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Longitudinal and Transverse Dispersion - Diffusion 
in Streams: Its Effects in “Complete Mixing” 

Condition, and the Role a New State Function
Alfredo José Constaín Aragón

Abstract- In environmental impact studies on natural flows, the 
concept of "complete mixing" linked to the flow's "assimilation 
capacity" is usually presented in terms of transverse diffusion 
alone, ignoring the fact that it is a joint mechanism with 
longitudinal dispersion. This article presents a new approach 
in which a state function comprehensively describes how the 
two mechanisms act in unison, facilitating the interpretation 
and calculation of the "mixing length." The developed 
equations are applied to the study of three different channels, 
obtaining satisfactory results, converging with those calculated 
from Elder's transverse diffusion coefficient.
Keywords: assimilation capability of streams, state 
functions, tracers.

I. Introduction

a) Paper Size, Margins, Columns and Paragraphs
For environmental impact studies, it is vital to 

know the dynamics of conservative solutes moving in a 
flow, which simulate quite well the behavior of the 
pollutants poured in, and are therefore important for 
their understanding, control and mitigation. [1] In this 
perspective, the calculation of the transport coefficients, 
especially the one that defines the transverse diffusion, 
is fundamental.

J. W. Elder in his original work [2], based on 
theoretical considerations, found a definition of the 
transverse diffusion coefficient, εy, which have the 
following definition, with H as depth, g, as acceleration 
of gravity and S, as slope of the energy line:

𝜀𝜀𝜀𝜀 ≈ 0.23 ∗ 𝐻𝐻 ∗ �𝐻𝐻 ∗ 𝑔𝑔 ∗ 𝑆𝑆           (1)

But later, H.B. Fischer [3], who varied this 
coefficient by about 50%, found better accommodation 
with the experimental results. This formula is used in this 
Article as a reference for comparing results due to its 
simplicity and relative accuracy.

This transverse diffusion coefficient plays a very 
important role in understanding and defining the so-
called “Mixing length”, Lo, the distance at which the 
solute transported in a flow is considered to be “mean 

value” distributed in the cross section, and its 
concentration is a relative minimum, indicating well what 
the “assimilation capacity of the channel” is reached. 
With “k” a coefficient that depends on the way the solute 
is injected into the flow (k=1 for central injection), U the 
average velocity, and W the average width [4,5].

𝐿𝐿𝐿𝐿 ≈ 𝑘𝑘∗𝑈𝑈∗𝑊𝑊2

𝜀𝜀𝜀𝜀
(2)

This equation refers to the channel's "width" and 
is defined when the solute diffuses at an "average" 
value. Although the physical basis of this equation is 
sufficiently proven, the fact that it is affected by the "k" 
factor, which varies between 0.1 and 0.4 and depends 
on how well the injection point is located, adds an 
unavoidable component of imprecision.

For this reason, it is interesting to explore an 
alternative procedure, based on other principles, that 
provides greater certainty in this critical measurement.

This new procedure may be based on when the 
solute evenly covers the cross-section of its stream tube 
with a homogeneous distribution, which may or may not 
coincide with the channel's width. Figure 1 compares 
the two procedures: the classic one, corresponding to 
equation (2), and the new approach.

Source: Author

Figure 1: Two conditions of “complete mixing” in the 
evolution of a solute  
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This new  situation occurs when the solute 
transport distance is long enough for almost all of its 
mass (99.7%) has lost most of its interactions,  and its 
particles are distributed homogeneously like an ideal 
gas (losing significantly its interactions), [6] such that, 
according to Gauss's Theory, there is a corresponding 
distance of "Six sigma", when t≈4√2*σt, which if U≈ 
σx/σt, it holds. [7]: 

𝐿𝐿𝐿𝐿´ ≈ 4√2 ∗ 𝜎𝜎𝑥𝑥 (3)

Defining transverse diffusion has not been easy, 
as there is no identifiable velocity distribution along this 
axis that would allow theoretical manipulation to 
establish mixing along this axis, as is the case on the 
vertical axis. [8]

In water quality studies, this  "complete mixing" 
condition is of primary importance, given that monitoring 
of the variables of interest, they must have optimal 
representativeness, ensuring that the models run 
appropriately.[9] This information is typically collected in 
the field with tracer tests. 

On the other hand, it is necessary to distinguish 
diffusion from dispersion [10]. The former is associated 
with transport caused by turbulence as a mixing agent, 
and on a much smaller scale by molecular motion. The 
second is more directly associated with the mixing and 
expansion effect of a solute due to the shear effect 
oflongitudinal velocities, arising from the mean advective 
velocity. The characteristic is that both types of motion 
are defined as proportional to the concentration 
gradient.[11]

Thus, while dispersion expands without limit 
along the longitudinal axis, transverse diffusion has a 
rather small limit (restricted by a finite width). Figure 2.

Source: Author

Figure 2: Different Spatial Nature of Longitudinal and 
Transverse Dispersion-Diffusion

This implies that, due to this restriction, diffusion 
generally progresses much less rapidly than dispersion 
and can reach a certain equilibrium before its 
longitudinal portion, covering the cross-sectional area of 
the flow. 

Then, the application of two "complete mixing" 
criteria must be distinguished: One: When Lo is 
applicable, the channel width and the transverse 

diffusion coefficient must be considered primarily. and 
Two: When Lo´ is applicable, the spatial variance of the 
solute curve must be considered primarily. Both criteria 
show important aspects of the tracer advance 
mechanism. The first criterion is appropriate for 
channels of not very great width, in which the value of 
“Lo” is practical for measurement. The second criterion 
is applied in very large rivers in which the solute 
behavior is well described by “Lo´”, without needing to 
refer it to the channel width.

II. State Function to Describe the 
Evolution of Solutes in Turbulent 

Flows

a) Definition of the Function and its Relationship with 
the Average Flow Velocity

A transport model has been presented based 
not on the concept of “Dead zones” as the cause of the 
“non-Fickian bias” of the experimental tracer curves, but 
rather on the concept of heat exchange in the 
phenomena of “hydration” and “dilution”, supported by 
the enthalpy of formation of the solute. [12] This 
evolution is described by a State Function Φ(t), fulfilling 
the Pfaff conditions [13] that has been applied to explain 
numerous experimental cases [14,15].

∮𝑑𝑑𝑑𝑑 = 0               (4)

This state function defines a one-dimensional 
mean flow velocity equation, similar in its quadratic 
structure to the Chezy-Manning mechanical equation 
[16]. Here β≈0.214.

𝑈𝑈 ≈ 1
𝑑𝑑 �

2𝐸𝐸
β∗𝑡𝑡

                     (5)

b) Definition of the State Function in Terms of Distance
The function Φ itself is defined by clearing it 

from the previous equation, and putting it into function of 
the distance, X.

𝑑𝑑 ≈ �√2𝐸𝐸
𝑈𝑈�𝛽𝛽

� ∗ 1
√𝑋𝑋

(6)

Now for two points, with X1, and Φ1, and X2 
and Φ2, the following valid ratio is obtained if E does not 
vary significantly between each point, from eq. (5), it 
holds:

𝑑𝑑1
𝑑𝑑2
≈ √𝑋𝑋2

√𝑋𝑋1
→ 𝐿𝐿𝐿𝐿´ ≈ � 𝑑𝑑2

0.38
�

2
∗ 𝑋𝑋2         (7)        

This equation will be useful to find distances of 
interest (X2) to Φ2, when Φ1 and X1 are known (this 
convention would be the other way around), The 
important thing is that the definitions are consistent with 
each other.
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When Φ1≈0.38, then the time takes the value 
Lo´≈4√2*σx, that is, the “Freedom of interactions” 
condition for its particles.

c) Some Thermodynamic Considerations on
Interactions in Very Dilute Solutions

When the solute is suddenly injected into the 
flow, its mass is transformed from a "solid" compound to 
a "liquid" compound in a first phase, [17] by means of a 
heat exchange. In this phase the hydration of the solute 
particles occurs, by the interaction with the water 
dipoles. Then there is the formation of structures that 
respond to the Coulomb interactions between the solute 
particles, also with a heat exchange, until they disappear 
when the square root of the concentration will tend to 
zero, according to the Hückel-Debye law for dilute 
concentrations. [18] In this last phase, it can be 
considered that the solute particles behave almost like 
an ideal gas, which loses its interactions and is 
distributed homogeneously in the volume considered.

The tendency of these mutual interactions 
between solute molecules to decrease can be 
measured in various ways, for example with the 
thermodynamic equations of internal pressure, “pi” [19]:

�𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕
�
𝑇𝑇
≈ 𝑝𝑝𝑝𝑝                (8)

This isothermal change in the “internal energy” 
of the gas, E, corresponds to the interactions (mutual 
attraction) of the gas particles, which is very small for 
real gases and zero for ideal gases, if internal pressure 
is small (low concentrations).

But perhaps the most direct way to estimate this 
effect is by estimating the "braking" effect that the 
electrostatic interactions have on the motion of the 
solute plume flow. In this phase, this degraded 
compound behaves like “Boltzmann molecular chaos,” 
that is, erratically in all directions and therefore without 
any particular structure.

d) Application of the State Function, Φ(t) to the 
Calculation of Ratio of Discharge, According to Two 
Definitions of the Parameter

If the longitudinal dispersion coefficient, E, is 
cleared in eq. (5) it holds: 

𝐸𝐸 ≈ 𝑑𝑑2∗𝑈𝑈2∗0.214∗𝑡𝑡𝑝𝑝
2

              (9)

And if it is applied to the definition of 
Concentration (C(t) according to Fick, [20] we have:

𝐶𝐶(𝑥𝑥, 𝑡𝑡) ≈ 𝑀𝑀
𝑄𝑄∗𝑑𝑑∗𝑡𝑡𝑝𝑝∗1.16

∗ 𝑒𝑒−
(𝑡𝑡𝑝𝑝 −𝑡𝑡)2

2∗0.214∗(𝑑𝑑∗𝑡𝑡)2 (10)

The peak concentration, Cp, is then:

𝐶𝐶𝑝𝑝 ≈ 𝑀𝑀
𝑄𝑄∗𝑑𝑑∗𝑡𝑡𝑝𝑝∗1.16

(11)

Therefore, the discharge, Q, is:

𝑄𝑄´ ≈ 𝑀𝑀
𝐶𝐶𝑝𝑝∗𝑑𝑑∗𝑡𝑡𝑝𝑝∗1.16

(12)

And according to the principle of conservation 
of mass we have:

𝑄𝑄 ≈ 𝑀𝑀

∫ 𝐶𝐶(𝑡𝑡)𝑑𝑑𝑡𝑡𝑏𝑏
𝑎𝑎

(13)

If the ratio, r, between these two definitions of 
mass is defined as:

𝑟𝑟 ≈ 𝑄𝑄
𝑄𝑄´
≈

� 𝑀𝑀

∫ 𝐶𝐶(𝑡𝑡)𝑑𝑑𝑡𝑡𝑏𝑏
𝑎𝑎

�

� 𝑀𝑀
𝐶𝐶𝑝𝑝 ∗𝑑𝑑∗𝑡𝑡𝑝𝑝 ∗1.16�

(14)

The average value of the solute concentration is:

< 𝐶𝐶(𝑡𝑡) >≈ 0.441 ∗ 𝐶𝐶𝑝𝑝 (15)

Now, if Φ≈0.38, when tp≈4√2*σt, and the 
solute particles significantly lose their interactions, and 
considering the mean value theorem, [21], we have:

𝑟𝑟 ≈
� 𝑀𝑀

∫ 𝐶𝐶(𝑡𝑡)𝑑𝑑𝑡𝑡𝑏𝑏
𝑎𝑎

�

� 𝑀𝑀
𝐶𝐶𝑝𝑝 ∗𝑑𝑑∗𝑡𝑡𝑝𝑝 ∗1.16�

≈ 𝐶𝐶𝑝𝑝∗0.38∗1.16
1
𝑡𝑡𝑝𝑝 ∫ 𝐶𝐶(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑝𝑝

0
≈ <𝐶𝐶(𝑡𝑡)>

<𝐶𝐶(𝑡𝑡)>
≈ 1.0    (16)

That is, when the “complete mixing” condition is 
met, the two versions of the flow are equal, that is, when 
the interactions of the solute particles virtually 
disappear.

If the solute is considered as an ideal gas, its 
internal pressure, “pi” must comply with Clapeyron’s
law, with B as a physical constant. [22]

𝑝𝑝𝑝𝑝∗𝑉𝑉
𝑇𝑇

≈ 𝐵𝐵 (17)

For the approximate isothermal process, it is 
found that as the volume of the solute plume increases 
(which effectively occurs due to the increase in entropy), 
the internal pressure (and interactions) must decrease.
In this way, equation (16) is fully justified since when 
Φ≈0.38 is reached, the solute plume defines a volume 
such that its passage in time coincides with the 
definition of discharge in that point.
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III. Classical Formulas for Calculating 
the Transverse Diffusion 

Coefficient, εy, and ITS Relationship 
with the Longitudinal Dispersion 

Coefficient, E.

The most notable antecedents of these 
calculations are the formulas proposed by Elder  in the 
middle of the last century, where the two definitions 
depend on the "shear velocity", u* ≈√(H*g*S).[23]
The longitudinal coefficient proposed was:

𝐸𝐸 ≈ 5.93 ∗ 𝐻𝐻 ∗ 𝑢𝑢∗ (18) 

And the transversal coefficient, as in eq. (1), 
corrected by Fischer, was:

𝜺𝜺𝜺𝜺 ≈ 𝟎𝟎.𝟔𝟔 ∗ 𝑯𝑯 ∗ 𝒖𝒖∗ (19)

That is, both transport coefficients depend on 
the same dynamic factor, u*.[24] Therefore, in general, 
the ratio of both coefficients “E/εy” can be established 
as a function “G” that depends on factors other than u*, 
generally of an empirical, geometric or 
geomorphological nature, with different values 
depending on each author, and what factors they 
consider.[25]

𝑬𝑬
𝜺𝜺𝜺𝜺
≈ 𝑮𝑮(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒇𝒇𝒔𝒔𝒇𝒇𝒇𝒇𝒇𝒇𝒔𝒔𝒔𝒔) (20)

The use of u* as the universal dynamic root to 
define transport coefficients is not accidental, since 
frictional friction is key to understanding and defining 
momentum transfers between turbulent fluid layers. [26]

On the other hand, it should be considered that 
turbulence occurs equally along the longitudinal and 
transverse axes, with shear advection being the 
predominant differentiating factor in longitudinal 
dispersion. 

IV. Ratio between Longitudinal and 
Transversal Transportation as a 

Function of the Respective Variances

a) “Complete Mixing” Condition  for Longitudinal 
Transport  as Function of Longitudinal Variance

Longitudinal dispersion develops in an 
unconstrained scenario, as in  Figure 3, showing how at 
t≈4√2*σt, and at Lo ≈́4√2* σx,  the solute reaches the 
condition of loss of interactions.  This "complete mixing" 
condition for the curve is defined from the origin to the 
point where there is only one time (space) variance. 

Source: Author

Figure 3: Definition of 4√2*σx from 0 to only  one space 
variance

b) “Complete Mixing” Condition for  Transverse 
Transport  as Function of Transverse Variance   

To establish when the transverse axis transport 
reach the cross section homogeneously of solute tube, 
a similar  analysis must be performed to determine how 
many times the transverse spatial variance, σy, is in the 
width, Wo, for the same distance Lo´. Figure 4.

Source: Author

Figure 4: Curve C(y) in Wo, at distance Lo´

The Gaussian expression in terms of  the 
transverse spatial variance for this case is, with Cp 
equal in C(X) and C(Y), since t≈4√2*σt for both 
distributions , as follows

𝑪𝑪(𝜺𝜺)𝒊𝒊 ≈ 𝑪𝑪𝑪𝑪 ∗ 𝒔𝒔
−

(𝜺𝜺−𝑾𝑾𝟐𝟐 )𝟐𝟐

𝟐𝟐∗𝝈𝝈𝜺𝜺𝟐𝟐 (21)

The function C(t) in this case corresponds to the 
inflection points of the curve.

𝑪𝑪(𝒇𝒇)𝒊𝒊 ≈ 𝟎𝟎.𝟔𝟔𝟎𝟎𝟔𝟔 ∗ 𝑪𝑪𝑪𝑪 (22)

Therefore, eq. (21) would be put like this:

𝑪𝑪𝑪𝑪
𝑪𝑪𝟔𝟔)𝒊𝒊

≈ 𝒔𝒔
+

(𝜺𝜺−𝑾𝑾𝟐𝟐 )𝟐𝟐

𝟐𝟐∗𝝈𝝈𝜺𝜺𝟐𝟐      (23)

© 2025 Global Journals
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Rearranging:

𝟏𝟏
𝟎𝟎.𝟔𝟔𝟎𝟎𝟔𝟔

≈ 𝟏𝟏.𝟔𝟔𝟔𝟔 ≈ 𝒔𝒔
+

(𝜺𝜺−𝑾𝑾𝟐𝟐 )𝟐𝟐

𝟐𝟐∗𝝈𝝈𝜺𝜺𝟐𝟐               (24)

And then, with y=0:

𝑳𝑳𝑳𝑳|𝟏𝟏.𝟔𝟔𝟔𝟔| ≈ 𝟎𝟎.𝟓𝟓𝟎𝟎 ≈
�𝑾𝑾𝟐𝟐 �

𝟐𝟐

𝟐𝟐∗𝝈𝝈𝜺𝜺𝟐𝟐
≈ 𝑾𝑾𝟐𝟐

𝟔𝟔∗𝝈𝝈𝜺𝜺𝟐𝟐
(25)

And then:

𝝈𝝈𝜺𝜺 ≈
𝑾𝑾
𝟐𝟐

(26)

Then, concurrently with eq. (3), the tracer 
plume, when Φ≈0.38, transversely occupies half of the 
plume width. Figure 5.

Figure 5: Occupation of ½ Flow Width by Diffusion 
transverse variance

Therefore, dividing the two displacements, the 
longitudinal and the transversal, we have:

𝝈𝝈𝒙𝒙
𝝈𝝈𝜺𝜺

~ 𝟔𝟔√𝟐𝟐
𝟏𝟏
≈ 𝟔𝟔√𝟐𝟐 (27)

c) Quantitative Description of this Dynamic to Find the 
Ratio of Centroid Time and Peak Time

The author have already developed a 
successful approach for calculating the centroid-to-peak 
time ratio, “ts/tp,” based on thermodynamic 
considerations, [27] as shown in Figure 5.

Source: Author

Figure 5: Curve of the ts/tp ratio as a function of Φ(t)

When Φ≈2.16, the ts/tp ratio is maximum, close 
to 4√2, which is the maximum allowed by the 
homogeneously distributed mass. For Φ<0.38, it 
asymptotically approaches 1.0, i.e., there is no delay in 
the solute centroid when electrostatic interactions 
between its particles cease. The approximate equation 
for this trend is:

𝒇𝒇𝒔𝒔
𝒇𝒇𝑪𝑪
≈ 𝟎𝟎.𝟔𝟔𝟓𝟓 ∗ 𝜱𝜱𝟐𝟐.𝟐𝟐 + 𝟏𝟏 (28)

A notable value of this calculation is when 
Φ≈0.38, the moment at which the solute changes to the 
ideal gas condition, and the electrostatic “braking” 
effect is reduced to a minimum:

𝑡𝑡𝑡𝑡
𝑡𝑡𝑝𝑝
≈ 0.85 ∗ 0.382.2 + 1 ≈ 1.10                   (29)              

Which means that the centroid delay is 10%, 
that is, at the limit of the order of magnitude to not be 
considered.

d) Quantitative Description of this Dynamic to Find the 
Ratio of the Transport Coefficients Σx and Σy.

Now, based on results described in 4.2,  it is 
interesting to find the relationship “σx/σy”, which 
corresponding curve is as shown in Figure 6.

Source: Author

Figure 6: Curve of the σx/σy ratio as a function of Φ(t)

A more detailed representation, including 
notable modeling points, is shown in Figure 7.
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Source: Author

Figure 7: Detailed Curve of the ratio σx/σy as a function 
of Φ(t)

The approximate equation for this trend is:

𝝈𝝈𝒙𝒙
𝝈𝝈𝜺𝜺
≈ 𝟐𝟐.𝟏𝟏𝟐𝟐𝟔𝟔

𝜱𝜱𝟎𝟎.𝟗𝟗𝟔𝟔𝟗𝟗            (30)

The notable points here are: For Φ≈2.16, at the 
beginning of the process, the two variances are 
practically equal, and σx/σy≈1, given that the bias 
imposed by the advection shear effect is just beginning. 
For later events, when Φ≈0.38, the two values
progressively diverges to infinity.For this reason, as a 
practical limit of the expansion of the function, it is taken 
no longer to 0.38. Note that this limit is the one of 
interest, since up to this point, the "Mixing Length" is 
obtained.

Therefore, the Gaussian ratio of the longitudinal 
and transverse transport coefficients will be:

𝜎𝜎𝑥𝑥
𝜎𝜎𝜀𝜀
≈ � 𝐸𝐸

𝜀𝜀𝜀𝜀
  (31)

And therefore:

𝐸𝐸
𝜖𝜖𝜀𝜀
≈ �𝜎𝜎𝑥𝑥

𝜎𝜎𝜀𝜀
�

2
(32)

Normally the longitudinal coefficient, E, is 
known, then the transverse coefficient will be:

𝜺𝜺𝜺𝜺 ≈ 𝑬𝑬

�𝝈𝝈𝒙𝒙𝝈𝝈𝜺𝜺
�
𝟐𝟐 (33)

This value of εy must be contrasted with the one 
calculated from the Elder corrected eq. (19), which is 
considered an acceptable standard for the channel 
under study. 

V. Practical Application of the Method 
to Real Channels in Colombia and 

USA

a) Upper Guavio River, Colombia in 2001
For this study, we consider saline tracer (NaCl) 

experiments conducted by the Universidad de los 
Andes in Bogotá in 2001 on the upper Guavio River, a 
mountain , very roughness river near the town of 
Arbelaez in the center of the country. [28] Figure 8.

Source: Author

Figure 8: View of Rio Guavio, near Arbelaez. Colombia

The data of this stream experiment is in Table 1.

Table 1: Experimental data at Rio Guavio

Date: June 17, 2001. 2n station curve.
2ond curve length: X = 98.1 (m)
Width: W ≈ 10.0 (m)
Depth: H ≈ 0.25 (m)
Hydraulic radius: R≈0.22 (m)
Slope: S ≈ 0.045
Cross-sectional area: Ayz ≈ 2.3 (m2)
Roughness (Manning): n ≈ 0.32
Flow rate: Q ≈ 0.550 (m3/s)
Average velocity: U ≈ 0.24 (m/s)
Mass (NaCl): M ≈ 12233.0 (g)
Peak time: tp ≈ 410.0 (s)
State function: Φ ≈ 0.55
Longitudinal coefficient: E ≈ 0.77 (m2/s).

Source: Author

The experimental tracer curve and its model, 
using equation (9), for that experiment at the second 
station, are shown in Figure 9.
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Source: Author

Figure 9: Experimental curve (broken) and 
superimposed model (soft), using equation (10)

As can be seen at a distance of X1=98.1 (m) 
and with a State Function of Φ1≈0.55, does not yet 
reach the condition of  complete mixing, which occurs at 
Φ≈0.38, then the unknown distance, Lo,  must be 
estimated approximately with the eq. (7):

𝑑𝑑1
𝑑𝑑2
≈

√𝑋𝑋2
√𝑋𝑋1

(34)

Then:

√𝑋𝑋2 ≈ √98.1 ∗ �0.55
0.38

� ≈ 14.33 (35)

So:

𝑋𝑋2 ≈ 𝐿𝐿𝐿𝐿´ ≈ 206.3 (𝑚𝑚)          (36)

Now, ratio σx/σy, eq. (30) is then calculated for Φ≈0.38

𝜎𝜎𝑥𝑥
𝜎𝜎𝜀𝜀
≈ 2.126

(0.38)0.969 ≈ 5.43 (37)

And the transverse transport coefficient, εy,  is 
as in eq. (33):

𝜀𝜀𝜀𝜀 ≈ 𝐸𝐸

�𝜎𝜎𝑥𝑥𝜎𝜎𝜀𝜀
�

2 ≈
0.77

5.432 ≈
0.77
29.5

≈ 0.026 (𝑚𝑚2
𝑡𝑡

) (38)

This Coefficient  is verified against the value 
obtained by Elder:

𝜀𝜀𝜀𝜀 ≈ 0.6 ∗ 0.25 ∗ √0.25 ∗ 9.83 ∗ 0.045 ≈ 0.050 (𝑚𝑚2
𝑡𝑡

)    (39)

The ratio of the two results are 1.92, then, of the 
same order of magnitude, and are accepted as valid 
verification. The mixing length Lo, eq. (2), is then:

𝐿𝐿𝐿𝐿 ≈ 0.1∗0.24∗102

0.026
≈ 92.3(𝑚𝑚) (40)  

Comparing with Lo´ calculated with eq. (7) , it is 
noted that Lo´>Lo and it is accepted that With a central 
injection (k=0.1) the dispersion covers the width of the 
channel, but as Lo´ is greater, the solute does not yet 
have a homogeneous distribution in its volume. 
Although the transverse diffusion coefficient has been 
calculated with a good approximation to the reference 
(Elder-Fischer), since there is no strict control over the 
exact injection, the multiplier "k" may vary. In this case, 
the Lo´ figure can be considered more precise since it 
does not depend on this factor.

b) Rio Bogota, Colombia in 2024
The Bogota River near the flower farms in the 

capital is a small to medium-sized plain river with a 
gentle gradient. In this day were used fluorescent tracer 
(RWT). Figure 10.

Source: Author

Figure 10: Bogota River, near capital, in Colombia. 

The river experimental data on that day were in 
Table 2.
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Table 2: Experimental data at Rio Bogota

Date: September 5, 2024. 2ond station curve
2ond curve length: X = 3515.0 (m)
Width: W ≈ 20.0 (m)
Depth: H ≈ 2.3 (m)
Hydraulic radius: R≈1.58 (m)
Slope: S ≈ 0.0006
Cross-sectional area: Ayz ≈ 38.8 (m2)
Roughness (Manning): n ≈ 0.025
Flow rate: Q ≈ 26.8 (m3/s)
Average velocity: U ≈ 0.69 (m/s)
Mass (RWT): M ≈ 160.0 (g)
Peak time Second curve: tp ≈ 5097.0 (s)
State function: Φ ≈ 0.167
Longitudinal coefficient: E ≈ 7.25 (m2/s).

Source: Author

The experimental tracer curve and its model, 
eq. (10), for that experiment at the second station, are 
shown in Figure 11.

Source: Author

Figure 11: Experimental curve (red) and superimposed 
model (gray)

As can be seen, the “Complete Mixing” 
condition for Dispersion was reached at an earlier point, 
since Φ<0.38, therefore equation (7) must be applied to 
calculate approximately the distance X1 at which it 
occurred with Φ1≈0.38:

√𝑋𝑋1 ≈ �𝑑𝑑2
𝑑𝑑1
� ∗ √𝑋𝑋2     (41)

And then:

√𝑋𝑋1 ≈ �0.167
0.38

� ∗ √3515 ≈ 26.1 (𝑚𝑚
1
2)     (42)

And therefore, X1≈Lo´≈681.0 (m)
Now, eq. (30) is then calculated for Φ≈0.38:

𝜎𝜎𝑥𝑥
𝜎𝜎𝜀𝜀
≈ 2.126

(0.38)0.969 ≈ 5.43      (43)

And the transverse transport coefficient, εy,  is 
in eq. (33):

𝜀𝜀𝜀𝜀 ≈ 𝐸𝐸

�𝜎𝜎𝑥𝑥𝜎𝜎𝜀𝜀
�

2 ≈
7.26

5.432 ≈
7.26
29.5

≈ 0.25 (𝑚𝑚2
𝑡𝑡

)    (44)

It is verified against the value obtained by Elder-
Fischer:

𝜀𝜀𝜀𝜀 ≈ 0.6 ∗ 2.3 ∗ √2.3 ∗ 9.83 ∗ 0.0006 ≈ 0.160 (𝑚𝑚2
𝑡𝑡

)  (45)    

The ratio of the two results are 1.56, then, of the 
same order of magnitude, and are accepted as valid 
verification.

𝐿𝐿𝐿𝐿 ≈ 0.1∗0.69∗202

0.25
≈ 662.4 (𝑚𝑚)    (46)

Comparing with Lo´, calculated with equation 
(7), it is noted that Lo ≈́ Lo (same order)  and it is 
accepted that the calculation on the width of the channel 
is equivalent to the criterion of homogeneous 
distribution of the tracer on the solute current tube.

c) Caltech Channel, USA in 1966
A third example is documented, a tracer 

experiment carried out by H. B. Fischer [29] on the 40 
(m) calibrated channel of the W. M. Keck Laboratory at 
Caltech, in 1966.  In this experiment (Series 2700), 
Fischer injected NaCl as a tracer, measuring two 
sequential curves. The objective of the experiment was 
to test Elder's diffusion  theory. Figure 12.

Source : [3]

Figure 12: W.M. Keck 40 (m) channel in Caltech. USA

The channel experimental data on that day were 
in Table 3:
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Table 3: Experimental data at Caltech channel

Date: 1966. 2ond station curve.
2nd curve length: X = 25.06 (m)
Width: W ≈ 1.09 (m)
Depth: H ≈ 0.128 (m)
Hydraulic radius: R≈0.104 (m)
Slope: S ≈ 0.0002
Cross-sectional area: Ayz ≈ 0.14 (m2)
Roughness (Manning): n ≈ 0.009
Flow rate: Q ≈ 0.053 (m3/s)
Average velocity: U ≈ 0.372 (m/s)
Mass (NaCl): M ≈ 40.5 (g)
Peak time 2ond curve: tp ≈ 67.4 (s)
State function 2ond curve: Φ ≈ 0.130
Longitudinal coefficient: E ≈ 0.0169 (m2/s).

Source: Author

The experimental  (dotted lines) two tracer 
curves and the models (thick continuous lines), are 
shown in Figure 13.

Source: Author

Figure 13: Experimental curves (dotted) and 
superimposed model (thick continuous line)

As can be seen, the “Complete Mixing” 
condition for Dispersion was reached at an earlier point, 
since Φ<0.38, therefore eq. (7) must be applied to 
calculate approximately the distance at which it 
occurred, with X2 ≈25.06 (m), and Φ2≈0.130. It is 
necessary that Φ1≈0.38 as explained. 

√𝑋𝑋1 ≈ �𝑑𝑑2
𝑑𝑑1
� ∗ √𝑋𝑋2 (47)

And then:

√𝑋𝑋1 ≈ �0.130
0.38

� ∗ √25.06 ≈ 1.71 (𝑚𝑚
1
2) (48)

And therefore, X1≈Lo´ ≈ 2.93 (m)
Now, eq. (30) is then calculated for Φ≈0.38

𝜎𝜎𝑥𝑥
𝜎𝜎𝜀𝜀
≈ 2.126

(0.38)0.969 ≈ 5.43 (49)

And the transverse transport coefficient, εy,  is 
in eq. (33):

𝜀𝜀𝜀𝜀 ≈ 𝐸𝐸

�𝜎𝜎𝑥𝑥𝜎𝜎𝜀𝜀
�

2 ≈
0.0169
5.432 ≈ 0.0169

29.5
≈ 0.0006 (𝑚𝑚2

𝑡𝑡
)    (50)

It is verified against the value obtained by Elder:

𝜀𝜀𝜀𝜀 ≈ 0.6 ∗ 0.128 ∗ √0.128 ∗ 9.83 ∗ 0.0002 ≈
0.00122 (𝑚𝑚2

𝑡𝑡
)       

(51)

The ratio of the two results are 4.92, not so 
convergent to unit, but of the same order of magnitude, 
and are accepted as valid verification.

The mixing length Lo, eq. (2), is:

𝐿𝐿𝐿𝐿 ≈ 0.1∗0.372∗1.092

0.0006
≈ 73.7 (𝑚𝑚) (52)   

The two notable distances, Lo and Lo', differ 
greatly in their values, indicating that longitudinal 
dispersion achieves the mixing effect first, rather than 
transverse diffusion, which has an exaggeratedly high 
value for the special scope of the channel, indicating 
that probably in artificial channels, with very small 
Longitudinal transport coefficient,  the indicated method 
to establish “Complete Mix” is the Lo´ calculation. 

VI. Results and Discussions

1. This article develops criteria to estimate when a flow 
reaches the "Complete Mixing" condition. When 
using the classic Rutherford formula, the transverse 
diffusion coefficient is calculated from the ratio of 
longitudinal and transverse variances, using a 
nonlinear distribution function of Φ, and the value of 
the longitudinal dispersion coefficient. The values of 
these calculations are convergent with those found 
by the Elder-Fischer formula. The alternative 
criterion is based on finding the distance from the 
tracer at which Φ ≈ 0.38, and the solute is 
considered homogeneously distributed in the 
volume covered by the tracer. 

2. The first criterion estimates that the tracer fills the 
channel width, while the second does not.

3. In real streams, the two criteria can sometimes 
converge, and sometimes not. In very large rivers 
(with very large widths), where the "mixing lengths" 
calculated using the classic formula are very long, 
the other criterion should be preferred, since the 
interest is often to determine the advection-
dispersion characteristics at a certain intermediate 
point (not across the entire width).

4. To characterize the evolution of the conservative 
solute in the flow, a state function Φ, is 
documented, which describes the different notable 
moments analyzed here.

5. To verify whether this value of εy is consistent with 
Elder's classic calculation, taken as a reference, the 
method is applied to a real field experiment.
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