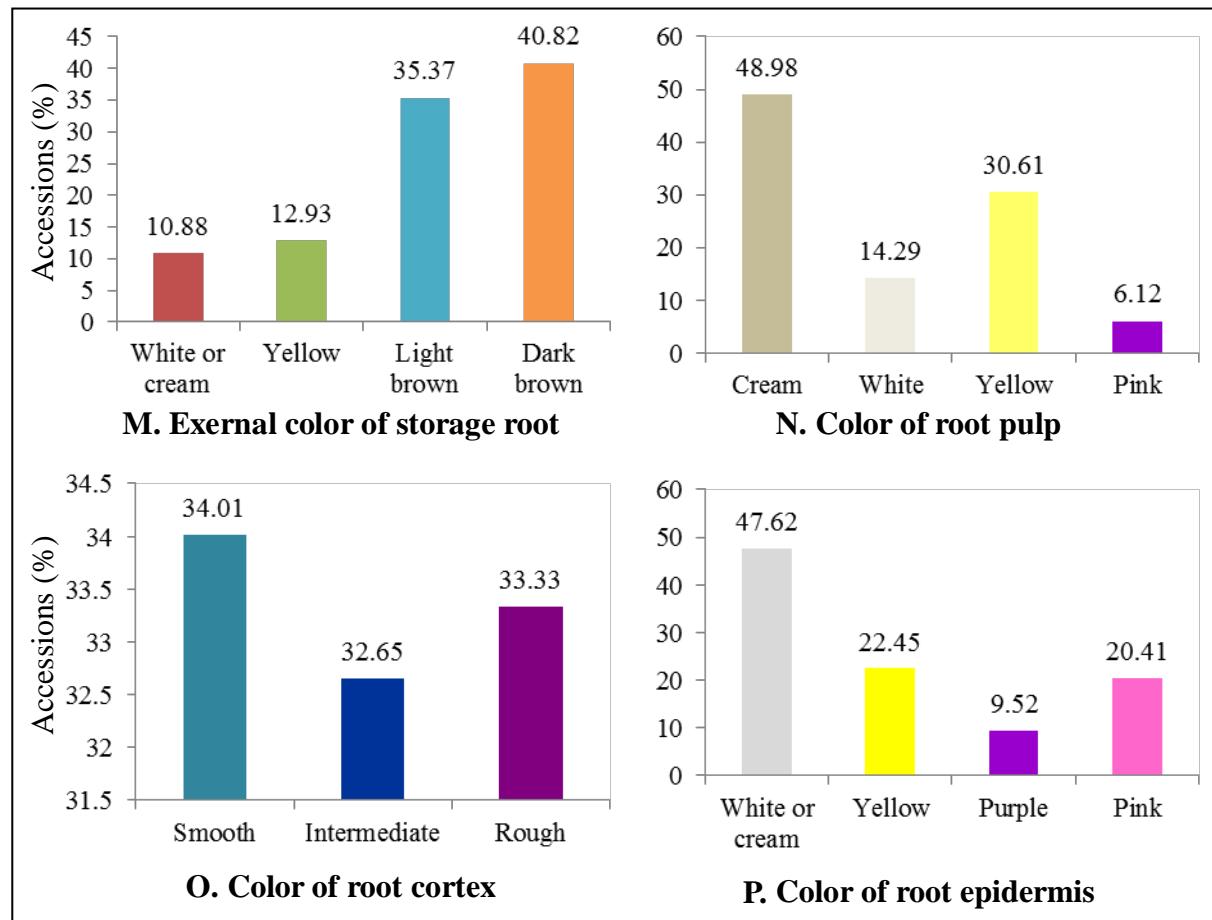


Figure 1: Frequency Distribution of 149 Cassava Cultivars based on Morphological Traits

b) *Diversity Among Cultivars and Differentiation based on Morphological Traits*

i. *Significant traits describing the germplasm diversity*

The objective of Multiple Correspondence Analysis (MCA) is to provide interpretable visualization of complex variable space. The meaning given to the axes and analysis of proximities between traits and conditions are usually made from the factorial planes. Thus, the first factorial plan and the factors having eigenvalue greater than one were retained. On the basis of this criterion, the first 11 factors with an eigenvalue greater than one were significant and therefore retained for the subsequent analyses (Table 3). These first eleven factors (Fs) explained 68.14% of the morphological variability among cultivars.

Factor 1 with an eigenvalue of 5.17 and accounted for 16.16% of the morphological variability. This factor was strongly correlated with petiole colour, leaf colour, colour of leaf vein, flowering and seed set ability and the levels of branching. Factor 2 with an eigenvalue of 3, explained 9.40% of the total variation, and was positively defined by leaves colour of end branches, color of stem epidermis, leaf lobe margin and

the growth habit of stem. Factor 3 represented by traits such the colour of stem exterior and color of stem cortex, had an eigenvalue of 2.5, and explained 7.81% of the divergence among cultivars. Factor 4 with an eigenvalue of 1.73 correlated with leaf retention and color of apical leaf. Factor 5 with an eigenvalue of 1.71 was related mainly to the distance between leaf scars. In Factor 6, shape of central leaflet and pubescence on apical leaves were the main traits, while the extent of root peduncle was most important trait in factor 7. In factor 8, the most important traits describing the germplasm variability were the stipule length and the prominence of foliar scars. Factor 9 with an eigenvalue of 1.26, contribute 3.95% of the total variability and was mainly related to the stipule margin. Factor 10 was mainly represented by the orientation of petioles, plante shape and the color of root cortex while factor 11 was represented by the colour of root pulp (Table 3).

Table 3: Eigen values, proportion of variation and contribution associated with the axes of the MCA of 32 qualitative traits

	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
Eigenvalue	5.172	3.000	2.502	1.734	1.718	1.508	1.394	1.362	1.265	1.148	1.003
Variability (%)	16.161	9.375	7.817	5.419	5.369	4.714	4.356	4.256	3.953	3.586	3.134
Cumulative %	16.161	25.536	33.353	38.773	44.142	48.855	53.211	57.467	61.420	65.007	68.141
ColApLea ¹	0.053	0.122	0.001	<u>0.287</u>	0.006	0.010	0.016	0.040	0.037	0.051	0.068
PubApLea ²	0.001	0.019	0.091	0.040	0.001	<u>0.180</u>	0.047	0.146	0.016	0.003	0.009
LeaRet ³	0.024	0.122	0.000	<u>0.298</u>	0.028	0.019	0.117	0.018	0.029	0.012	0.027
ShaCeLea ⁴	0.001	0.000	0.049	0.047	0.020	<u>0.230</u>	0.034	0.053	0.052	0.025	0.021
PetCol ⁵	<u>0.494</u>	0.235	0.028	0.002	0.005	0.003	0.039	0.001	0.001	0.012	0.002
LeaCol ⁶	<u>0.426</u>	0.282	0.003	0.000	0.001	0.043	0.013	0.010	0.015	0.031	0.000
NuLeaLob ⁷	<u>0.352</u>	0.005	0.036	0.001	0.018	0.159	0.038	0.012	0.058	0.000	0.006
LobMar ⁸	0.003	<u>0.187</u>	0.000	0.016	0.142	0.023	0.007	0.021	0.149	0.003	0.001
ColLeaVei ⁹	<u>0.409</u>	0.352	0.002	0.000	0.015	0.027	0.012	0.008	0.017	0.016	0.008
OrPet ¹⁰	0.014	0.142	0.061	0.023	0.001	0.027	0.146	0.008	0.000	<u>0.215</u>	0.013
Flow ¹¹	<u>0.714</u>	0.095	0.013	0.042	0.000	0.004	0.003	0.013	0.000	0.007	0.017
Pol ¹²	<u>0.714</u>	0.095	0.013	0.042	0.000	0.004	0.003	0.013	0.000	0.007	0.017
Fru ¹³	<u>0.635</u>	0.082	0.012	0.065	0.002	0.001	0.002	0.022	0.000	0.001	0.007
ProFoSca ¹⁴	0.104	0.001	0.001	0.000	0.072	0.148	0.000	<u>0.224</u>	0.036	0.065	0.003
ColSteCor ¹⁵	0.113	0.084	<u>0.232</u>	0.028	0.101	0.107	0.047	0.047	0.034	0.001	0.000
ColSteEpi ¹⁶	0.014	<u>0.187</u>	0.018	0.021	0.086	0.173	0.001	0.005	0.009	0.057	0.013
ColSteExt ¹⁷	0.016	0.079	<u>0.301</u>	0.039	0.154	0.038	0.017	0.036	0.012	0.010	0.001

¹Colour of apical leaves, ²Pubescence on apical leaves, ³Leaf retention, ⁴Shape of central leaflet, ⁵Petiole Colour, ⁶Leaf color, ⁷Number of leaf lobes, ⁸Lobe margin, ⁹Colour of leaf vein, ¹⁰Orientation of petiole, ¹¹Flowering ability, ¹²Pollen, ¹³Fruit, ¹⁴Prominence of foliar scars, ¹⁵Color of stem cortex, ¹⁶ Colour of stem epidermis, ¹⁷Colour of stem exterior. Traits that contributed most to the morphological variation of a particular factor are in bold and underlined

Table 3: Continued: Eigen values, proportion of variation and contribution associated with the axes of the MCA of 32 qualitative traits

	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
Eigenvalue	5.172	3	2.502	1.734	1.718	1.508	1.394	1.362	1.265	1.148	1.003
Variability (%)	16.161	9.375	7.817	5.419	5.369	<u>4.714</u>	4.356	4.256	3.953	3.586	3.134
Cumulative %	16.161	25.536	33.353	38.773	44.142	<u>48.855</u>	53.211	<u>57.467</u>	61.420	65.007	68.141
DisLeaSca ¹⁸	0.105	0.001	0.010	0.061	<u>0.189</u>	0.009	0.023	0.052	0.085	0.052	0.042
GroHaSte ¹⁹	0.036	<u>0.179</u>	0.025	0.002	0.028	0.011	0.105	0.070	0.031	0.000	0.031
ColBrAdPl ²⁰	0.275	<u>0.319</u>	0.006	0.074	0.045	0.011	0.048	0.007	0.002	0.001	0.012
LenSti ²¹	0.058	0.020	0.061	0.096	0.005	0.002	0.019	<u>0.243</u>	0.011	0.002	0.081
StiMar ²²	0.007	0.000	0.021	0.031	0.018	0.005	0.110	0.001	<u>0.489</u>	0.055	0.016
LevBran ²³	<u>0.211</u>	0.193	0.022	0.073	0.143	0.000	0.029	0.002	0.039	0.000	0.002
BraHab ²⁴	0.048	0.015	<u>0.179</u>	0.052	0.054	0.139	0.008	0.007	0.001	0.017	0.076
ShaPl ²⁵	0.085	0.087	0.044	0.161	0.016	0.011	0.004	0.018	0.000	<u>0.198</u>	0.044
ExRoPed ²⁶	0.004	0.002	0.121	0.000	0.093	0.044	<u>0.233</u>	0.046	0.000	0.003	0.028
RoConst ²⁷	0.003	0.035	0.082	<u>0.179</u>	0.016	0.009	0.048	0.054	0.000	0.025	0.103
RoSha ²⁸	0.003	0.008	<u>0.244</u>	0.011	0.000	0.025	0.013	0.008	0.054	0.026	0.000
ExtColRo ²⁹	0.001	0.022	<u>0.428</u>	0.000	0.135	0.003	0.081	0.032	0.009	0.049	0.001

ColRoPul ³⁰	0.120	0.001	0.051	0.036	0.006	0.038	0.008	0.017	0.038	0.051	<u>0.239</u>
ColRoCor ³¹	0.117	0.020	0.041	0.005	0.148	0.004	0.111	0.009	0.036	<u>0.151</u>	0.092
TexRoEpi ³²	0.014	0.009	<u>0.308</u>	0.001	0.168	0.000	0.009	0.117	0.005	0.003	0.021

¹⁸Distance between leaf scars, ¹⁹Growth habit of stem, ²⁰Colour of end branches of adult plant, ²¹Length of stipule, ²²Stipule margin, ²³Levels of branching, ²⁴Branching habit, ²⁵Shape of plant, ²⁶Extent of root peduncle, ²⁷Root constrictions, ²⁸Root shape, ²⁹External colour of storage root, ³⁰Colour of root pulp, ³¹Colour of root cortex, ³²Texture of root epidermis. Traits that contributed most to the morphological variation of a particular component are in bold and underlined.

c) *Structure of the Germplasm Diversity*

Factor 1 is positively correlated to the flowering and seed set ability and negatively correlated to the leaf colour, while factor 2 is positively correlated to the end branches colour, stem epidermis colour, leaf lobe margin, and the growth habit of stem (Figure 2). With regard to figure 2, four morphotypes were distinguished.

Morphotypes 1 and 2 exhibited good flowering and seed set ability but differed in terms of the end branches colour, stem epidermis colour, and growth habit of stem. The varieties belonging to morphotype 3 and 4 did not flower and differed in terms of the colour of the end branches, stem epidermis and the leaf lobe margin.

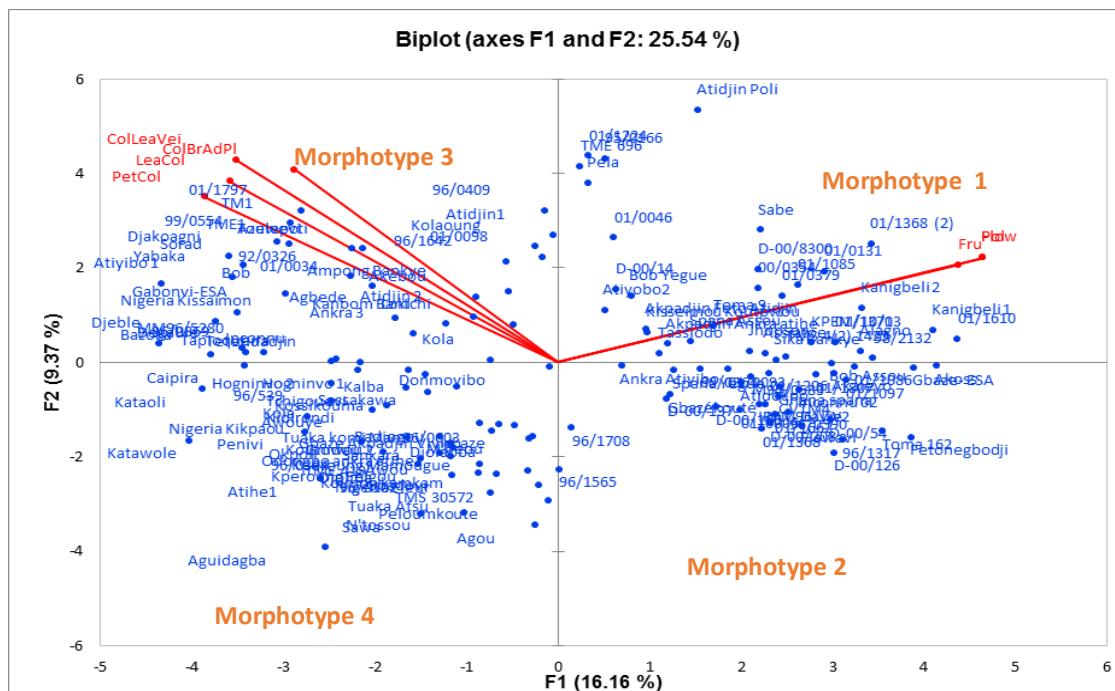


Figure 2: Component patterns of the MCA based upon factor 1 and 2 using significant phenotypic traits observed on 149 cassava cultivars of Togo

From the cluster analysis, the variance distribution function revealed that the optimal number of clusters was seven, with within class variance of 53.7 (Figure 3). Thus, the varieties were clustered into seven morphotypes (Figure 4). Morphotype 1 was composed of 137 varieties among which 53 were improved varieties, while remaining were landraces. Morphotype 1 is made of unflowering and unbranching cultivars with greenish-red petioles (Figure 4 and 5). Morphotype 2 was composed of 3 varieties (TMS 01_0379, Akoss, Kolaoung) exhibiting ovoid central leaflet, purple leaves, reddish green leaf vein, light green stem cortex, greenish-yellowish stem exterior, three levels of branching, dichotomous branching habit, conical root, cream root pulp, good flowering and seed set ability. Morphotype 3

composed of cultivar Akaleyo was considered as outlier. The fourth morphotype comprised of cultivars Akebou, Akpadjin and Tassiodo is characterized by red petioles, obovate-lanceolate central leaflet, compact plants, pink root cortex, white root pulp and bad seed set ability; whereas cultivars belonging to morphotype 5 (Alagno, Pela) exhibited good leaf retention, irregularly shaped roots, many root constrictions, good flowering and seed set abilities (Figure 4 and 5). In morphotype 6, there were 8 cultivars (D00_126, Inconnu 2, D00_137, D00_208, D00_14, D00_54, D00_166 and D00_8300) with sessile peduncle root, conical cylindrical root, orange root pulp, short distance between leaf scars, good flowering and seed set ability. The morphotype 7

composed of cultivar TMS 96_0590 exhibited dark green apical leaves, cream stem epidermis, two levels of

branching, good flowering and seed set ability (Figure 4 and 5).

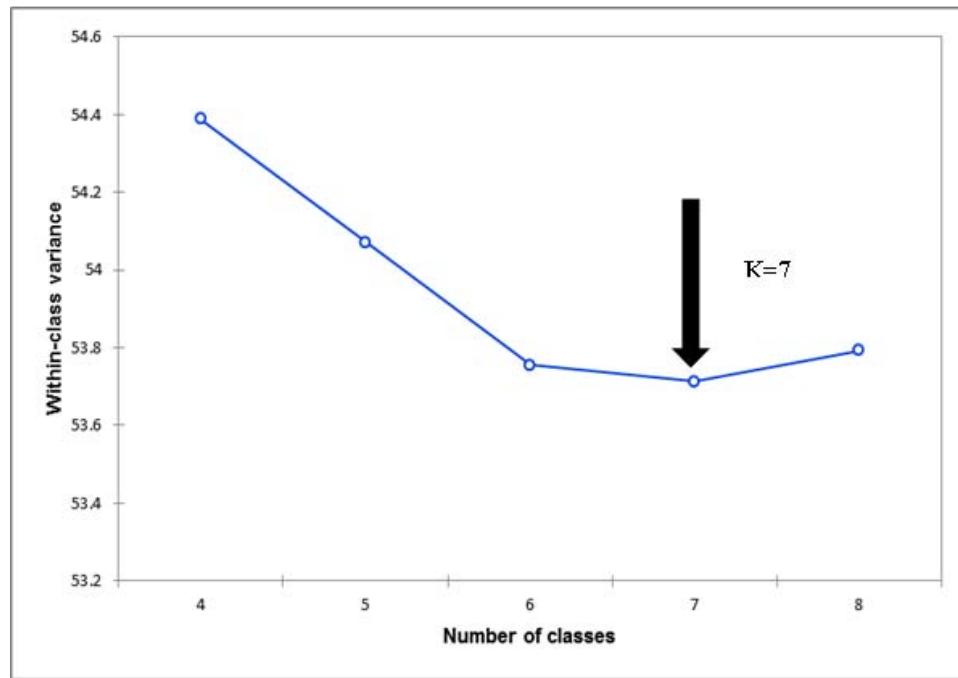
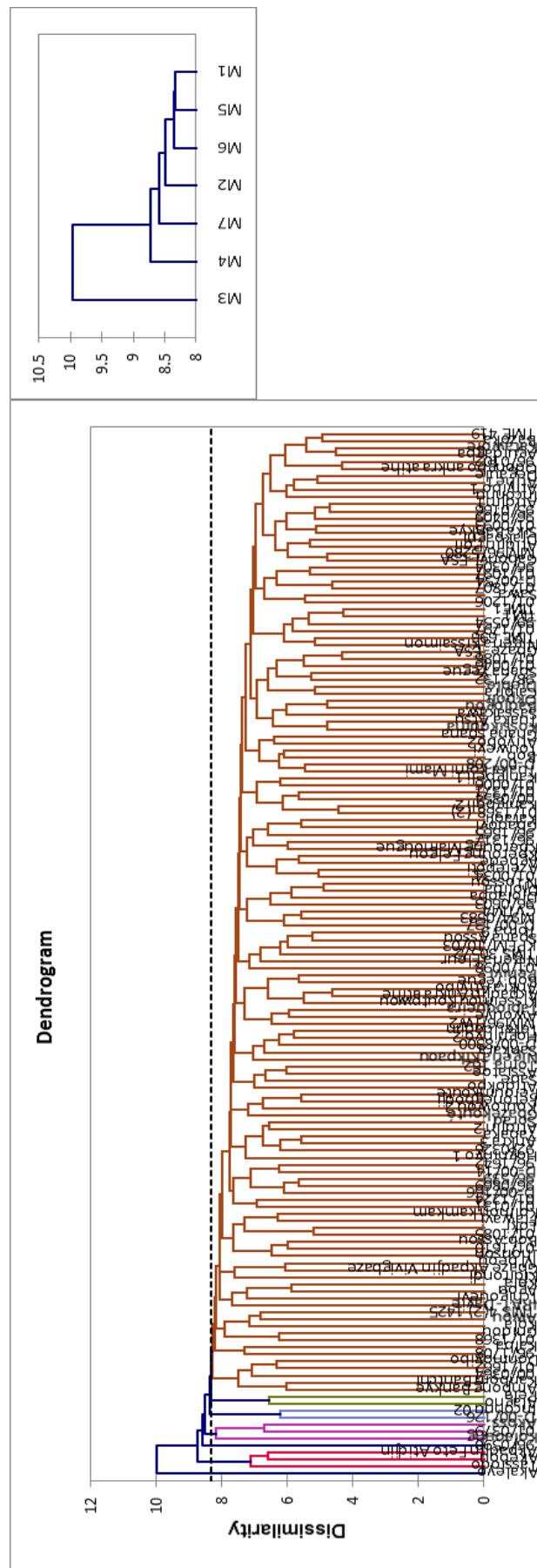



Figure 3: Distribution of the variance function according to the number of clusters obtained from cluster analysis based on significant morphological traits

Figure 4: Dendrogram of 149 cassava genotypes revealed by the Wards method based on significant morphological traits
From left to right of the dendrogram the Morphotype 3, Morphotype 4, Morphotype 2, Morphotype 6, and Morphotype 5 are respectively represented.

IV. DISCUSSION

a) Morphological Diversity of the Germplasm

Phenotyping of plant materials based on morphological traits has been used to determine the phenotypic variability among cultivars (Avijala et al., 2015; Agre et al., 2015; Adjebeng-Danquah & Gracen, 2020). The use of these traits allows rapid identification of cultivars. In addition, morphological traits are found to be stable, highly heritable and independent from the environment (Fukuda et al., 2010). However, molecular characterization may allow a more accurate detection of differences between germplasm bank cultivars than morphological characterization.

In our study, substantial variation was observed within the germplasm. Traits such as petiole colour, leaf colour, colour of leaf vein, flowering ability, seed set ability, levels of branching, colour of end branches, colour of stem epidermis, leaf lobe margins, growth habit of stem, and root flesh colour were underscored as the most relevant traits for cultivars discrimination. Genetic variability for morphological traits has been reported in different studies in Ghana (Asare et al., 2011; Adjebeng-Danquah & Gracen, 2017); in Benin (Agre et al., 2017), in Burkina Faso (Gmakouba et al., 2018) and in Brazil (Oliveira et al., 2015).

Root flesh colour is a trait with great importance for cassava because of dietary habits of Togolese. Moreover, this trait is directly related to the presence of vitamin. Orange varieties are rich in carotenoids (provitamin A) (Kamanda et al., 2020). Low occurrence was found for yellow root colour and pink root colour varieties, which possibly have lycopene in their roots.

b) Structure of the Germplasm Diversity

Cluster analysis classified the varieties into seven morphotypes, showing random distribution of the varieties. The fact that cassava is an outcrossing crop which can propagate vegetatively could explain this result. This facilitates the dispersion of varieties the exchange among farmers and, consequently, the exchange of genes (Agre et al., 2017). The main factor involved in the high diversity found may be gene flow promoted by farmers, who have acted as a dispersing agents for the species. An intense exchange system of varieties has been documented among farmers growing cassava.

The germplasm bank cultivars were not grouped based on the geographical origin distribution. Cultivars collected from places such as Vogan, Wetrope, Akebou, Danyi, Aouda, Davié, and Assoukoko were clustered in morphotype 1. Likewise cultivars from Bafilo, Assoukoko, Danyi, and Bourondé were also clustered together in morphotype 2. The remaining clusters also included cultivars from different collection regions. The informal farmers to farmers seed supply system practiced in the country could explain this

result. This agrees with earlier studies on cassava (Ojulong et al., 2010; Sing et al., 2015; Adjebeng-Danquah & Gracen, 2017, Gmakouba et al., 2018). In addition, the cassava cultivars collected from the same region were clustered into different morphotypes which suggest a high genetic diversity within each collection area. Similar findings were also reported by Agre et al. (2017) in Bénin. Moreover, there was no clear differentiation and real structuring between local and improved varieties in this study as also reported by Kombo et al. (2012).

Morphotypes identified may be valuable in cassava germplasm management and cultivars identification. Especially, the varieties belonging to morphotypes 5, 6 and morphotype 7 might be most desirable for breeding due to their good flowering and seed set ability and adaptability to environmental conditions. These cultivars could be used to set up crossing blocks in order to develop segregating breeding lines with farmers desired traits.

V. CONCLUSIONS

The study revealed that the cassava germplasm of Togo exhibited high phenotypic diversity. Morphological traits such as petiole colour, leaf colour, colour of leaf vein, flowering ability, seed set ability, levels of branching, colour of end branches, colour of stem epidermis, leaf lobe margins and the growth habit of stem were the most diverse and could be used for cultivar identification in the field. The varieties of morphotypes 5, 6 and 7 harboured interesting features such as flowering and seed set ability and may be useful for the national breeding programme. For breeding purpose, superior parental clones could be selected from these morphotypes for crossing and generating a breeding population.

ACKNOWLEDGEMENTS

The authors are thankful to farmers and the agricultural extension agents who participated in the germplasm collection, as well as the Togolese Agronomic Research Institute (ITRA-CRAL) for offering the logistical assistance.

Funding: This manuscript is extracted from PhD. thesis, which was co-funded by ECONET-Foundation and the Germany Academic Exchange Service (WACCI/DAAD) at West Africa Centre for Crop Improvement (University of Ghana).

Authors' Contributions: GMAKOUBA Tighankoumi carried out the study, analyzed the data and drafted the manuscript. DZIDZIENYO K. Daniel, SOME Koussao, TONGOONA Pangirayi and ASANTE I. Kwame participated in the study design and were major contributors in writing and correcting the manuscript. All authors read and approved the final manuscript.

Consent for Publication: The authors declare that they obtained an informed consent for publication from people involved in this study.

Availability of Data and Materials: Data are within the paper and its supporting information files. The datasets are fully available without restriction on reasonable request from the corresponding author.

Competing Interests: The authors declare that they have no competing interests.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Adjepong-danquah, Joseph, and Vernon Gracen. 2017. "Agronomic Performance and Genotypic Diversity for Morphological Traits among Cassava Genotypes in the Guinea Savannah Ecology August. <https://doi.org/10.1007/s12892-015-0095-8a>.
2. Adjepong-Danquah, Joseph & Manu-Aduening, Joseph & Asante, Isaac & Agyare, Richard & Gracen, Vernon & Offei, Samuel. 2020. Genetic diversity and population structure analysis of Ghanaian and exotic cassava accessions using simple sequence repeat (SSR) markers. *Helijon*. 6. e03154. [10.1016/j.heliyon.2019.e03154](https://doi.org/10.1016/j.heliyon.2019.e03154)
3. Agre, A P, R Bhattacharjee, I Y Rabbi, O A Alaba, N N Unachukwu, M A T Ayenan, Y L Loko, G J Bauchet, and A Dansi. 2017. "Classification of Elite Cassava Varieties Cultivated in Benin Republic Using Farmers' Knowledge, Morphological Traits and Simple Sequence Repeat Markers." *Genetic Resources and Crop Evolution*, 1-13. <https://doi.org/10.1007/s10722-017-0550-0>.
4. Avijala, Matoso Francisco, Leonardo Lopes Bhering, Leonardo De Azevedo Peixoto, Damião Cruz, Pedro Crescêncio, Souza Carneiro, Constantino Estevão Cuambe, and Anabela Zacarias. 2015. "Evaluation of Cassava Genotypes Reveals Great Genetic Variability and Potential Selection Gain" 9 (10): 940-47.
5. Banito, A., K. E. Kpémoua, and K. Wydra. 2010. "Screening of Cassava Genotypes for Resistance to Bacterial Blight Using Strain x Genotype Interactions." *Journal of Plant Pathology*. <https://doi.org/10.4454/jpp.v92i1.28>
6. Ceballos, Hernan & Perez, Juan & Joaqui-Barandica, Orlando & Lenis, Jake & Morante, Nelson & Calle, F. & Pino, Lizbeth & Hershey, Clair. (2016). Cassava Breeding I: The Value of Breeding Value. *Frontiers in Plant Science*. 7. [10.3389/fpls.2016.01227](https://doi.org/10.3389/fpls.2016.01227)
7. Costa T.R., Vidigal Filho O.S., Vidigal M.C.G., Galván M.Z., Lacanallo G.F., Silva Li And Kvitschal M.V. 2013. Genetic diversity and population structure of sweet cassava using simple sequence repeat (SSR) molecular markers. *Afr J Biotechnol*, 12: 1040-1048. DSID, 2022. Rapport annuel d'activité.
8. Ezui, K. S. (2017). *Understanding the productivity of cassava in West Africa*. [internal PhD, WU, Wageningen University]. Wageningen University. <https://doi.org/10.18174/400833>
9. FAO, IFAD, UNICEF, WFP and WHO. 2023. The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome, FAO. <https://doi.org/10.4060/cc3017en>
10. Giles, João Antonio D., Gleison Oliosi, Weverton P. Rodrigues, Heder Braun, Ana I. Ribeiro-Barros, and FÁBIO Á.B.I.O.L. Partelli. 2018. "Agronomic Performance and Genetic Divergence between Genotypes of Manihot Esculenta." *Anais Da Academia Brasileira de Ciencias* 90 (4): 3639-48. <https://doi.org/10.1590/0001-3765201820180099>.
11. Gmakouba, Tighankoumi, Somé Koussao, Ernest Renan Traore, and Kossi Essotina. 2018. Diversity Study of a Cassava Collection from Burkina Faso" 12 (February): 402-21.
12. Guevara, C L, R Kawuki, and M E Ferguson. n.d. "Selected Morphological and Agronomic Descriptors for the Characterization of Cassava."
13. Kamanda, I., Blay, E.T., Asante, I.K. et al. Genetic diversity of provitamin-A cassava in Sierra Leone. 2020. *Genet Resour Crop Evol.*, 67, 1193-1208. <https://doi.org/10.1007/s10722-020-00905-8>
14. Kawuki, R. S., M. Ferguson, M. T. Labuschagne, L. Herselman, J. Orone, I. Ralimanana, M. Bidiaka, et al. 2011. "Variation in Qualitative and Quantitative Traits of Cassava Germplasm from Selected National Breeding Programmes in Sub-Saharan Africa." *Field Crops Research* 122 (2): 151-56. <https://doi.org/10.1016/j.fcr.2011.03.006>.
15. Kombo, G R, A Dansi, L Y Loko, P Assogba, G C Orkwor, R Vodouhe, and J M Magema. 2012. "Diversity of Cassava Cultivars and Its Management in the Department of Bouenza in the Republic of Congo." <https://doi.org/10.1007/s10722-012-9803-0>.
16. Ojulong, Henry Fred, Maryke Tine Labuschagne, Liezel Herselman, and Martin Fregene. 2010. "Yield Traits as Selection Indices in Seedling Populations of Cassava." *Crop Breeding and Applied Biotechnology* 10 (3): 191-96. <https://doi.org/10.1590/s1984-70332010000300002>.
17. Peprah, B.B., Parkes, E., Manu-Aduening, J. 2020. Genetic variability, stability and heritability for quality and yield characteristics in provitamin A cassava varieties. *Euphytica*, 216, 31. <https://doi.org/10.1007/s10681-020-2562-7>
18. Pootakham W, Shearman Jr, Areerate Pr, Sonthirod C, Sangsakru D, Jomchai N, Yoocha T, Triwitayakorn K, Tragoonrung S And Tangphatsornruang S. 2014. Large- Scale SNP

Discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (*Manihot esculenta* Crantz). *PLoS ONE* 9: 12.

19. Rabbi, Ismail Y, Peter A Kulakow, Joseph A Manu-Aduening, Ansong A Dankyi, James Y Asibuo, Elizabeth Y Parkes, Tahirou Abdoulaye, et al. 2015. "Tracking Crop Varieties Using Genotyping-by-Sequencing Markers: A Case Study Using Cassava." *BMC Genetics*. *BMC Genetics*. <https://doi.org/10.1186/s12863-015-0273-1>.

20. Rabbi IY, Hamblin MT, Kumar PL, Gedil MA, Ikpan AS, Jannink JL, Kulakow PA. 2014 High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. *Virus Research*;186:87-96.

21. Rogers, D. J. & Appan, S. G. 1973. *Manihot* and *Manihotoides* (Euphorbiaceae). A computer-assisted study. *Flora Neotropica*, Monograph n . 13. Hafner Press, New York.

22. Selamawit Abebe, Gitore, Danga Benjamin, Henga Sylvia, and Gurmu Fekadu. 2021. "Phenotypic Characterization of Sweet Potato Genotypes in Ethiopia for Selection of Those Possessing Optimal Dual-Purpose." *International Journal of Agricultural Science and Food Technology* 7: 099–107. <https://doi.org/10.17352/2455-815x.000095>.

23. Sing, Geoffrey, E Ateka, D Miano, S Githiri, and Theresia Munga. 2015. "Assessment of the Responses of Cassava Breeder 's Germplasm to Cassava Mosaic Virus Infection in Kenya" 6 (4): 120–29.

24. Siqueira, Marcos Vinicius Bohrer Monteiro, Aline Borges, Teresa Losada Valle, and Elizabeth Ann Veasey. 2011. "A Comparative Genetic Diversity Assessment of Industrial and Household Brazilian Cassava Varieties Using SSR Markers." *Bragantia*. <https://doi.org/10.1590/S0006-87052011005000019>.

25. Sogbedji, Jean Mianikpo, Lakpo Kokou Agboyi, Kodjovi Sotomè Detchinli, Ruth Atchoglo, and Mihiouwe Mazinagou. 2015. "Sustaining Improved Cassava Production on West African Ferralsols Through Appropriate Varieties and Optimal Potassium Fertilization Schemes" 3 (3): 117–22. <https://doi.org/10.11648/j.jps.20150303.12>.

26. Soro, Monique, Serge Marie Felicien Wend-Pagnagdé Zida, Koussao Somé, Fidèle Tiendrébéogo, Daniel H. Otron, Justin S. Pita, James B. Néya, and Daouda Koné. 2024. "Estimation of Genetic Diversity and Number of Unique Genotypes of Cassava Germplasm from Burkina Faso Using Microsatellite Markers" *Genes* 15, no. 1: 73. <https://doi.org/10.3390/genes15010073>

27. Vidal A.M., Vieira L.J., Ferreira C.F., Souza F.V.D., Souza A.S. And Ledo C.A.S. 2015. Genetic fidelity and variability of micropropagated cassava plants (*Manihot esculenta* Crantz) evaluated using ISSR markers. *Genet Mol Res* 14: 7759-7770.

This page is intentionally left blank

Spark of First Life and Consciousness

By Chandra Prakash Trivedi

Abstract- The electrostatic force is the force that governs the motion of the elementary particles, which caused them to aggregate or collide in various ways with oxidation and reduction with the transfer of electrons in the primordial soup. The vibratory movement of the charged ions with equal and opposite wavelength developed a dynamo with streaming in extreme anaerobic condition.

It has been observed in the ultra-resolution image that one purine and one pyrimidine base differing only in Nitrogen are complimentary to each other shed with cosmology. The elementary particles adhered to space, the sound of vibration touched, press the mark, and rebound. The colliding protons, decaying into hadron jets, the electrons converted them into electric vibrations to join the purine and pyrimidine base in series with mass.

The electrostatic interaction between the charged ions of the water with dehydration separated the hydrogen bond. It has formed a covalent Hydrogen bond between the purine and pyrimidine complementary base. The complementary wavelength of hydrogen bond activated the nucleotide pair with transfer of electron.

Keywords: *spark of life, phonon, slime soup.*

GJSFR-C Classification: DDC Code: 843.914

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Spark of First Life and Consciousness

Chandra Prakash Trivedi

Abstract- The electrostatic force is the force that governs the motion of the elementary particles, which caused them to aggregate or collide in various ways with oxidation and reduction with the transfer of electrons in the primordial soup. The vibratory movement of the charged ions with equal and opposite wavelength developed a dynamo with streaming in extreme anaerobic condition.

It has been observed in the ultra-resolution image that one purine and one pyrimidine base differing only in Nitrogen are complimentary to each other shed with cosmology. The elementary particles adhered to space, the sound of vibration touched, press the mark, and rebound. The colliding protons, decaying into hadron jets, the electrons converted them into electric vibrations to join the purine and pyrimidine base in series with mass.

The electrostatic interaction between the charged ions of the water with dehydration separated the hydrogen bond. It has formed a covalent Hydrogen bond between the purine and pyrimidine complementary base. The complementary wavelength of hydrogen bond activated the nucleotide pair with transfer of electron. The hydrogen triple bond converts into the double bond, and reunited on the opposite side with change in the electron with oxidation and reduction in chain with the first genetic code and amino acid in series. The synthesized chromosomes divided into four with the first prokaryotic cell. Life appears with the streaming of the protoplasm and disappears with aging of the cell. The complementary wavelength of hydrogen triple bond of the nucleotide pair led the development from generation to generation with new life.

Keywords: spark of life, phonon, slime soup.

I. INTRODUCTION

Origin of life consciousness is a great puzzle, life appears with the streaming of the protoplasm and disappears with aging of the cell body. I have traced the roots of life consciousness in pre-cosmic condition. The phonon wave appeared first and activated the dark matter with blast and light. The phonon and photon run parallel with equal and opposite wavelength. The purine and pyrimidine base differing only in Nitrogen shed like bullet with incandescent gaseous clouds with phonon photon interaction with the vibrations. The electrostatic force governs the motion of the elementary particles, which caused them to aggregate or collide in various ways with oxidation and reduction with the transfer of electrons in the primordial soup. It has activated the purine and the pyrimidine complementary base pair with resonance.

The electrostatic interaction between the charged ions of the water with dehydration separated

the hydrogen bond. It has formed a covalent Hydrogen bond between the purine and pyrimidine complementary base. The complementary wavelength of hydrogen bond activated the nucleotide pair with transfer of electron. The hydrogen triple bond converts into the double bond, and reunited on the opposite side with change in the electron with oxidation and reduction in chain with the first genetic code and amino acid in series. The synthesized chromosomes divided into four with the first prokaryotic cell. Life appears with the streaming of the protoplasm and disappears with aging of the cell. The complementary wavelength of hydrogen triple bond of the nucleotide pair led the development from generation to generation with new life.

II. EARLY WORK

The Russian Chemist A.I. Oparin 1922 and English Geneticist J.B.S. Haldane 1928 first conceived of the theory of the pre-biotic origin of life. DNA Watson and Crick 1953, Darwin Origin of Species 1859, Life evolved from the single DNA with Genetic recombination and cell division. How did the first Life begin? NASA researchers noticed polycyclic aromatic hydrocarbons (PAHs) in meteorites. Extra hydrogen or oxygen called Quinone has the potential for the origin of life.

Higgs field 1914, phonon scattered the photon in a crystal Lie et al 2014, Einstein 1923 there must be two equal and opposite forces. The photon is the smallest unit of light, and immortal phonon is smallest unit of the sound wave vibration are connected at the molecular level with equal and opposite wavelength.

The DNA with photon-phonon interaction is universally present. Hence its complimentary resonant wave blackouts radio communications on the earth and the protons damage human beings in space if not protected properly. Because the entry of radiation rays with protons checked by the magnetosphere and ozone layer and complimentary resonance finds its counterpart protons astronaut human in space.

a) Life on the Earth

The incandescent gaseous cloud cooled down with time and the movement of the molten mass generated the geomagnetic field and magnetosphere around the earth has given the place for the ionization of the solar flares trapped by the magnetosphere and interacts with the sun's magnetic field. The ions flow down and filled the earth with the water.

b) Ozone Layer

Stratospheric ozone is formed naturally through the interaction of solar ultraviolet (UV) radiation with molecular oxygen (O_2). Ozone absorbs the toxic UV rays with the entry of visible light, it has given the way for the origin of life on the earth.

III. THEORY

I have traced its root in pre-cosmic cosmology and the sun.

The earth is a part of our solar system, which is one unit of the cosmos. The human body is a microcosm inside a macrocosm. All can be searched just like a drop of water in the sea can reveal the character of the ocean I have studied the sun with the naked eyes with my yogic practice otherwise it is impossible to face the sun even for a second with confirmation from Egypt Rosetta granite stone, pyramids of the Egypt, Gold plate Grand Canyon North America, NASA pictures & Veda,

I have observed the nuclear reactions on the sun's surface with blast and light. The photon and phonon run in a straight way in concentric circles. It has been confirmed from the Sun disc gold plate Grand Canyon and Veda.

The digitally stacked sequence reveals that the photon and phonon running in concentric circles from the sun Grand Canyon Star Trails NASA - March 3, 2013. The Scientists are searching the Dark matter, is

not a matter. The dark atmosphere is hidden in the interior of the sun, black caters and sunspots, which explode with blast and light.

The shock waves are antimagnetic, white, and travel with supersonic speed, and dark matter is an inactive condensed zone of magnetism without movement, just like a waste. The shock waves are 'anti-matter of dark matter, immortal with opposite character. It appears first in the pre-cosmic darkness like the shock waves appear before the earthquake, and activated the dark matter with resonance with blast and light. The photon and photon are complementary to each other.

The activation of dark matter is activation of inherent magnetism in cosmos, with formation of charged elementary particles. The electrostatic force is the force which governs the motion of the elementary particles, which caused them to aggregate or collide in various ways with oxidation and reduction with the transfer of electron.

The photon and phonon have broad complementary spectrum from gamma rays to radio waves with equal and opposite wavelength. The immortal phonon stimulate the event with electron configuration and half-spin change in the opposite wavelength and photon undergoes the synthesis and degradation with time Einstein's Equation $E=Mc^2$.

The flow of the photon and phonon has been halted with the Higgs field underlying space imparted mass to the elementary particles.

Higgs Field and Mass to the Elementary Particles

All elementary particles are vibrating with the resonance of vibration and their respective charge. They are complementary to each other from gamma rays to radio waves. They find their resonant with resonance. The resonant vibrations of electromagnetic rays, touch, press-mark, and rebound. The colliding protons, decaying into hadron jets and electrons, converted them into electric vibrations to join them in series with phonic compression electromagnetic force. It has maintained its continuity in the molecules and the matter with Higgs field 2013 with asteroids and planets.

IV. DISCUSSION

All elementary particles are vibrating with the resonance of vibration and their respective charge. They are complementary to each other from gamma rays to radio waves. They find their resonant with resonance. The phonon touch press mark and rebound with electron configuration and the half spin change in the opposite wavelength, and the photon undergoes the synthesis and degradation with time Einstein's

$$\text{equation } E=Mc^2$$

The first life arose in the primordial soup with the streaming movement of the charged ions in the colloidal solution. The respective complementary wavelength of the charged ions caused them to vibrate with streaming

The vibratory movement of the ions with streaming developed a dynamo in the center with actions and interactions in series with electron transfer and photon undergoes synthesis and degradation with time.

The electron transfer is associated with the oxidation loss of an electron and reduction gain of electron in anaerobic condition. The electrostatic interaction between the charged ions developed

dynamo in the center with the electromagnetic field. The vibration waves activated the equal and opposite wavelengths of purine and pyrimidine base differing only in Nitrogen. The elementary particles adhered to space, the sound of vibration, touched, press the mark, and rebound. The colliding protons, decaying into hadron jets and electrons, converted them into electric vibrations to join them in series with electron configuration and half spin change in the opposite wavelength.

The electrostatic interaction between the charged ions of the water with dehydration separated the hydrogen bond. It has formed a covalent Hydrogen bond between the purine and the pyrimidine base.

Ultra resolution image of DNA with Electron transfer

The phonon wave strike and rebound with a press mark with the electron configuration in the opposite direction of hydrogen triple bond, it triggered off the chain of oxidation and reduction reaction, and the hydrogen triple bond converted into double bond and Nitrogen reunite it on the other side simultaneously.

The equal and opposite wavelength of hydrogen triple bond led the development with electron transfer. With the first genetic code and amino acid in

series synthesized the chromosomes. The chromosomes divided into four with first prokaryotic cell. Life appears with the streaming of protoplasm with the food metabolism as source of life and disappears with aging and death of the cell body. The complementary wavelength of hydrogen triple bond of the nucleotide pair led the development from generation to generation with new life.

T Nucleotides Divide in air Like Image in the Mirror with Electron Transfer

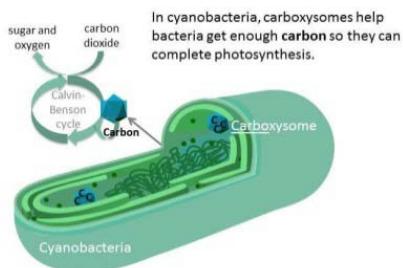
The equal and the opposite wavelength of hydrogen triple bond led the development with electron transfer in series and the hydrogen triple converted into double bond and reunited in the opposite direction simultaneously with Nitrogen in series as identity of the individual cell with equal and opposite wavelength. Hence, even the time twins have different genetic identity and fate in life.

The prokaryotes evolved into the eukaryotic autotrophic cell with the entry of the red wavelength of light made apparent the three places of nucleotide pair with the photosynthesis and generation of immortal chemical energy. The immortal phonon wave follows the immortal DNA from generation to generation with new life and cell division.

At the Point of Two Different DNA the Complementary Phonon Wave Strike and Rebound with Generation of Triplet code in air with Electron Configuration and Half Spin Change in the Opposite Wavelength

The Complementary Wavelength Led the Development Vigorously

The Triplet Genetic Code of DNA Divides in Chain with Never Breaking Nitrogen



The complementary phonon wavelength acts as antennae and speaker to execute the functions of life. It led the development with the synthesis of amino acids and proteins in chain to synthesize the chromosome pair with the first prokaryote.

The Hydrogen triple bond Nitrogen triple bond with oxidation and reduction separate and unite simultaneously on other side, with oxidation the hydrogen bond break and Nitrogen reunite it on other side, due to this the double helix chain never break.

V. RESULT AND CONCLUSION

The entry of the Red wavelength of light through the plasma membrane activated the place of the chlorophyll pigment on the DNA.

The first prokaryotic cell with an incipient nucleus maintained its continuity with cell division, and immortal phonon follow it from generation to generation with new life.

The entry of the Red wavelength of light through the plasma membrane activated the place of the chlorophyll pigment on the DNA as source of life with food metabolism.

It has given double horsepower to the developing cells and the prokaryotic autotrophic cell evolved into the eukaryotic cell and moved on the path of evolution with genetic recombination and cell division with the hereditary characters and the complementary phonon wave follow it from the generation to generation with new life as hereditary life principle.

Life appears with the streaming of the protoplasmic vibrations with food metabolism and disappears with the aging of the cell body.

It is like this that all the rotating astronomical bodies rotate at their axis with the generation of the dynamo in the centre with the magnetic field and the magnetosphere around them. In the same fashion, the streaming of the protoplasm with the nucleus in the centre generates dynamo in the centre with a magnetic field and magnetosphere but is hard to detect, which disappears with death, aging of the cell body.

The purine and the pyrimidine base pair of DNA differing only in Nitrogen have shed from the Nebula with the cosmological event. It divides in the air just like the image in the mirror. The Purine and pyrimidine base

pair of the DNA has an inbuilt mechanism for the transcription and translation with time, with three immortal and three stages of life. The three immortals are, 1- the Higgs field ensign of the existence, 2- the immortal chemical energy of photosynthesis, with food metabolism is the source of life. 3. The immortal DNA with resonant vibrations light of life for all.

ACKNOWLEDGEMENT

I am thankful to the Director M. V. ShodhPeeth, Ujjain for encouragement and VC Vikram University, Ujjain

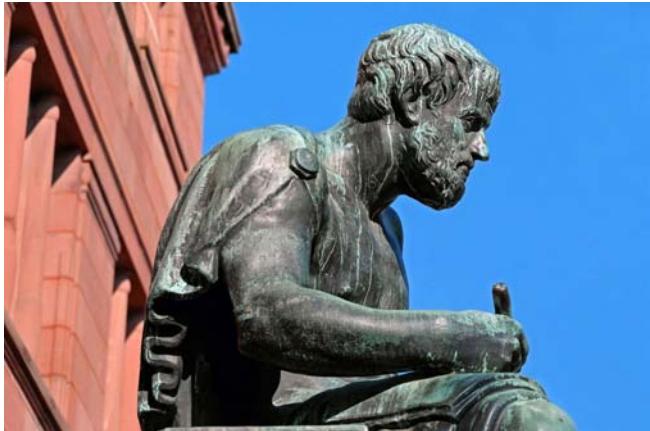
REFERENCES RÉFÉRENCES REFERENCIAS

1. Arunan, Elangannan; Desiraju, Gautam R.; Klein, Roger A.; Sadlej, Joanna; Scheiner, Steve; Alkorta, Ibon; Clary, David C.; Crabtree, Robert H.; Dannenberg, Joseph J. (2011-07-08). "Definition of the hydrogen bond (IUPAC Recommendations 2011)". *Pure and Applied Chemistry*. 83 (8): 1637–1641. doi:10.1351/PAC-REC-10-01-02. ISSN 1365-3075. S2CID 97688573.
2. ^ Pimentel, G. *The Hydrogen Bond* Franklin Classics, 2018), ISBN 0343171600
3. ^ Jeffrey, G. A.; *An introduction to hydrogen bonding*; Oxford university press New York, 1997. ISBN 0195095499
4. ^ Jeffrey, G. A.; Saenger, W. *Hydrogen bonding in biological structures*; Springer: Berlin, 1994, 2012 Springer; ISBN 3540579036
5. Carol Stoker: Searching for Life Underground: Experiments with Drilling in Mars Analog Terrains
6. David Summers: Detection of Biosignatures with highly sensitive radio-labeling techniques. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life
7. Chandra P Trivedi. Vedic Genetics Cow Omni-form Decipherment of Indus Valley Seals. Volume I; Chaukhamba Sanskrit Pustakalaya Varanasi.
8. Chandra P Trivedi. Indus Vedic Biotechnology Indus Valley to Grand Canyon Decipherment of Indus Valley Seals. Volume II; Chaukhamba Sanskrit Pustakalaya Varanasi.
9. Chandra P Trivedi, S.P.S. Chauhan, AseemTrivedi. Advanced Biotechnology of Indus Valley. Lap Lambert Germany. 2013.
10. Laura Sánchez-García, Miguel A Fernández-Martínez, Mercedes Moreno-Paz, Daniel Carrizo, Miriam García-Villadangos, Juan M Manchado, et al. Simulating Mars Drilling Mission for Searching for Life: Ground-Truthing Lipids and Other Complex Microbial Biomarkers in the Iron-Sulfur Rich Río Tinto Analog. *Astrobiology*. 2020; 1029-1047. doi: 10.1089/ast.2019.2101
11. David Summers. Detection of Biosignatures with highly sensitive radiolabeling techniques. The Stable

Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life, Biomarkers.

12. Li E, Eggleton BJ, Fang K, Fan S. Photonic Aharonov-Bohm effect in photon-phonon interactions. *Nature Communications*. 2014; 5:3225.doi: 10.1038/ncomms4225.
13. Steven W Hawking, George FR Ellis. The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe. *Astrophysical Journal*. 1968; 152: 25-36.
14. Steven W Hawking, Roger Penrose. The Singularities of Gravitational Collapse and Cosmology. *Proceedings of the Royal Society of London, Series A*. 1970; 314(1519): 529-548. doi: 0.1098/rspa.1970.0021
15. 9. Mark Eastman, Chuck Missler. The Creator: Beyond Time and Space. 1996; pp: 11.
16. W Wayt Gibbs, George FR Ellis. *Scientific American*. 1995, 273(4): 55.
17. Robert V Gentry. New Cosmic Center Universe Model Matches Eight of Big Bang's Major Predictions Without The F-L Paradigm. CERN Preprint.
18. Robert V Gentry. Discovery Of A Major Contradiction In Big Bang Cosmology Points To The New Cosmic Center Universe Model. CERN Preprint.
19. Robert V Gentry. A New Redshift Interpretation. Arxiv. 1998.
20. Robert V Gentry. The New Redshift Interpretation Affirmed. Arxiv. 1998.
21. JN Bahcall, T Piran, S Weinberg. Dark Matter in the Universe. *Jerusalem Winter School for Theoretical Physics*. 1986-7.
22. J Audouze, J Tran Thanh Van. Dark Matter. *Proceedings of the XXIIIrd Recontre de Moriond*.
23. RD Heuer. The Large Hadron Collider: Shedding Light on the Early Universe. CERN, Chios, Greece. 2011.
24. Examples of Great Discoveries in the Fundamental Forces. *Gravity probe B FAQ*, Stanford University. 2012
25. A Brief Introduction to the Ancient Indus Civilization. Harappa.com. 20. JD Watson, FHC Crick. A Structure for De oxy ribose Nucleic Acid. *Nature*. 1953; 171: 737-738.
26. Rosalind E Franklin, RG Gosling. Molecular Configuration in Sodium Thymonucleate. *Nature*. 1953; 171: 740-741.
27. MHF Wilkins, AR Stokes, HR Wilson. Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids. *Nature*. 1953; 171: 738-740.
28. Trivedi CP. Cracking the DNA code of Indus Valley Genetics and Cytology. Lap Lambert Academic Publishing, Germany. 2012.
29. Trivedi CP. Quest of Creation Higgs; God particle. Lap Lambert Academic Publishing, Germany.
30. Trivedi CP. *Vedic Geeta the Secret of Eternal Life*. Lap Lambert Academic Publishing, Germany.
31. Trivedi Chandra P. *Lord of Creation Einstein's Grand Unified Force*. Parimal Publications

GLOBAL JOURNALS GUIDELINES HANDBOOK 2024


WWW.GLOBALJOURNALS.ORG

MEMBERSHIPS

FELLOWS/ASSOCIATES OF SCIENCE FRONTIER RESEARCH COUNCIL

FSFRC/ASFRC MEMBERSHIPS

INTRODUCTION

FSFRC/ASFRC is the most prestigious membership of Global Journals accredited by Open Association of Research Society, U.S.A (OARS). The credentials of Fellow and Associate designations signify that the researcher has gained the knowledge of the fundamental and high-level concepts, and is a subject matter expert, proficient in an expertise course covering the professional code of conduct, and follows recognized standards of practice. The credentials are designated only to the researchers, scientists, and professionals that have been selected by a rigorous process by our Editorial Board and Management Board.

Associates of FSFRC/ASFRC are scientists and researchers from around the world are working on projects/researches that have huge potentials. Members support Global Journals' mission to advance technology for humanity and the profession.

FSFRC

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL is the most prestigious membership of Global Journals. It is an award and membership granted to individuals that the Open Association of Research Society judges to have made a 'substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Fellows are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Fellow Members.

BENEFITS

TO THE INSTITUTION

GET LETTER OF APPRECIATION

Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

EXCLUSIVE NETWORK

GET ACCESS TO A CLOSED NETWORK

A FSFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Fellows can reach out to other members or researchers directly. They should also be open to reaching out by other.

Career

Credibility

Exclusive

Reputation

CERTIFICATE

RECEIVE A PRINTED COPY OF A CERTIFICATE

Fellows receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Career

Credibility

Exclusive

Reputation

DESIGNATION

GET HONORED TITLE OF MEMBERSHIP

Fellows can use the honored title of membership. The "FSFRC" is an honored title which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., FSFRC or William Walldroff, M.S., FSFRC.

Career

Credibility

Exclusive

Reputation

RECOGNITION ON THE PLATFORM

BETTER VISIBILITY AND CITATION

All the Fellow members of FSFRC get a badge of "Leading Member of Global Journals" on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All fellows get a dedicated page on the website with their biography.

Career

Credibility

Reputation

FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS

Fellows receive discounts on future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

Career

Financial

GJ INTERNAL ACCOUNT

UNLIMITED FORWARD OF EMAILS

Fellows get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

Career

Credibility

Reputation

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS

To take future researches to the zenith, fellows and associates receive access to all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

Financial

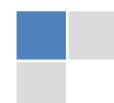
CONFERENCES & EVENTS

ORGANIZE SEMINAR/CONFERENCE

Fellows are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

Career

Credibility


Financial

EARLY INVITATIONS

EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES

All fellows receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.

Exclusive

PUBLISHING ARTICLES & BOOKS

EARN 60% OF SALES PROCEEDS

Fellows can publish articles (limited) without any fees. Also, they can earn up to 60% of sales proceeds from the sale of reference/review books/literature/publishing of research paper. The FSFRC member can decide its price and we can help in making the right decision.

Exclusive

Financial

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES

Fellow members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

Financial

ACCESS TO EDITORIAL BOARD

BECOME A MEMBER OF THE EDITORIAL BOARD

Fellows may join as a member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer. Additionally, Fellows get a chance to nominate other members for Editorial Board.

Career

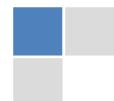
Credibility

Exclusive

Reputation

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE


All members get access to 5 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 10 GB free secure cloud access for storing research files.

ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL

ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL is the membership of Global Journals awarded to individuals that the Open Association of Research Society judges to have made a 'substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Associate membership can later be promoted to Fellow Membership. Associates are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Associate Members.

BENEFITS

TO THE INSTITUTION

GET LETTER OF APPRECIATION

Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

EXCLUSIVE NETWORK

GET ACCESS TO A CLOSED NETWORK

A ASFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Associates can reach out to other members or researchers directly. They should also be open to reaching out by other.

Career

Credibility

Exclusive

Reputation

CERTIFICATE

RECEIVE A PRINTED COPY OF A CERTIFICATE

Associates receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Career

Credibility

Exclusive

Reputation

DESIGNATION

GET HONORED TITLE OF MEMBERSHIP

Associates can use the honored title of membership. The "ASFRC" is an honored title which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., ASFRC or William Walldroff, M.S., ASFRC.

Career

Credibility

Exclusive

Reputation

RECOGNITION ON THE PLATFORM


BETTER VISIBILITY AND CITATION

All the Associate members of ASFRC get a badge of "Leading Member of Global Journals" on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All associates get a dedicated page on the website with their biography.

Career

Credibility

Reputation

FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS

Associates receive discounts on the future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

Career

Financial

GJ INTERNAL ACCOUNT

UNLIMITED FORWARD OF EMAILS

Associates get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

Career

Credibility

Reputation

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS

To take future researches to the zenith, fellows receive access to almost all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

Financial

CONFERENCES & EVENTS

ORGANIZE SEMINAR/CONFERENCE

Associates are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

Career

Credibility

Financial

EARLY INVITATIONS

EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES

All associates receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.

Exclusive

PUBLISHING ARTICLES & BOOKS

EARN 30-40% OF SALES PROCEEDS

Associates can publish articles (limited) without any fees. Also, they can earn up to 30-40% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.

Exclusive

Financial

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES

Associate members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

Financial

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE

All members get access to 2 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 5 GB free secure cloud access for storing research files.

ASSOCIATE	FELLOW	RESEARCH GROUP	BASIC
<p>\$4800 lifetime designation</p> <p>Certificate, LoR and Momento 2 discounted publishing/year Gradation of Research 10 research contacts/day 1 GB Cloud Storage GJ Community Access</p>	<p>\$6800 lifetime designation</p> <p>Certificate, LoR and Momento Unlimited discounted publishing/year Gradation of Research Unlimited research contacts/day 5 GB Cloud Storage Online Presense Assistance GJ Community Access</p>	<p>\$12500.00 organizational</p> <p>Certificates, LoRs and Momentos Unlimited free publishing/year Gradation of Research Unlimited research contacts/day Unlimited Cloud Storage Online Presense Assistance GJ Community Access</p>	<p>APC per article</p> <p>GJ Community Access</p>

PREFERRED AUTHOR GUIDELINES

We accept the manuscript submissions in any standard (generic) format.

We typeset manuscripts using advanced typesetting tools like Adobe In Design, CorelDraw, TeXnicCenter, and TeXStudio. We usually recommend authors submit their research using any standard format they are comfortable with, and let Global Journals do the rest.

Alternatively, you can download our basic template from <https://globaljournals.org/Template.zip>

Authors should submit their complete paper/article, including text illustrations, graphics, conclusions, artwork, and tables. Authors who are not able to submit manuscript using the form above can email the manuscript department at submit@globaljournals.org or get in touch with chiefeditor@globaljournals.org if they wish to send the abstract before submission.

BEFORE AND DURING SUBMISSION

Authors must ensure the information provided during the submission of a paper is authentic. Please go through the following checklist before submitting:

1. Authors must go through the complete author guideline and understand and *agree to Global Journals' ethics and code of conduct*, along with author responsibilities.
2. Authors must accept the privacy policy, terms, and conditions of Global Journals.
3. Ensure corresponding author's email address and postal address are accurate and reachable.
4. Manuscript to be submitted must include keywords, an abstract, a paper title, co-author(s') names and details (email address, name, phone number, and institution), figures and illustrations in vector format including appropriate captions, tables, including titles and footnotes, a conclusion, results, acknowledgments and references.
5. Authors should submit paper in a ZIP archive if any supplementary files are required along with the paper.
6. Proper permissions must be acquired for the use of any copyrighted material.
7. Manuscript submitted *must not have been submitted or published elsewhere* and all authors must be aware of the submission.

Declaration of Conflicts of Interest

It is required for authors to declare all financial, institutional, and personal relationships with other individuals and organizations that could influence (bias) their research.

POLICY ON PLAGIARISM

Plagiarism is not acceptable in Global Journals submissions at all.

Plagiarized content will not be considered for publication. We reserve the right to inform authors' institutions about plagiarism detected either before or after publication. If plagiarism is identified, we will follow COPE guidelines:

Authors are solely responsible for all the plagiarism that is found. The author must not fabricate, falsify or plagiarize existing research data. The following, if copied, will be considered plagiarism:

- Words (language)
- Ideas
- Findings
- Writings
- Diagrams
- Graphs
- Illustrations
- Lectures

- Printed material
- Graphic representations
- Computer programs
- Electronic material
- Any other original work

AUTHORSHIP POLICIES

Global Journals follows the definition of authorship set up by the Open Association of Research Society, USA. According to its guidelines, authorship criteria must be based on:

1. Substantial contributions to the conception and acquisition of data, analysis, and interpretation of findings.
2. Drafting the paper and revising it critically regarding important academic content.
3. Final approval of the version of the paper to be published.

Changes in Authorship

The corresponding author should mention the name and complete details of all co-authors during submission and in manuscript. We support addition, rearrangement, manipulation, and deletions in authors list till the early view publication of the journal. We expect that corresponding author will notify all co-authors of submission. We follow COPE guidelines for changes in authorship.

Copyright

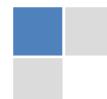
During submission of the manuscript, the author is confirming an exclusive license agreement with Global Journals which gives Global Journals the authority to reproduce, reuse, and republish authors' research. We also believe in flexible copyright terms where copyright may remain with authors/employers/institutions as well. Contact your editor after acceptance to choose your copyright policy. You may follow this form for copyright transfers.

Appealing Decisions

Unless specified in the notification, the Editorial Board's decision on publication of the paper is final and cannot be appealed before making the major change in the manuscript.

Acknowledgments

Contributors to the research other than authors credited should be mentioned in Acknowledgments. The source of funding for the research can be included. Suppliers of resources may be mentioned along with their addresses.


Declaration of funding sources

Global Journals is in partnership with various universities, laboratories, and other institutions worldwide in the research domain. Authors are requested to disclose their source of funding during every stage of their research, such as making analysis, performing laboratory operations, computing data, and using institutional resources, from writing an article to its submission. This will also help authors to get reimbursements by requesting an open access publication letter from Global Journals and submitting to the respective funding source.

PREPARING YOUR MANUSCRIPT

Authors can submit papers and articles in an acceptable file format: MS Word (doc, docx), LaTeX (.tex, .zip or .rar including all of your files), Adobe PDF (.pdf), rich text format (.rtf), simple text document (.txt), Open Document Text (.odt), and Apple Pages (.pages). Our professional layout editors will format the entire paper according to our official guidelines. This is one of the highlights of publishing with Global Journals—authors should not be concerned about the formatting of their paper. Global Journals accepts articles and manuscripts in every major language, be it Spanish, Chinese, Japanese, Portuguese, Russian, French, German, Dutch, Italian, Greek, or any other national language, but the title, subtitle, and abstract should be in English. This will facilitate indexing and the pre-peer review process.

The following is the official style and template developed for publication of a research paper. Authors are not required to follow this style during the submission of the paper. It is just for reference purposes.

Manuscript Style Instruction (Optional)

- Microsoft Word Document Setting Instructions.
- Font type of all text should be Swis721 Lt BT.
- Page size: 8.27" x 11", left margin: 0.65, right margin: 0.65, bottom margin: 0.75.
- Paper title should be in one column of font size 24.
- Author name in font size of 11 in one column.
- Abstract: font size 9 with the word "Abstract" in bold italics.
- Main text: font size 10 with two justified columns.
- Two columns with equal column width of 3.38 and spacing of 0.2.
- First character must be three lines drop-capped.
- The paragraph before spacing of 1 pt and after of 0 pt.
- Line spacing of 1 pt.
- Large images must be in one column.
- The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10.
- The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10.

Structure and Format of Manuscript

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers are reports of significant research (typically less than 7,000 words, including tables, figures, and references)

A research paper must include:

- a) A title which should be relevant to the theme of the paper.
- b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.
- c) Up to 10 keywords that precisely identify the paper's subject, purpose, and focus.
- d) An introduction, giving fundamental background objectives.
- e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition, sources of information must be given, and numerical methods must be specified by reference.
- f) Results which should be presented concisely by well-designed tables and figures.
- g) Suitable statistical data should also be given.
- h) All data must have been gathered with attention to numerical detail in the planning stage.

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned unrefereed.

- i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also be summarized.
- j) There should be brief acknowledgments.
- k) There ought to be references in the conventional format. Global Journals recommends APA format.

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow instructions. They will also be published with much fewer delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity.

FORMAT STRUCTURE

It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

All manuscripts submitted to Global Journals should include:

Title

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) where the work was carried out.

Author details

The full postal address of any related author(s) must be specified.

Abstract

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon.

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Keywords

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining, and indexing.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list of possible keywords and phrases to try.

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search should be as strategic as possible.

One should start brainstorming lists of potential keywords before even beginning searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in a research paper?" Then consider synonyms for the important words.

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, the keywords under which a research paper is abstracted are listed with the paper.

Numerical Methods

Numerical methods used should be transparent and, where appropriate, supported by references.

Abbreviations

Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them.

Formulas and equations

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality image.

Tables, Figures, and Figure Legends

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable format and not as images. References to these tables (if any) must be mentioned accurately.

Figures

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it.

PREPARATION OF ELECTRONIC FIGURES FOR PUBLICATION

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/ photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings). Please give the data for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi.

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a Color Work Agreement form before your paper can be published. Also, you can email your editor to remove the color fee after acceptance of the paper.

TIPS FOR WRITING A GOOD QUALITY SCIENCE FRONTIER RESEARCH PAPER

Techniques for writing a good quality Science Frontier Research paper:

1. Choosing the topic: In most cases, the topic is selected by the interests of the author, but it can also be suggested by the guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is "yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So present your best aspect.

2. Think like evaluators: If you are in confusion or getting demotivated because your paper may not be accepted by the evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

3. Ask your guides: If you are having any difficulty with your research, then do not hesitate to share your difficulty with your guide (if you have one). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list of essential readings.

4. Use of computer is recommended: As you are doing research in the field of science frontier then this point is quite obvious. Use right software: Always use good quality software packages. If you are not capable of judging good software, then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can get through the internet.

5. Use the internet for help: An excellent start for your paper is using Google. It is a wondrous search engine, where you can have your doubts resolved. You may also read some answers for the frequent question of how to write your research paper or find a model research paper. You can download books from the internet. If you have all the required books, place importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should strictly follow here.

6. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right? It is a good habit which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will make your search easier.

7. Revise what you wrote: When you write anything, always read it, summarize it, and then finalize it.

8. Make every effort: Make every effort to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any important thing like making a research paper, you should always have backup copies of it either on your computer or on paper. This protects you from losing any portion of your important data.

9. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant to science, use of quotes is not preferable.

10. Use proper verb tense: Use proper verb tenses in your paper. Use past tense to present those events that have happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete.

11. Pick a good study spot: Always try to pick a spot for your research which is quiet. Not every spot is good for studying.

12. Know what you know: Always try to know what you know by making objectives, otherwise you will be confused and unable to achieve your target.

13. Use good grammar: Always use good grammar and words that will have a positive impact on the evaluator; use of good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice.

Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. Put together a neat summary.

14. Arrangement of information: Each section of the main body should start with an opening sentence, and there should be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain your arguments with records.

15. Never start at the last minute: Always allow enough time for research work. Leaving everything to the last minute will degrade your paper and spoil your work.

16. Multitasking in research is not good: Doing several things at the same time is a bad habit in the case of research activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a particular part in a particular time slot.

17. Never copy others' work: Never copy others' work and give it your name because if the evaluator has seen it anywhere, you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and food.

18. Go to seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

19. Refresh your mind after intervals: Try to give your mind a rest by listening to soft music or sleeping in intervals. This will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you acquire colleagues, they can give you ideas which will be helpful to your research.

20. Think technically: Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think and then print: When you go to print your paper, check that tables are not split, headings are not detached from their descriptions, and page sequence is maintained.

21. Adding unnecessary information: Do not add unnecessary information like "I have used MS Excel to draw graphs." Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Never oversimplify: When adding material to your research paper, never go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review.

22. Report concluded results: Use concluded results. From raw data, filter the results, and then conclude your studies based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include examples.

23. Upon conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print for the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects of your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form which is presented in the guidelines using the template.
- Please note the criteria peer reviewers will use for grading the final paper.

Final points:

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the following sections, submitted in the order listed, with each section starting on a new page:

The introduction: This will be compiled from reference material and reflect the design processes or outline of basis that directed you to make a study. As you carry out the process of study, the method and process section will be constructed like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar intellectual paths throughout the data that you gathered to carry out your study.

The discussion section:

This will provide understanding of the data and projections as to the implications of the results. The use of good quality references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings.

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record-keeping are the only means to make straightforward progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear: Adhere to recommended page limits.

Mistakes to avoid:

- Insertion of a title at the foot of a page with subsequent text on the next page.
- Separating a table, chart, or figure—confine each to a single page.
- Submitting a manuscript with pages out of sequence.
- In every section of your document, use standard writing style, including articles ("a" and "the").
- Keep paying attention to the topic of the paper.
- Use paragraphs to split each significant point (excluding the abstract).
- Align the primary line of each section.
- Present your points in sound order.
- Use present tense to report well-accepted matters.
- Use past tense to describe specific results.
- Do not use familiar wording; don't address the reviewer directly. Don't use slang or superlatives.
- Avoid use of extra pictures—include only those figures essential to presenting results.

Title page:

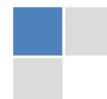
Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have acronyms or abbreviations or exceed two printed lines.

Abstract: This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in itself. Do not cite references at this point.

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any summary. Try to limit the initial two items to no more than one line each.

Reason for writing the article—theory, overall issue, purpose.


- Fundamental goal.
- To-the-point depiction of the research.
- Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of any numerical analysis should be reported. Significant conclusions or questions that emerge from the research.

Approach:

- Single section and succinct.
- An outline of the job done is always written in past tense.
- Concentrate on shortening results—limit background information to a verdict or two.
- Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else.

Introduction:

The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable of comprehending and calculating the purpose of your study without having to refer to other works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here.

The following approach can create a valuable beginning:

- Explain the value (significance) of the study.
- Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it.
- Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose them.
- Briefly explain the study's tentative purpose and how it meets the declared objectives.

Approach:

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad view.

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases.

Procedures (methods and materials):

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section.

When a technique is used that has been well-described in another section, mention the specific item describing the way, but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad procedures so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

Materials may be reported in part of a section or else they may be recognized along with your measures.

Methods:

- Report the method and not the particulars of each process that engaged the same methodology.
- Describe the method entirely.
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures.
- Simplify—detail how procedures were completed, not how they were performed on a particular day.
- If well-known procedures were used, account for the procedure by name, possibly with a reference, and that's all.

Approach:

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third person passive voice.

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences.

What to keep away from:

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings—save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to present consequences most efficiently.

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if requested by the instructor.

Content:

- Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables.
- In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation of an exacting study.
- Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or manuscript.

What to stay away from:

- Do not discuss or infer your outcome, report surrounding information, or try to explain anything.
- Do not include raw data or intermediate calculations in a research manuscript.
- Do not present similar data more than once.
- A manuscript should complement any figures or tables, not duplicate information.
- Never confuse figures with tables—there is a difference.

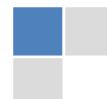
Approach:

As always, use past tense when you submit your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report.

If you desire, you may place your figures and tables properly within the text of your results section.

Figures and tables:


If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and include a heading. All figures and tables must be divided from the text.

Discussion:

The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded based on problems with the discussion. There is no rule for how long an argument should be.

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of results should be fully described.

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."

Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.

- You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea.
- Give details of all of your remarks as much as possible, focusing on mechanisms.
- Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was correctly restricted. Try to present substitute explanations if they are sensible alternatives.
- One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

When you refer to information, differentiate data generated by your own studies from other available information. Present work done by specific persons (including you) in past tense.

Describe generally acknowledged facts and main beliefs in present tense.

THE ADMINISTRATION RULES

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc.

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to avoid rejection.

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and do not rephrase someone else's analysis. Do not allow anyone else to proofread your manuscript.

Written material: You may discuss this with your guides and key sources. Do not copy anyone else's paper, even if this is only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read your paper and file.

CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)
BY GLOBAL JOURNALS

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals.

Topics	Grades		
	A-B	C-D	E-F
<i>Abstract</i>	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form Above 200 words	No specific data with ambiguous information Above 250 words
	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
<i>Introduction</i>	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
<i>Methods and Procedures</i>	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring
<i>Result</i>	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
<i>Discussion</i>	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring
<i>References</i>	Complete and correct format, well organized	Wrong format and structuring	Wrong format and structuring
	Complete and correct format, well organized	Wrong format and structuring	Wrong format and structuring

INDEX

A

Alzheimer's · 1, 2

C

Caenorhabditis · 1

F

Fluorescent · 3, 5, 6

G

Germplasm · 7, 8, 12, 13

H

Heterozygotic · 8

I

Interestingly · 4

L

Lysosomal · 4

O

Organismal · 2

P

Pedunculate · 13

Pharyngeal · 2

Proteostasis · 1, 2, 3, 4, 5

save our planet

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org
or email us at helpdesk@globaljournals.org

ISSN 9755896

© Global Journals