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Symbolic Collapse Intractability Hypothesis:
P = NP

Jusn R Kornhaus

Abstract- The following proof focuses on the Symbolic Collapse Intractability Hypothesis and leverages symbolic
entropy, recursive tractability, and structural complexity to argue that NP-complete problems with high entropy are
intractable in polynomial time, implying P = NP.

[. FoOrRMAL PrROOF: P # NP VIA SymBoLiC ENTROPY AND RECURSIVE COLLAPSE

a) Definitions and Notations
Clause-Variable Incidence Graph:

e Let ¢n be a Boolean formula in conjunctive normal form (CNF) with (v(n))
variables {Xi,...,Xyn)} and (m(n)) clauses {Ci,...,Cnn)}.

e Define the bipartite graph G(¢n) = (V, C, E), where:
e V={X,..., Xun} (variable nodes),
e C={Cy,..., Cin} (clause nodes),
e E={(xi Cj) | X —x; appears in Cj}.
e Let di = deg(x) be the degree of variable X;in G(¢n), and D = Zv(n) d;.

Symbolic Entropy:
¢ Define the normalized participation probability for variable X:

d:
P(x;) = BL

¢ Define the symbolic entropy of ¢n:

v(n)

2(n) = Z P(xp) log P(xy),

log v(n)

Author: Philosopher, BA. Polical Science, Fairfeld, Ohio. e-mail: justin.kornhaus@gmail.com

© 2025 Global Journals

Year 2025

H

Global Journal of Science Frontier Research ( F ) XXV Issue I Version I



Global Journal of Science Frontier Research ( F ) XXV Issue I Version I n Year 2025

where Z(¢,) € [0, 1].
e X(¢,) — 1: Maximal uniformity (high entanglement).
e X(¢n) — 0: Skewed, localized structure.
Recursive Tractability Function:

e For constants & > 0,k € N, define:
R(n) = a-n*-(1—-2(¢y).

e R(n) — 0 when 2(¢,) — 1, indicating recursive collapse.

Structural Complexity Metric:
o Let Tsove(n) be the time to decide satisfiability of ¢,,.

e Define:

Tsowve (n) _ Tsove (Tl)

SM() = =2y = k- (1= 2(d)

e  When R(n) - 0, SCM(n) — oo, indicating intractability.

FEntropy-Preserving Reduction:

e For decision problems L, L, < {0,1}", a polynomial-time reduction f: L; = L, is
entropy-preserving if:

e () is computable in time (p(n)) for some polynomial (p),
e For any instance x € Ly, Z(f(x)) = Z(x).

b) Assumptions

e For any NP-complete language (L), there exists a polynomial-time reduction f:L —
SAT such that high-entropy instances of (L) map to high-entropy instances of SAT (i.e.,
I(f(x)) » 1if 2(x) — 1.

e High symbolic entropy (Z(¢,) — 1) correlates with exponential resolution proof length
and super-polynomial circuit size or logarithmic depth, based on established results (Ben-
Sasson & Wigderson, 2001; Hastad, 1987; Razborov-Smolensky, 1987).

e Theclass SRI = {L S NP-complete | 3f:L — ¢, € SAT,Z(¢,) — 1} includes all NP-
complete problems.

[I. THEOREM 1: SymBoLiC ENTROPY IMPLIES RESOLUTION WIDTH GROWTH

For a family of random (k)-CNF formulas {¢,,} with Z(¢,) — 1:
¢ The resolution width w(¢,,) = Q(n),
e The resolution proof length L(¢,,) = 29,
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a) Proof

e By Ben-Sasson & Wigderson (2001), for unsatisfiable (k)-CNF formulas, high clause-
variable uniformity (implied by X(¢,,) — 1) forces large resolution width w(¢,,) = Q(n).

e The resolution length is bounded by L(¢,) = 22 (@0 5o w(¢,,) = Q(n) = L(¢p,) =
zﬂ(n).

NOt €s e High 2(¢,) ensures low compressibility, as variable participation is nearly uniform,
preventing short resolution proofs.

[11.  THEOREM 2: SymBoLIC ENTROPY IMPLIES CircUIT DEPTH GROWTH

For a family of CNF formulas {¢,} with X(¢,) — 1, any Boolean circuit family {Cn} deciding
satisfiability of ¢,, satisfies:

e Either Depth(C,,) = Q (logn),
e OrSize(C,) = 22 for some € > 0.

a) Proof

e High X(¢,) — 1 implies full variable-clause interaction, resembling random-like
functions.

e By Hastad’s switching lemma and Razborov-Smolensky results, functions with high
uniformity resist bounded-depth computation (e.g.,AC?).

o If Depth(C,) = Qlogn, then Size(C,) = 220 for some & > 0.

e Alternatively, deciding ¢nrequires Depth(C,,) = Q(logn) to avoid exponential size.
[V.  LeMMA 1: ENTROPY PRESERVATION IN REDUCTIONS

For NP-complete languages Li, L», and a standard polynomial-time reduction f: L; = L,, () is
entropy-preserving: Z(f(x)) = Z(x).

a) Proof

e Consider standard reductions (e.g., 3-SAT to Clique, SAT to Subset Sum). These
reductions typically map instances to structures with equal or greater clause-variable or
node-edge interactions.

e For example, in the 3-SAT to Clique reduction, each clause becomes a node in a graph,
and edges reflect variable consistency. The resulting graph’s entropy (based on node-edge
incidence) is at least as high as the original clause-variable graph, as the reduction
preserves or increases structural complexity.
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Formally, let x € L; have incidence graph (G(x)). The reduction (f) constructs f(x) € L,
with incidence graph (G(f(x))). Since (f ) is polynomial-time, it does not collapse the
structural complexity (otherwise, it would imply L, € P). Thus, : Z(f(x)) = Z(x).

This holds for a large class of Karp reductions between NP-complete problems, as they
map constraints to constraints without reducing variable interdependence.

V. THEOREM 3: UNIVERSALITY OF SYMBOLIC COLLAPSE

For any NP-complete language (L), if there exists an entropy-preserving reductionf: L — SAT
such that £(f(x)) = 1 implies R(n) — 0 and SCM(n) — oo, then L & P.

a) Proof

Letx € L, and f(x) = ¢,, € SAT, where (f) is polynomial-time and entropy-preserving.
If ¥(x) — 1then X(¢p,) —» 1 (by lemma 1).

By Theorem 1, Z(¢b,) = 1 = w(¢,) = Q(n) = L(¢,) = 2™,

By Theorem 2, £(¢,,) = 1 = Size(C,) = 22 or Depth(C,) = Qlogn.

Thus, Tso1ve(n) for ¢, is super-polynomial, and R(n) - 0 = SCM(n) — oo.

Since (f) is polynomial-time, the intractability of ¢,, implies (X) is intractable, so L & P.

VI. THEOREM 4: SYMBOLIC COLLAPSE INTRACTABILITY HYPOTHESIS

If all NP-complete problems belong to the class SRI = { L € NP-complete |3f:L — ¢, €
SAT,2(¢,) — 1}, then P # NP.

a) Proof

Let L € NP-complete. By assumption, there exists an entropy-preserving reduction
f: L — SAT such that for hard instances x € L, ¢,, = f(x) has Z(¢,,) — 1.

By Theorem 3, X(¢,) > 1=>L &€ P.
Since (L) is NP-complete, if L € P, then NP € P, implying P = NP.

However, L € P due to the exponential proof length and circuit size/depth requirements
(Theorems 1 and 2).

Thus, P # NP.
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VII. CONTRAPOSITIVE ARGUMENT

e If P=NP, then there exists a polynomial-time algorithm for SAT, implying polynomial-
size circuits and sub-exponential resolution proofs for all ¢,,.

e For high-entropy ¢,, (2(¢,,) — 1):
 Resolution proofs require length 2% (Theorem 1),
e Circuits require size 29 op depth Q (logn) (Theorem 2).

e This contradicts the existence of polynomial-time algorithms, as established lower
bounds (Ben-Sasson & Wigderson, Hastad, Razborov-Smolensky) cannot be bypassed.

e Thus, P=NPis false, so P # NP.

VIII. CONCLUSION

Assuming all NP-complete problems admit reductions to high-entropy SAT instances (NP-
complete € SRI), and high symbolic entropy induces recursive collapse (R(n) = 0, (SCM(n) —
), no polynomial-time algorithm can exist for any NP-complete problem. Therefore:

P + NP|.
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