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In this article, we aim to study the existence of a monotonic positive solution for
fourth-order three-point Nonlinear BVP with changing sign Green’s function u(4)(t) = λf(t, u(t)), t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,
αu(0) + u′′(η) = 0

(1.1)

whereα ∈ [0, 2),f ∈ C([0, 1]×[0,+∞), [0,+∞)) and η ∈ [ 12 , 1). By using iterative
methods, We can still obtain the existence of a monotonic positive solution under
certain suitable conditions of f . G
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Abstract- In this paper, we discuss the existence of a monotonic positive solution for 
the following fourth-order three points Non-linear BVP:

which has the sign- changing Green’s function. where

and . The point is that although the corresponding Green  is 

changing the sign, by applying iterative methods, We can still obtain the existence of 
a monotonic positive solution under certain suitable conditions of .
Keywords: difference equation, nonlinear boundary conditions, posi tive 
solution, infinite semipositone.

Notes

 u(4)(t) = λf(t, u(t)), t ∈ [0, 1],
u′(0) = u′′′(0) = u(1) = 0,
αu(0) + u′′(η) = 0

α∈ [0, 2), f∈C([0,1]× [0,+∞),

[0,+∞)) η ∈ [ 1
2
, 1)

f



In recent decades, The differential equations come from various fields of a
mathematical applied and physics, for example, in the deflection of curved beams
with constant or varying cross-sections, triple-layer beams, electromagnetic waves
or gravity-driven currents, etc. [1].

In the recent years, existence of single or multiple positive solutions for some
third-order three-point (BVP) has attracted the attention of many authors. Please
refer to [2-7] and its references. When the corresponding Green’s function is non-
negative, the paper can be completed, This is the condition that is an important . A
natural question is whether we can get it? When the corresponding Green’s func-
tion performs sign conversion, there are some positive solutions for the third-order
three-point BVP.

Recently, when the corresponding Green’s function is undergoing sign conver-
sion, there has been some work on the positive solution of the second and third-order
BVP. For example,in [8] the existence of at least one positive solution of the follow-
ing second-order periodic BVP with positive and negative transformation Green’s
function studied by Zhong and An

 u′′(t) + ρ2u = f(u), , 0 < t < T,
u(0) = u(T ),
u′(0) = u′(T ),

where η ∈ ( 17
24 , 1),Palamide and Smirlis [9] discussed the existence of at least

one positive solution. Their technique is a combination of GuoKrasnosel’sski fixed
point theory and the corresponding vector field characteristics. In 2012, Sun and
Zhao [10], [11] obtained single or multiple positive solutions with three-point pos-
itive and negative BVP by applying the fixed point theory of Guo-Krasnosel’skii
. {

u′′′(t) = f(t, u(t)), t ∈ [0, 1],
u(0) = u(1) = u′′(η) = 0,

Motivated. Through the above work, this article will study BVP (1.1)Through an it-
erative method. Throughout this article, we always assumeα ∈ [0, 2) and η ∈ [ 12 , 1).
Although the corresponding Green function is changing its sign, under certain suit-
able conditions, we can still obtain the existence of the monotonic positive solution
of BVP (1.1) on f . Moreover, our iterative scheme starts with a zero function, This
means that iterative scheme is feasible.

 u(4)(t) = λf(t, u(t)), t ∈ [0, 1],
u′(0) = u′′′(0) = u(1) = 0,
αu(0) + u′′(η) = 0

(1.1)

In this article, by applying an iterative approach, we always assume that α ∈
[0, 2) and η ∈ [ 12 , 1).

Obviously,the BVP (3.1)is a special case of the BVP (1.1). Although the cor-
responding Green’s function is changing the sign, under certain suitable conditions,
for f , we still obtain the existence of a monotonic positive solution of BVP (1.1).
furthermore, our iterative scheme starts with a zero function, which means iterating
The program is feasible.

© 2025 Global Journals
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We first recall the following fixed point of Krasnoselskii’s type.

Let E be a Banach space and K be a cone in E. Assume that Ω1

and Ω1 are bounded open subsets of E such that 0 ∈ Ω1 , Ω1 ⊂ Ω2 , and let
A : K ∩ (Ω2 \ Ω1)→ K be a completely continuous operator such that either
(1) ‖Au‖ ≤ ‖Au‖ foru ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or
(2) ‖Au‖ ≥ ‖Au‖for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

* A. has a fixed point in K ∩ (Ω2 \ Ω1).

For the BVP  u(4)(t) = λf(t, u(t)), t ∈ [0, 1],
u′(0) = u′′′(0) = u(1) = 0,
αu(0) + u′′(η) = 0

(2.1)

we have the following lemma

The BVP (2.1) has only trivial solution.

It is simple to check. for any y ∈ C[0, 1], we consider the boundary
value problems  u(4)(t) = λf(t, u(t)), t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,
αu(0) + u′′(η) = 0

(2.2)

After a direct computation, one may obtain the expression of Greens functionG(t, s)
of the BVP (2.2) as following:

Proof. Integrating four times the linear problem gives us that

u′′′(t) = u′′′(0) +

∫ t

0

y(s)ds,

u′′(t) = u′′(0) + tu′′′(0) +

∫ t

0

(t− s)y(s)ds,

u′(t) = u′(0) + tu′′(0) +
t2

2
u′′′(0) +

1

2

∫ t

0

(t− s)2y(s)ds,

u(t) = u(0) + tu′(0) +
t2

2
u′′(0) +

t3

6
u′′′(0) +

1

6

∫ t

0

(t− s)3y(s)ds.

The conditions u′(0) = u′′′(0) = 0 implies that

u(t) = u(0) +
t2

2
u′′(0) +

1

6

∫ t

0

(t− s)3y(s)ds,

II. Preliminaries

Lemma 2.1. 

Proof. 

Theorem 1.1.
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and the conditions u(1) = 0 this means

u(1) = u(0) +
1

2
u′′(0) +

1

6

∫ 1

0

(1− s)3y(s)ds = 0,

Next, αu(0) + u′′(η) = 0 is rewritten Such as

u′′(0) +

∫ η

0

(η − s)y(s)ds− α

2
u′′(0)− α

6

∫ 1

0

(1− s)3y(s)ds = 0,

whence

u′′(0) =
α

3(2− α)

∫ 1

0

(1− s)3y(s)ds− 2

2− α

∫ η

0

(η − s)y(s)ds. (2.3)

form The conditions u(1) = 0 we have

u(0) = −1

2
u′′(0)− 1

6

∫ 1

0

(1− s)3y(s)ds

If we substitute(1.3) with the expression from above and simplify, we get that

u(0) =
1

2− α

∫ η

0

(η − s)y(s)ds− 1

3(2− α)

∫ 1

0

(1− s)3y(s)ds. (2.4)

Finally, we obtain that

u(t) =
1

2− α

∫ η

0

(η − s)y(s)ds− 1

3(2− α)

∫ 1

0

(1− s)3y(s)ds

+
αt2

6(2− α)

∫ 1

0

(1− s)3y(s)ds− t2

2− α

∫ η

0

(η − s)y(s)ds

+
1

6

∫ t

0

(t− s)3y(s)ds.

As a result, we have that

For s ≥ η

G(t, s) =

{ −(2−αt2)(1−s)3
6(2−α) 0 ≤ t ≤ s,

(t−s)3
6 − (2−αt3)(1−s)3

6(2−α) s ≤ t ≤ 1

and s < η

G(t, s) =

{
6(1−t2)(η−s)−(2−αt2)(1−s)3

6(2−α) 0 ≤ t ≤ s,
(t−s)3

6 + 6(1−t2)(η−s)−(2−αt2)(1−s)3
6(2−α) s ≤ t ≤ 1

© 2025 Global Journals
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It is not difficult to verify that G(t, s) has the following charac-
teristics:

G(t, s) ≥ 0 for 0 ≤ s ≤ η and G(t, s) ≤ 0 for η ≤ s ≤ 1.

Moreover, if s ≥ η, then

maxG(t, s) : t ∈ [0, 1] = G(1, s) = 0,

minG(t, s) : t ∈ [0, 1] = G(0, s) =
−(1− s)3

3(2− α)
≥ −(1− η)3

3(2− α)

if s < η, then

maxG(t, s) : t ∈ [0, 1] = G(0, s) = (s3−3s2)+(3η−1)
3(2−α) ≤ (η3−3η2)+(3η−1)

3(2−α) ,

minG(t, s) : t ∈ [0, 1] = G(1, s) = 0

therefore,if we let δ = max |G(t, s)| : t, s ∈ [0, 1] then

δ = max

{
−(1− η)3

3(2− α)
,

(η3 − 3η2) + (3η − 1)

3(2− α)

}
<

η − s
(2− α)

Now, let Banach space E = C[0, 1] is equipped with the ‖u‖ = maxt∈[0,1] |u(t)|.

K = {y ∈ C[0, 1] : y(t)} is nonnegative and decreasing on [0, 1]. Then K is
a cone in C[0, 1].

Note that this order relationship is inducesan in E by defining uv if and only if
u− v ∈ K.

In the remainder of this paper, we always assume that f : C[0, 1] × [0,+∞) →
[0,+∞) is continuous and satisfies the following conditions:

(F1) For each u ∈ [0,+∞), the mapping t 7→ f(t, u) is decreasing;
(F2) For each t ∈ [0, 1], the mapping u 7→ f(t, u) is increasing.

(Au)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds, t ∈ [0, 1] (2.5)

Obviously, ifu is a fixed point of A in K, then u is a nonnegative and decreasing
solution of the BVP (1.1).

Let A : K → K. is completely continuous.

Proof. let u ∈ K . Then, for 0 ≤ t ≤ η, we have

(Au)(t) =

∫ t

0

[
(t− s)3

6
+

6(1− t2)(η − s)− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ η

t

[
6(1− t2)(η − s)− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ 1

η

−(2− αt2)(1− s)3

6(2− α)
y(s)ds

Remark 2.1. 

Lemma 2.2. 
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which together with (F1) and (F2) implies that

(Au)′(t) =

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

y(s)ds

+
1

2

∫ t

0

(s2 − 2ts)y(s)ds+
t2

2

∫ η

t

y(s)ds

+

∫ 1

η

αt(1− s)3

3(2− α)
y(s)ds

≤ y(η)

[∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

+
1

2

∫ t

0

(s2 − 2ts) +
t2

2

∫ η

t

+

∫ 1

η

αt(1− s)3

3(2− α)

]
ds

≤ ty(η)

[
4ηt(2− α) + (α− 8η)

12(2− α)
− 5t2

6
+
tη

2

]

≤ bty(η)

[
4ηt(2− α) + (α− 8η)

12(2− α)
− η8

6

]
≤ 0

At the same time, η > 1
2 shows that

(Au)′′(t) =

∫ η

0

6t(2− α) + 2α(1− s)3 − 12(η − s)
6(2− α)

y(s)ds

−
∫ t

0

sy(s)ds+ t

∫ η

t

y(s)ds

+

∫ 1

η

α(1− s)3

3(2− α)
y(s)ds

≤ y(η)

[∫ η

0

6t(2− α) + 2α(1− s)3 − 12(η − s)
6(2− α)

−
∫ t

0

sds

+ t

∫ η

t

+

∫ 1

η

α(1− s)3

3(2− α)

]
ds

≤ y(η)

[
α(3t− 2η) + 6(η − t)

2(2− α)
− 2η2 + α

]

≤ y(η)

[
η(α− 2η)

2(2− α)
+ α

]

≤ 0 t ∈ (0, η)

© 2025 Global Journals
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For t ∈ [η, 1], we have

(Au)(t) =

∫ η

0

[
(t− s)3

6
− 6(1− t2)(η − s)− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ t

η

[
(t− s)3

6
− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ 1

t

[
−(2− αt2)(1− s)3

6(2− α)

]
y(s)ds

which together with (F1) and (F2) implies that

(Au)′(t) =

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

ds

+
1

2

∫ η

0

(s2 − 2ts)y(s)ds+

∫ t

η

(t− s)2

2

+

∫ 1

η

2αt(1− s)3

6(2− α)
y(s)ds

≤ y(η)

[∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

+
1

2

∫ η

0

(s2 − 2ts) +

∫ t

η

(t− s)2

2
+

∫ 1

η

αt(1− s)3

6(2− α)

]
ds

= ty(η)

[
(α− 12η)

12(2− α)
+ tη − η2

2
+ 1 +

η3

6
− η
]

≤ ty(η)

[
(α− 12η)

12(2− α)
+
η3

6
+
η2

2
− η + 1

]
≤ 0 t ∈ (η, 1)

So,(Au)(t) is decreasing on [0, 1].At the same time,since (Au)(1) = 0, we know
that (Au)(t) is nonnegative on [0, 1]. This indicates that (Au)(t) ∈ K. Furthermore,
although G(t, s) is not continuous, it follows from known text book results, for
example, see [12], that A : K → K is completely continuous

Assume that f(t, 0) 6≡ 0 for t ∈ [0, 1] and there exist two positive
constants a and b such that the following conditions are satisfied:

(H1) f(0, a) ≤ 6(2− α)a,

(H2) b(u2 − u1) ≤ f(t, u2)− f(t, u1) ≥ 2b(u2 − u1), t ∈ [0, 1],

0 ≤ u1 ≤ u2 ≤ a.

If we construct a iterative sequence vn+1 = Avn and n = 0, 1, 2, · · ·, where v0(t) ≡
0 for t ∈ [0, 1], then vn∞n=1 converges to v† in E and v† is a decreasing positive
solution of the BVP (1.1)

Theorem 2.3. 
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Proof. Let Ka = u ∈ K : ‖u‖ ≤ a. Then we may assert that A : Ka → Ka.
In fact, if u ∈ Ka, then it follows from (H1) that

0 ≤ (Au)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds

≤
∫ 1

0

|G(t, s)|f(0, a)ds

≤ 6(2− α)aδ

< a, t ∈ [0, 1],

which indicate that ‖Au‖ ≤ a
so A : Ka → Ka.

Now, we prove that vn∞n=1 converges to v† in E and v† is a decreasing positive
solution of (1.1). Indeed, in view of v0 ∈ Ka andA : Ka → Ka , we have vn ∈ Ka

, n = 1, 2, · · · Since the set vn∞n=0 is bounded and A is completely continuous, we
know that the set vn∞n=1 is relatively compact. In what follows, we prove that vn∞n=0

is monotone by induction. First, it is explicit that v1−v0 = v1 ∈ K, Which indicates
this v1v0 Subsequently, we suppose that vk−1vk. Then vk − vk−1 is decreasing
and 0 ≤ vk−1(t) ≤ vk(t) ≤ a,0 ≤ t ≤ 1. So, it follows from (H2) that for
0 ≤ t ≤ η

v′k+1(t)− v′k(t)

=
1

6(2− α)

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)[f(s, vk(s))− f(s, vk−1(s))]ds

+
1

2

∫ η

0

(s2 − 2ts)[f(s, vk(s))− f(s, vk−1(s))]ds

+
1

2

∫ t

η

(t− s)2[f(s, vk(s))− f(s, vk−1(s))]ds

+
αt

3(2− α)

∫ 1

η

(1− s)3[f(s, vk(s))− f(s, vk−1(s))]ds

≤ b

6(2− α)

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)[vk(s)− vk−1(s)]ds

+
b

2

∫ η

0

(s2 − 2ts)[vk(s)− vk−1(s)]ds

+
b

2

∫ t

η

(t− s)2[vk(s)− vk−1(s)]ds

+
αt

6(2− α)

∫ 1

η

(1− s)3[vk(s)− vk−1(s)]ds

© 2025 Global Journals
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≤ b[vk(η)− vk−1(η)]

× [
1

6(2− α)

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)

+
1

2

∫ η

0

(s2 − 2ts) +
1

2

∫ t

η

(t− s)2 +
αt

3(2− α)

∫ 1

η

(1− s)3]ds

= b[vk(η)− vk−1(η)]t

[
(α− 12η)

12(2− α)
+ tη − η2

2
+ 1 +

η3

6
− η
]

≤ b[vk(η)− vk−1(η)]t

[
(α− 12η)

12(2− α)
+
η3

6
+
η2

2
− η + 1

]

≤ 0 t ∈ (η, 1)

And therefore,

v′k+1(t)− v′k(t) ≤ 0, v′′k+1(t)− v′′k (t) ≤ 0 t ∈ [0, 1] (2.6)

This together with

v′k+1(t)− v′k(t) =

∫ 1

0

G(1, s)[f(s, vk(s))− f(s, vk−1(s))]ds, t ∈ [0, 1]. (2.7)

vk+1(t)−vk(t) ≥ 0, t ∈ [0, 1] Subsequently, given the above (1.7) and (1.8) that
vk+1 − vk ∈ K, Which shows vk+1vk ∈ K.

Thus, we have shown that vk+1vk ∈ K , n = 0, 1, 2.... Since vn∞n=1 Relatively
compact and monotonous, there exists a v† ∈ Ka such that limn→∞ vn = v†, which
together with the continuity of A and the fact that vn+1 = Avn It means that v† =
Av† . This indicate that v† is a decreasing non-negative solution of (1.1) Moreover,
in view of f(t, 0) 6≡ 0, t ∈ [0, 1], we know that zero function is not a solution of
(1.1), which indicates that v† is a positive solution of (1.1).

Consider the boundary value problem:

 u(4)(t) = 1
8u

2(t) + u(t) + (1− t), , t ∈ [0, 1],
u′(0) = u′′′(0) = u(1) = 0,
αu(0) + u′′( 1

2 ) = 0
(3.1)

If we let η = 1
2 ,α = 1 and f(t, u) = 1

8u
2(t) +u(t) + (1− t), (t, u) ∈ [0, 1]×

[0,+∞), Then all the assumptions of Theorem 2.2 a = 2 and b = 1. It follows from
Theorem 2.2 that (3.1) has a decreasing positive solution v† . Moreover, the iterative
scheme is v0(t) ≡ 0 for t ∈ [0, 1]

III. An Example
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vn+1(t) =



∫ t
0

[
(t−s)3

6 + 6(1−t2)(η−s)−(2−αt2)(1−s)3
6(2−α)

]
[ 18u

2
n(s) + un(s) + (1− t)]ds

+
∫ η
t

[
6(1−t2)(η−s)−(2−αt2)(1−s)3

6(2−α)

]
[ 18u

2
n(s) + un(s) + (1− t)]ds

+
∫ 1

η
−(2−αt2)(1−s)3

6(2−α) [ 18u
2
n(s) + un(s) + (1− t)]ds

if t ∈ [0, 12 ] n = 0, 1, 2, 3, 4, · · ·∫ η
0

[
(t−s)3

6 − 6(1−t2)(η−s)−(2−αt2)(1−s)3
6(2−α)

]
[ 18u

2
n(s) + un(s) + (1− t)]ds

+
∫ t
η

[
(t−s)3

6 − (2−αt2)(1−s)3
6(2−α)

]
[ 18u

2
n(s) + un(s) + (1− t)]ds

+
∫ 1

t

[
−(2−αt2)(1−s)3

6(2−α)

]
[ 18u

2
n(s) + un(s) + (1− t)]ds

if t ∈ [ 12 , 1] n = 0, 1, 2, 3, · · ·

in this paper, when α ∈ [0, 2) and η ∈ [ 12 , 1), we have successfully constructed
an animation sequence whose limit is just the ideal monotonic positive solution of
boundary value problem (1.1).
In addition, a zero function started with the iterative scheme , which shows that the
iterative scheme is feasible.

This paper is supported by the National Natural Science Foundation of China(no.11961060),
The Key Project of Natural Sciences Foundation of Gansu Province(no.18JR3RA084).
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