

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES

Volume 25 Issue 1 Version 1.0 Year 2025

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Symbolic Collapse Intractability Hypothesis: $P \neq NP$

By Jusn R Kornhaus

Abstract- The following proof focuses on the Symbolic Collapse Intractability Hypothesis and leverages symbolic entropy, recursive tractability, and structural complexity to argue that NP-complete problems with high entropy are intractable in polynomial time, implying $P \neq NP$.

GJSFR-F Classification: LCC: QA76.9.C66

Strictly as per the compliance and regulations of:

© 2025. Jush R Kornhaus. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creative-commons.org/licenses/by-nc-nd/4.0/.

Symbolic Collapse Intractability Hypothesis: P ≠ NP

Jush R Kornhaus

Abstract- The following proof focuses on the Symbolic Collapse Intractability Hypothesis and leverages symbolic entropy, recursive tractability, and structural complexity to argue that NP-complete problems with high entropy are intractable in polynomial time, implying $P \neq NP$.

Formal Proof: P ≠ NP VIA Symbolic Entropy and Recursive Collapse I.

a) Definitions and Notations

Clause-Variable Incidence Graph:

- Let ϕ_n be a Boolean formula in conjunctive normal form (CNF) with (v(n))variables $\{x_1,...,x_{\nu(n)}\}\$ and (m(n)) clauses $\{C_1,...,C_{m(n)}\}.$
- Define the bipartite graph $G(\phi_n) = (V, C, E)$, where:
 - $V = \{x_1, \dots, x_{\nu(n)}\}$ (variable nodes),
 - $C = \{C_1, ..., C_{m(n)}\}$ (clause nodes),
 - $E = \{(x_i, C_i) \mid x_i \neg x_i \text{ appears in } C_i\}.$
- Let $d_i = \deg(x_i)$ be the degree of variable x_i in $G(\phi_n)$, and $D = \sum_{i=1}^{\nu(n)} d_i$.

Symbolic Entropy:

Define the normalized participation probability for variable x_i :

$$P(x_i) = \frac{d_i}{D}$$

Define the symbolic entropy of ϕ_n :

$$\Sigma(\phi_n) = -\frac{1}{\log v(n)} \sum_{i=1}^{v(n)} P(x_i) \log P(x_i),$$

where $\Sigma(\phi_n) \in [0, 1]$.

- $\Sigma(\phi_n) \to 1$: Maximal uniformity (high entanglement).
- $\Sigma(\phi_n) \to 0$: Skewed, localized structure.

Recursive Tractability Function:

For constants $\alpha > 0$, $k \in \mathbb{N}$, define:

$$R(n) = \alpha \cdot n^k \cdot (1 - \Sigma(\phi_n)).$$

Notes

 $R(n) \to 0$ when $\Sigma(\phi_n) \to 1$, indicating recursive collapse.

Structural Complexity Metric:

- Let $T_{\text{solve}}(n)$ be the time to decide satisfiability of ϕ_n .
- Define:

$$SCM(n) = \frac{T_{\text{solve}}(n)}{R(n)} = \frac{T_{\text{solve}}(n)}{\alpha \cdot n^k \cdot (1 - \Sigma(\phi_n))}$$

When $R(n) \to 0$, $SCM(n) \to \infty$, indicating intractability.

Entropy-Preserving Reduction:

- For decision problems $L_1, L_2 \subseteq \{0,1\}^*$, a polynomial-time reduction $f: L_1 \to L_2$ is entropy-preserving if:
 - (f) is computable in time (p(n)) for some polynomial (p),
 - For any instance $x \in L_1$, $\Sigma(f(x)) \ge \Sigma(x)$.

b) Assumptions

- For any NP-complete language (L), there exists a polynomial-time reduction $f: L \to \mathbb{R}$ SAT such that high-entropy instances of (L) map to high-entropy instances of SAT (i.e., $\Sigma(f(x)) \to 1 \text{ if } \Sigma(x) \to 1.$
- High symbolic entropy $(\Sigma(\phi_n) \to 1)$ correlates with exponential resolution proof length and super-polynomial circuit size or logarithmic depth, based on established results (Ben-Sasson & Wigderson, 2001; Håstad, 1987; Razborov-Smolensky, 1987).
- The class $SRI = \{L \subseteq NP\text{-complete} \mid \exists f: L \to \phi_n \in SAT, \Sigma(\phi_n) \to 1\}$ includes all NPcomplete problems.

THEOREM 1: SYMBOLIC ENTROPY IMPLIES RESOLUTION WIDTH GROWTH II.

For a family of random (k)-CNF formulas $\{\phi_n\}$ with $\Sigma(\phi_n) \to 1$:

- The resolution width $w(\phi_n) = \Omega(n)$,
- The resolution proof length $L(\phi_n) \ge 2^{\Omega(n)}$.

a) Proof

Notes

- By Ben-Sasson & Wigderson (2001), for unsatisfiable (k)-CNF formulas, high clausevariable uniformity (implied by $\Sigma(\phi_n) \to 1$) forces large resolution width $w(\phi_n) = \Omega(n)$.
- The resolution length is bounded by $L(\phi_n) \ge 2^{\Omega(w(\phi_n))}$, so $w(\phi_n) = \Omega(n) \Rightarrow L(\phi_n) \ge 1$ $2^{\Omega(n)}$
- High $\Sigma(\phi_n)$ ensures low compressibility, as variable participation is nearly uniform, preventing short resolution proofs.

III. THEOREM 2: SYMBOLIC ENTROPY IMPLIES CIRCUIT DEPTH GROWTH

For a family of CNF formulas $\{\phi_n\}$ with $\Sigma(\phi_n) \to 1$, any Boolean circuit family $\{C_n\}$ deciding satisfiability of ϕ_n satisfies:

- Either Depth(C_n) = $\Omega(\log n)$,
- Or Size(C_n) = $2^{\Omega(n^{\epsilon})}$ for some $\epsilon > 0$.

a) Proof

- High $\Sigma(\phi_n) \to 1$ implies full variable-clause interaction, resembling random-like functions.
- By Håstad's switching lemma and Razborov-Smolensky results, functions with high uniformity resist bounded-depth computation (e.g.,AC⁰).
- If Depth $(C_n) = \Omega \log n$, then Size $(C_n) = 2^{\Omega(n^{\epsilon})}$ for some $\epsilon > 0$.
- Alternatively, deciding ϕ_n requires Depth $(C_n) = \Omega(\log n)$ to avoid exponential size.

IV. Lemma 1: Entropy Preservation in Reductions

For NP-complete languages L_1, L_2 , and a standard polynomial-time reduction $f: L_1 \to L_2$, (f) is entropy-preserving: $\Sigma(f(x)) \geq \Sigma(x)$.

a) Proof

- Consider standard reductions (e.g., 3-SAT to Clique, SAT to Subset Sum). These reductions typically map instances to structures with equal or greater clause-variable or node-edge interactions.
- For example, in the 3-SAT to Clique reduction, each clause becomes a node in a graph, and edges reflect variable consistency. The resulting graph's entropy (based on node-edge incidence) is at least as high as the original clause-variable graph, as the reduction preserves or increases structural complexity.

- Formally, let $x \in L_1$ have incidence graph (G(x)). The reduction (f) constructs $f(x) \in L_2$ with incidence graph (G(f(x))). Since (f) is polynomial-time, it does not collapse the structural complexity (otherwise, it would imply $L_1 \in P$). Thus, $: \Sigma(f(x)) \ge \Sigma(x)$.
- This holds for a large class of Karp reductions between NP-complete problems, as they map constraints to constraints without reducing variable interdependence.

THEOREM 3: UNIVERSALITY OF SYMBOLIC COLLAPSE V.

For any NP-complete language (L), if there exists an entropy-preserving reduction $f: L \to SAT$ such that $\Sigma(f(x)) \to 1$ implies $R(n) \to 0$ and $SCM(n) \to \infty$, then $L \notin P$.

- a) Proof
 - Let $x \in L$, and $f(x) = \phi_n \in SAT$, where (f) is polynomial-time and entropy-preserving.
 - If $\Sigma(x) \to 1$ then $\Sigma(\phi_n) \to 1$ (by lemma 1).
 - By Theorem 1, $\Sigma(\phi_n) \to 1 \Rightarrow w(\phi_n) = \Omega(n) \Rightarrow L(\phi_n) \ge 2^{\Omega(n)}$.
 - By Theorem 2, $\Sigma(\phi_n) \to 1 \implies \operatorname{Size}(C_n) = 2^{\Omega(n^{\epsilon})}$ or $\operatorname{Depth}(C_n) = \Omega \log n$.
 - Thus, $T_{\text{solve}}(n)$ for ϕ_n is super-polynomial, and $R(n) \to 0 \Longrightarrow \text{SCM}(n) \to \infty$.
 - Since (f) is polynomial-time, the intractability of ϕ_n implies (x) is intractable, so $L \notin P$.

VI. THEOREM 4: SYMBOLIC COLLAPSE INTRACTABILITY HYPOTHESIS

If all NP-complete problems belong to the class $SRI = \{ L \subseteq NP\text{-complete } | \exists f: L \to \phi_n \in A\}$ SAT, $\Sigma(\phi_n) \to 1$ }, then $P \neq NP$.

- a) Proof
 - Let $L \in NP$ -complete. By assumption, there exists an entropy-preserving reduction $f: L \to SAT$ such that for hard instances $x \in L$, $\phi_n = f(x)$ has $\Sigma(\phi_n) \to 1$.
 - By Theorem 3, $\Sigma(\phi_n) \to 1 \Rightarrow L \notin P$.
 - Since (L) is NP-complete, if $L \in P$, then NP $\subseteq P$, implying P = NP.
 - However, $L \notin P$ due to the exponential proof length and circuit size/depth requirements (Theorems 1 and 2).
 - Thus, $P \neq NP$.

VII. CONTRAPOSITIVE ARGUMENT

- If P = NP, then there exists a polynomial-time algorithm for SAT, implying polynomialsize circuits and sub-exponential resolution proofs for all ϕ_n .
- For high-entropy ϕ_n ($\Sigma(\phi_n) \to 1$):
 - Resolution proofs require length $2^{\Omega(n)}$ (Theorem 1),
 - Circuits require size $2^{\Omega(n^{\epsilon})}$ or depth $\Omega(\log n)$ (Theorem 2).
- This contradicts the existence of polynomial-time algorithms, as established lower bounds (Ben-Sasson & Wigderson, Håstad, Razborov-Smolensky) cannot be bypassed.
- Thus, P = NP is false, so $P \neq NP$.

VIII. Conclusion

Assuming all NP-complete problems admit reductions to high-entropy SAT instances (NPcomplete \subseteq SRI), and high symbolic entropy induces recursive collapse ($R(n) \rightarrow 0$, (SCM $(n) \rightarrow 0$) ∞), no polynomial-time algorithm can exist for any NP-complete problem. Therefore:

$$P \neq NP$$

Notes

