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Symbolic Collapse Intractability Hypothesis: P ≠ NP           

By Jusn R Kornhaus 

Abstract- The following proof focuses on the Symbolic Collapse Intractability Hypothesis and 
leverages

 
symbolic entropy, recursive tractability, and structural complexity to argue that NP-

complete
 
problems with high entropy are intractable in polynomial time, implying P ≠ NP.        
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Abstract-

 

The following proof focuses on the Symbolic Collapse Intractability Hypothesis and leverages

 

symbolic 
entropy, recursive tractability, and structural complexity  to argue that NP-complete

 

problems with high entropy are 
intractable in po lynomial time, imply ing P ≠

 

NP.
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• Let ϕn be a Boolean formula in conjunctive normal form (CNF) with (v(n)) 

variables {x1,…,xv(n)} and (m(n)) clauses {C1,…,Cm(n)}. 

• Define the bipartite graph G(ϕn) = (V, C, E), where: 

• V = {x1,…, xv(n)} (variable nodes), 

• C = {C1,…, Cm(n)} (clause nodes), 

• E = {(xi, Cj) | xi ¬�� appears in Cj}. 

• Let di = deg(xi) be the degree of variable xi in G(ϕn), and � = ∑ ��
�(
)
��
 . 

• Define the normalized participation probability for variable xi: 

�(��) = ��
�

• Define the symbolic entropy of ϕn: 

Σ(�
)  =  − 1
log �(�) � �(��) log �(��) ,

�(
)

��


a) Definitions and Notations

Clause-Variable Incidence Graph:

Symbolic Entropy:
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• For constants � > 0, ! ∈ ", define: 

#(�)  =  � ∙ �% ∙ (1 − Σ(�
)).

• R(�) → 0 when Σ(�
) → 1, indicating recursive collapse. 

• Let ()*+,-(�) be the time to decide satisfiability of �
. 

• Define: 

SCM(�) = ()*+,-(�)
#(�) = ()*+,-(�)

 � ∙ �% ∙ (1 − Σ(�
))

• When R(�) → 0, SCM(�) → ∞, indicating intractability. 

• For decision problems 2
, 23  ⊆ 50,16∗, a polynomial-time reduction 8: 2
 → 23 is 

entropy-preserving if: 

• (f) is computable in time (p(n)) for some polynomial (p), 

• For any instance � ∈ 2
, Σ(8(�)) ≥ Σ(�). 

• For any NP-complete  language  (L),  there  exists  a  polynomial-time  reduction 8: 2 →
SAT such that high-entropy instances of (L) map to high-entropy instances of SAT (i.e., 

Σ(8(�)) → 1 if Σ(�) → 1. 

• High symbolic entropy (Σ(�
) → 1) correlates with exponential resolution proof length 

and super-polynomial circuit size or logarithmic depth, based on established results (Ben-

Sasson & Wigderson, 2001; Håstad, 1987; Razborov-Smolensky, 1987). 

• The class SRI = 52 ⊆ NP-complete | ∃8: 2 → �
 ∈ SAT, Σ(�
) → 16 includes all NP-

complete problems. 

For a family of random (k)-CNF formulas 5�
6 with Σ(�
) → 1: 

• The resolution width w(�
) = Ω(�), 

• The resolution proof length 2(�
) ≥ 2B(
).  

II. Theorem 1:  Symbolic Entropy Implies Resolution Width Growth

b) Assumptions

Entropy-Preserving Reduction:

Structural Complexity Metric:

Recursive Tractability Function:

© 2025 Global Journals
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  where Σ(�
) ∈ [0, 1]. 

• Σ(�
) → 1: Maximal uniformity (high entanglement). 

• Σ(�
) → 0: Skewed, localized structure. 

Notes



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

 

 

• By Ben-Sasson &  Wigderson  (2001),  for unsatisfiable  (k)-CNF formulas,  high  clause-

variable uniformity (implied by Σ(�
) → 1) forces large resolution width w(�
) = Ω(�). 

• The resolution length is bounded by 2(�
) ≥ 2B(C(DE),  so F(�
) = Ω(�) ⇒ 2(�
) ≥
2B(
). 

• High Σ(�
) ensures low compressibility, as variable participation is nearly uniform, 

preventing short resolution proofs. 

For a family of CNF formulas 5�
6  with Σ(�
) → 1, any Boolean circuit family {Cn} deciding 

satisfiability of �
 satisfies: 

• Either Depth(M
) = Ω (log �), 

• Or Size(M
)  =  2B(
P) for some Q > 0. 

• High Σ(�
) → 1  implies  full  variable-clause  interaction,  resembling  random-like 

functions. 

• By  Håstad’s  switching  lemma  and  Razborov-Smolensky results,  functions  with  high 

uniformity resist bounded-depth computation (e.g.,AC0). 

• If Depth(M
) = Ω log �, then Size(M
)  =  2B(
P) for some Q > 0. 

• Alternatively, deciding ϕn requires Depth(M
) = Ω(log �) to avoid exponential size. 

For NP-complete languages L1, L2, and a standard polynomial-time reduction 8: 2
 → 23, (f) is 

entropy-preserving: Σ(8(�)) ≥ Σ(�). 

• Consider  standard   reductions  (e.g.,  3-SAT  to  Clique,  SAT   to   Subset   Sum).  These 

reductions  typically  map  instances to structures with equal or greater  clause-variable  or 

node-edge interactions. 

• For example,  in  the  3-SAT  to  Clique reduction, each clause becomes a node in a graph, 

and edges reflect variable consistency. The resulting graph’s entropy (based on node-edge 

incidence)  is  at  least  as  high  as  the  original  clause-variable  graph,  as  the  reduction 

preserves or increases structural complexity. 

a) Proof

a) Proof

IV. Lemma 1: Entropy Preservation in Reductions

a) Proof

III. Theorem 2: Symbolic Entropy Implies Circuit Depth Growth

G
lo
ba

l 
Jo

ur
na

l 
of
 S

ci
en

ce
 F

ro
nt
ie
r 
R
es
ea

rc
h 

 (
 F

 )
  
X
X
V
 I
ss
ue

 I
 V

er
si
on

  
I 

 Y
ea

r 
20

25

3

© 2025 Global Journals

Symbolic Collapse Intractability Hypothesis: P ≠ NP

Notes



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

 

 

• Formally, let � ∈ 2
 have incidence graph (G(x)). The reduction (f) constructs 8(�) ∈ 23
with incidence graph (G(f(x))).  Since ( f )  is  polynomial-time,  it does not  collapse the 

structural complexity (otherwise, it would imply 2
 ∈ �). Thus, : Σ(8(�)) ≥ Σ(�). 

• This holds for a large class of Karp reductions between NP-complete problems, as they 

map constraints to constraints without reducing variable interdependence. 

For any NP-complete language (L), if there exists an entropy-preserving reduction 8: 2 → SAT
such that Σ(8(�)) → 1 implies R(�) → 0 and SCM(�) → ∞, then 2 ∉ �. 

• Let � ∈ 2, and 8(�) = �
 ∈ SAT, where (f) is polynomial-time and entropy-preserving. 

• If Σ(�) → 1then Σ(�
) → 1  (by lemma 1). 

• By Theorem 1, Σ(�
) → 1 ⇒ F(�
) = Ω(�) ⇒ 2(�
) ≥ 2B(
). 

• By Theorem 2, Σ(�
) → 1 ⟹ Size(M
)  =  2B(
P) or Depth(M
) = Ω log �. 

• Thus, ()*+,-(�) for �
 is super-polynomial, and #(�) → 0 ⟹ SCM(�) → ∞. 

• Since (f) is polynomial-time, the intractability of �
 implies (x) is intractable, so 2 ∉ �. 

If all NP-complete problems belong to the class SRI = 5 2 ⊆ NP-complete |∃8: 2 → �
 ∈
SAT, Σ(�
) → 16, then � ≠ "�. 

• Let  NP-complete.  By  assumption,  there  exists  an entropy-preserving  reduction 

8: 2 → SAT such that for hard instances � ∈ 2, �
 = 8(�) has Σ(�
) → 1. 

• By Theorem 3, Σ(�
) → 1 ⇒ 2 ∉ �. 

• Since (L) is NP-complete, if 2 ∈ �, then NP ⊆ �, implying P = NP.

• However, 2 ∉ � due to the exponential proof length and circuit size/depth requirements 

(Theorems 1 and 2). 

• Thus, � ≠ NP. 

VI. Theorem 4:  Symbolic Collapse Intractability Hypothesis

a) Proof

a) Proof

V. Theorem 3:  Universality of Symbolic Collapse

© 2025 Global Journals
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VII. Contrapositive Argument

• If P = NP, then there exists a polynomial-time algorithm for SAT, implying polynomial-

size circuits and sub-exponential resolution proofs for all �
. 

• For high-entropy �
 (Σ(�
) → 1): 

• Resolution proofs require length 2B(
) (Theorem 1), 

• Circuits require size 2B(
P) or depth Ω (log �) (Theorem 2). 

• This contradicts the existence of polynomial-time algorithms, as established lower 

bounds (Ben-Sasson & Wigderson, Håstad, Razborov-Smolensky) cannot be bypassed. 

• Thus, P = NP is false, so � ≠ NP. 

Assuming all NP-complete problems admit reductions to high-entropy SAT instances (NP-

complete ⊆ SRI), and high symbolic entropy induces recursive collapse (#(�) → 0, (SCM(�) →
∞), no polynomial-time algorithm can exist for any NP-complete problem. Therefore:  

� ≠ NP .

VIII. Conclusion
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