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PREFACE

A monograph is the goal of every author who seeks to share with others crucial ideas on a specialized subject
s/he considers to be important. For me, the development of students thinking is a goal that | have served all my
life as a teacher of mathematics; since my high school years, when my schoolmates asked me to help them with
mathematics. | have understood that every student has his/her own personal way of understanding mathematics:
their own personal learning style.

And that it is in our mind that the information we receive is translated into the codes we understand. | have
examples from my personal life that helped me grasp the importance of learning theories: My mother, for
example, was trying to help me learn to ride my bicycle by running along beside me (helping me to balance). But
| could not learn to use my bicycle alone; not until the morning | woke up and tried to instrumentally decode my
own actions. Preexisting knowledge played an important role, but the non-conceptual behavioral repeats of
actions on my bicycle did not help me. When teaching me to tell the time, my father used his own watch, moving
the hands back and forth, to teach me dynamically, refusing to believe my grandmother, who said | was too
biologically immature to understand time yet. As you can understand, | learned to tell the time more easily using
my father’'s watch as a dynamic manipulative. Cognitive conflicts, instrumental decoding and dynamic actions
were synthesizing my own learning style.

As part of the leaning process we have to understand what the mathematical objects are, how to use them and
how to represent them in static or dynamic means. Language also plays a crucial role in the teaching and
learning process. Do we learn alone as individuals, or with others in a social context? Do we learn using
traditional means, or through e-learning and computer software? Both are important for students. As teachers,
we have to choose the road, the learning path our students will follow, by using a thought experiment to construct
a hypothetical learning path that predicts their progress and their thought development.

The key concept in this monograph is the idea of Linking Visual Active Representations (LVAR) (Patsiomitou,
2008a, b, 2012a), which | conceived when | was writing my Master’'s thesis (Patsiomitou, 2005a), and which |
would subsequently develop and expand during the research | conducted for my Ph.D. thesis. A second
important concept is the dynamic hypothetical learning path (DHLP) (Patsiomitou, 2012a, b). When | started my
PhD, | did not know what | had conceived was actually a DHLP. | called it a didactic scenario, a didactic
sequence.... But after reading the related bibliography | understood that | had been constructing DHLPs for my
students all my teaching life to scaffold their knowledge construction and to help them develop their thinking.

The research underlying the concrete theoretical framework was conducted in accordance with the methodology |
apply every time | write a paper (e.g., Patsiomitou, 2015b). Specifically, the research with related “key” words
was conducted in: (1) Databases listing international literature (ERIC, Scopus, etc.), (2) Libraries of International
Universities, (3) open e-journals with pedagogical-educational subject-matter, (4) Conferences proceedings, (5)
Self-publishing texts (6) Reports from surveys of international organizations (e.g UNESCO, OECD), or Reports
on international programs or programs funded by international organizations[qualitative data A type]. The
gathering of the material focused on studies in English language and applied a strict criterion of publication within
the last two decades, however important articles from > 25 years ago were also considered [qualitative data B
type]. The initial screening of the texts (i.e. the evaluation performed as part of the concrete methodical survey)
was followed by a second screening with a strict limitation in terms of similarities or differences in certain
characteristics [qualitative data C type]. From these texts, a humber of extracts were selected which refer to the
concepts dealt with in this work, raising issues and creating incentives for further research and study (qualitative
type D data). Summaries of ancient texts (e.g., by Euclid, Plato and Aristotle) were added to the set of qualitative
data in the light of their contribution to the definition of terms used in the monograph. The present work is a meta-
analysis of the qualitative type D data, on the basis of which conclusions are drawn utilizing material contained in
already published works [with reference to the source].

The concrete monograph includes a substantial amount of references to the bibliography and incorporates
excerpts from papers by many important scholars. | therefore hope the current work will become the starting point
of a “hypothetical” learning path in Didactics which | designed, a detailed reading of which will allow my University
students to “discover” many important theories for themselves. Also, the value of this book is to motivate teachers
of secondary education, as well as pre-service teachers of mathematics and provide them with the theoretical
constructs they need to embark on their own investigations.

This is the key idea of the work in question: searching for more.....discovering the undiscovered and ....seeing
the unseen. As you read the book and understand the theories, the connections between them become
increasingly obvious. Mathematical knowledge and understanding as well as representational systems are all
tightly bound up with the teaching and learning of mathematics.

However, an investigation of traditional curricula reveals an overwhelming emphasis on working with symbolic
representations. In the context of my search for “windows” or “keys” which can facilitate the students’ cognitive
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development, | shall be discussing dynamic geometry environments and microworlds in general with a view to
understanding their potential and how they can be combined to make the learning of mathematics more
interesting and relieving students of their fear of the subject.

Every chapter is written with the goal of addressing overarching research issues, providing guidance for future
research that involves technology. The aim is to inculcate in students of mathematics a greater awareness of the
theory and research into the Didactics of Mathematics, taking into account the impact representational
technological environments have had on mathematics learning and teaching.

However, the current work reflects my understanding of teaching and learning as communicating vessels,
allowing teachers to communicate their ideas to their students and to “learn” from their responses. My work have
influenced from the discussions | have had with my students both in and out of class, and from the results of my
own research. Furthermore, | would like to acknowledge all my teachers for the knowledge they shared with me
so generously, particularly since they motivated me to continue and search for more.

| wish to thank my family for supporting me all the years of my life spent studying and writing. The monograph is
dedicated to my parents for believing in me, to my children Alexandros, Loukia-loli and Theano-Magdalene for
their love and patience, and who encouraged me to realize my dreams. | thank you from the heart!

Athens, July 2019

Stavroula Patsiomitou
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OUTLINE OF THE MONOGRAPH

In my investigation of learning theories | tried to find the “key words” and common characteristics they shared. In
the following paragraph | shall try-briefly, and in a very simplistic and superficial way- to treat complex learning
theory issues as if they were much simpler than they are. However, the order in which they are discussed can
provide a path, or illustrates a trajectory in didactics. For example, in Piaget, the notion of the schema and what
Piaget considers to be assimilation and accommodation are important notions in his theory. What Piaget’s theory
has in common with other approaches is its investigation in the theoretical construct “development of a pupil’s
thinking”. Where they differ is in respect of Piaget's view that a child’s development corresponds with their
biological mature. The age of 7, the age at which a child can distinguish materials from more than two
characteristics in accordance to Piaget's developmental stages, is also important for Vygotsky as the age at
which a child can develop a close interaction between language and thought. Vygotsky also introduced
developmental stages. Vygotsky assigns an important role to the social construction of knowledge and the role of
language and how a student can express his/her thinking. The development of language as the student
progresses through levels is also a feature of the van Hiele model. The van Hiele model considers the
perturbations and cognitive conflicts which appear as a student develops their thinking up through the different
levels. How can a student develop his/her thinking according to van Hiele? Using manipulatives at the first stages
in their development, following an instructional sequence that seeks to scaffold students’ language. Scaffolding is
a notion introduced and developed by Vygotsky, who considers the use of tools to provide an important scaffold
for students’ thinking. Manipulatives are external representations, and the role of visualization has been
discussed by many scholars. As a student develops their thinking, they develop the way in which they use
language and formulate: at first, they use mostly inductive reasoning, but as time passes and they follow a
concrete course of instruction, they start to formulate with abductive and deductive reasoning. The role of
microworlds as cooperators or “antagonist” environments has been discussed extensively by many scholars, as
has the ways in which the incorporation of tools in the digital environment scaffolds students’ thinking during
instrumental genesis. What is the role of the student in the instructional and teaching process? Is s/he a passive
audience or an active one? Can s/he participate actively in the learning process? Hypothetical learning
trajectories or paths are theoretical constructs that give the student the advantage of being able to construct the
didactic sequence and adapt it according to his/her needs. Can a student develop his/her thinking and how can
s/he achieve it? As | discussed in previous works, using Linking Visual Active Representations a student can
develop mental linking representations that connect the new knowledge with existing in their mental structures.

In the current work, | shall describe the theories that led me to the theoretical constructs of my Ph.D. It is very
important to point out that this study is not a translation of my Ph.D thesis. In my thesis | have tried to restrict the
theoretical background to the absolute minimum required to analyze the results of the experimental process and
arrive at new theoretical constructs. My post-doctoral empirical research has led me to “discover” several
additional notions which are not included in my thesis; for example, the notion of hybrid- dynamic objects. | will
also incorporate part of my previous research in the form of a meta-analysis, in the sense of an analysis that
includes those meanings. Most of these results will be included in my next study, which will be published in the
near future. Moreover it was very difficult for me to include in this text all the notions and theories that has been
posited and developed since researchers, scholars and psychologists started to write about and investigate the
fundamental notions of knowledge, understanding, development, learning, teaching and everything else is
considered part of the Didactics of Mathematics.

Also, as | aforementioned, the value of this book is to motivate students to start investigations, giving them the
necessary theoretical constructs for their beginning. In the figure below | have tried to indicatively connect the
theoretical constructs included in the current work.

INTRODUCTION: | start my introduction to the book with the notion of hypothetical learning trajectories,
providing ways in which the geometry curriculum can invoke a dynamic reinvention process through teaching for the
construction of geometrical objects. The core idea in the main part of the book is that students will learn in the most
profound way possible when something happens that makes them love the particular knowledge being studied and are
responsible for constructing their own knowledge, as Papert argues. After the short introduction, the theoretical
underpinnings will be presented over five chapters in which | try to incorporate the most important and essential
meanings, notions and concepts—the presuppositions for describing and analyzing research studies in the didactics of
mathematics

CHAPTER 1. This chapter provides essential answers to the questions: “What are mathematical objects? What

are diagrams, figures and diagrammatic representation? What is diagrammatic reasoning?” | also present the pairings
of knowledge types: conceptual-procedural, relational-instrumental, operational-structural along with the concept of
reflective abstraction.
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CHAPTER 2. Representations, representational systems and visualizations of mathematical objects are

discussed extensively in this chapter. Both internal and external representations and multiple external representations
are presented with multiple examples and excerpts from the work of important scholars. | also introduce a connection
between multiple external representations and mental images for the development of understanding, by taking into
account technological-digital representations; | offer by this a different perspective, updating the Lesh’s model of
multiple representations. | also discuss indicative representational environments used for the teaching and learning of
mathematics and their role or capabilities in knowledge construction.

CHAPTER 3. An extensive analysis of the literature regarding dynamic geometry systems is presented in this

” o«

chapter. | explain what | mean with the notions “instrumental decoding”, “instrumental obstacles”. Moreover what is an
artifact and what is meant as instrument during instrumental genesis. Dynamic transformations and their role in the
construction of mathematical meanings are presented as a crucial particularity of DGS environments. | also discuss the
notion of hybrid-dynamic objects as well as the notion of procept-in-action.

CHAPTER 4. Assisting/ Encouraging students’ cognitive growth is a major aim of mathematics education. The

Piagetian notions (cycle of equilibration, assimilation and accommodation) are discussed in the chapter, along with my
opinions on this. | also introduce a spiral cycle of equilibration regarding students’ number construction at different
ages, as well as a spiral curriculum for the learning of numbers, taking into account the notions of Piaget and Bruner.
The theory developed by van Hiele is analyzed extensively. Argumentation, proof and proving process are also
discussed, with examples of both Toulmin’s model of argumentation, and the pseudo-Toulmin model which | introduced
to incorporate the impact the use of the tools has on the construction of arguments. | also present an example of my
research in which the students used a custom tool to develop their thinking. At the end the chapter | discuss my version
of the “house of quadrilaterals”, in which | incorporate the non-convex quadrilaterals.

CHAPTER 5. The word “problem” is derived from the Greek word “provilema”. What is an open problem, what

are the four problem-solving phases developed by Polya, and what are the factors involved in a successful problem-
solving process are issues which | discuss in the chapter in question. | present a theoretical construct-namely an
empirical classification model for sequential instructional problems in geometry- a cognitive trajectory, which relates to
the importance of students building a representation of a problem and the role which modeling a real-world problem
plays in students’ gradual investigation of a problem.

Horizontal and vertical mathematization and the modeling process as it has been developed in the international
literature are also addressed in this chapter. The notions of hypothetical learning trajectories, paths and progressions
are discussed as well as my adaptation on Mathematics Teaching Cycle, based on the work of Simon. | briefly present
the DHLP for the research study of my PhD. The chapter ends with an extensive analysis on the notion of Linking
Visual Active Representations (LVARs) and their importance on students’ thinking.

IN PLACE OF AN EPILOGUE: I have presented a short history of my Ph.D. study. My advice to you is

this: tenacity, knowledge, ambition and passion to succeed are the keys to reach your goals. And never give up!

Are LVARs a new theory for teaching and learning?

| leave the answer to this question to you, as well the option of commenting on my work. Please do not hesitate to
communicate via e-mail and/or to send your comments to the following e-mail address (spatsiom@gmail.com). Thank
you in advance. | wish you pleasant reading!
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Introduction

I. Curricula and dynamic active learning trajectories: The geometry curriculum as
a dynamic reinvention process for the construction of geometrical objects

Simon (1995) defined hypothetical learning trajectories as "the learning goal, the learning activities, and the
thinking and learning in which the students might engage" (p. 133). A hypothetical learning trajectory is
hypothetical “because [...it] “is not knowable in advance” (Simon, 1995, p. 135). He used the metaphor of a
sailor to explain the difference between a trajectory and a hypothetical learning trajectory:
“You may initially plan the whole journey or only part of it. You set out sailing according to your plan.
However, you must constantly adjust because of the conditions that you encounter. You continue to
acquire knowledge about sailing, about the current conditions, and about the areas that you wish to visit.
You change your plans with respect to the order of your destinations. You modify the length and nature of
your visits as a result of interactions with people along the way. You add destinations that prior to the trip
were unknown to you. The path that you travel is your [actual] trajectory. The path that you anticipate at
any point is your ‘hypothetical trajectory’.” (pp. 136-137)
In this thoughtful paragraph, I recognized my own experiences with my every year students in class. The way that
my students interacted with the pre-prepared material (digital and otherwise) which I had planned for them,
changed the whole path we followed, as I added paths to explain something that was not understood or helped
students overcome their misconceptions by using a different path. This was the same feeling I had when I read
how Clements & Sarama (2004) defined learning trajectories as
“descriptions of children's thinking and learning in a specific mathematical domain, and a related,
conjectured route through a set of instructional tasks designed to engender those mental processes or
actions hypothesized to move children through a developmental progression of levels of thinking, created
with the intent of supporting children's achievement of specific goals in that mathematical domain” (p. 83).
Moreover, in their article “Learning Trajectories: Foundations for Effective, Research—Based Education” in
section “What, if anything, is “new” in the learning trajectories construct?”’, Clements & Sarama (2014) discuss
what is new in learning trajectories, reporting the common characteristics the learning trajectories have with
psychological and educational theories “for example, Bloom's taxonomy of educational objectives and Robert
Gagne's conditions of learning and principles of instructional design, information-processing theories,
information- processing models, developmental and cognitive science theories” (p.8-9).
Remillard (1999) supports that as teachers interact with their students, they feel the need to understand their
thinking and find methods of guiding their students towards understanding. Remillard (1999) also emphasizes
“the substantial role that teachers play in shaping the curriculum experienced by students” (p.316).
Officially, curriculum includes instructions, informing the teacher how to manage the teaching process in class.
Teachers follow these instructions, but often not in a detailed way as a curriculum is only ‘an [official] plan for
teaching” and instruction. (e.g., van den Akker, 1998, cited in Zulkardi, 2002). As Zulkardi (2002) supports
“The plan can be found at different levels of various educational settings. At the micro level (classroom),
the curriculum refers to a plan for concrete instructional activities. At the meso level (school or
institutional) it refers to a course or an educational program and at the macro level it is used to indicate a
more general curricular framework for a district, province or nation” (p. 23-24).
According to Zulkardi (2002) “there are several types of curriculum proposed by Goodlad, et al. (1979) and
adapted by van den Akker (1998) (Zulkardi. 2002, p. 24):
“ideal curriculum, the original assumptions and intentions of the designer;
formal curriculum, the concrete curriculum documents, such as student materials and teacher guides;
perceived curriculum, the curriculum as interpreted by teachers;
operational curriculum, the actual instructional process as realized in the classroom (also referred to as
curriculum-in-action or the enacted curriculum);
e experiential curriculum, the curriculum as it is experienced by the pupils;
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e attained curriculum, the learning outcomes of the pupils. In some studies the term intended curriculum is
used, which refers to a combination of the ideal and formal curriculum while implemented curriculum
refers to a combination of the perceived and the operational curriculum”.

The development of the curriculum in class by means of a constructivist process focuses on an active learning
process (Piaget, 1937/1971), fuelled by the interaction between their experience, the mental processing of their
knowledge (Vygotsky, 1978) and the students’ sequential construction of this knowledge (Terwel, 1999). This
kind of knowledge construction is facilitated by the teachers and instructors, who scaffold students’ mathematical
thinking, facilitate mathematical discussions in class, use mathematical representations, and reinforce alternative
learning methods (Hiebert & Carpenter, 1992 cited in Fuson, Carrol & Drueck, 2000, p.277). Remillard (1999)
considers that curriculum materials were in the 1950s “the primary vehicles used [...] to stimulate curricular
change [and] to change the nature of students’ mathematics learning opportunities” (p.315). Teachers can
develop the curriculum in class, as it is they who have to identify and deal with their students’ difficulties and
needs. According to Remillard (1999)
“Regardless of how teachers draw on and use curriculum materials, their work in relation to planning and
teaching mathematics can be viewed as curriculum development—the processes by which teachers develop
curricular plans and ideals and translate them into classroom events. Through the curriculum development
process, teachers plan and shape students’ experiences in the classroom. The term “curriculum
development” is often used to describe the writing of curriculum materials. In referring to teachers as
curriculum developers, I suggest that the curriculum development process does not stop when textbooks
are printed, but continues in the classroom” (p.319).
This is in accordance with Freudenthal’s proposed educational development of mathematics, his own alternative
to curriculum development which centres on the development of curriculum materials, and seeks to foster actual
change in classroom teaching (Gravemeijer and Terwel, 2000, p.779).
Gravemeijer & Terwel (2000) highlight what Freudenthal claims:
“As viewed by Freudenthal, curriculum theory is not a fixed, pre-stated set of theories, aims and means,
contents, and methods. Rather, it is always related to processes. Understood positively, the word
‘curriculum’ is more often than not used in combination with change or development, for example, as in
curriculum development or developmental research. For Freudenthal, curriculum theory was a practical
endeavour from which new theoretical ideas might arise as a kind of scientific by —product” (p. 779).
Many researchers (e.g., Cobb & Bauersfeld, 1995; Fuson, Carrol and Drueck, 2000, p.277) agree that problem
solving is a fundamental process that can help teachers introduce meanings as they encourage their students to
investigate the problem. Moreover, students can reinvent what is mentioned in textbooks through the problem-
solving process, as Fuson et al. argue:
“in contrast to traditional textbook instruction focused primarily on rote learning and practice of skills,
instruction is envisioned through which students construct meaning for the mathematical concepts and
procedures they are investigating and engage in meaningful problem-solving activities” (Fuson, Carrol and
Drueck, 2000, p.277) (ibid).
Dubinsky (1991a) in his study “Reflective Abstraction in advanced mathematical thinking” reports the process of
memorization without understanding on the part of students as they are obliged or accept to follow the traditional
learning process following the instructions of the teacher who translates the curriculum into classroom
instruction. Dubinsky supports that:
“Our conjecture is that this is due to the overall approach in the traditional classroom, where the goal, as
presented and defended by the teacher, is for the student to develop skills in computational procedures, to
display on examinations, and to “get a good grade”. [...] the student cannot learn these procedures through
understanding, whereas he or she is presented by the teacher with a conflict-free way out - imitate and
memorize. Unsurprisingly, most students accept the offer and take this route. But imitation and
memorization do not lead to cognitive constructions and the result is that the students’ desire to learn
through growth is suppressed. He or she is “turned off mathematics” (p. 117) .
On the other hand, Corcoran, Mosher & Rogat (2009) state that a learning path/trajectory differs from a
curriculum in that, the latter is not based on an analysis of research results regarding how students learn a
concrete idea. Additionally, Corcoran et al. state that curricula are not validated by empirical research results.
Moreover, a learning path can help teachers by providing them with a conceptual structure that allows them to
adapt their instruction to their students’ needs (Corcoran et al., 2009, p.23).
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When students construct a learning path, it is a meaningful way for them to construct meanings, since it avoids
the traditional pedagogy of memorization without understanding and proving theorems in geometry that are
already known, exactly as Ausubel (1962) reports below, distinguishing between the two types of learning, the
rote and the meaningful:
“The rote learning of lists of nonsense syllables and arbitrarily paired adjectives is representative of few
defensible learning tasks in modern classrooms. [...] Meaningful learning of verbally presented materials
constitutes the principal means of augmenting the learner's store of knowledge, both within and outside the
classroom. Hence, no research program purporting to advance this objective can avoid coming to grips
with the fundamental variables involved in meaningful learning” (Ausubel, 1962, p. 215)
Can we view the learning trajectories or a set of learning trajectories as an evolution of the meaning of a
curriculum? Certainly, the learning trajectory process allows the same students to determine what the next
sequential instructional activity will be, whether it is to overcome an obstacle or to form the next cognitive step in
their understanding of a concrete concept. Brousseau (1986) argues that
“Students start their learning process in an environment that is unbalanced and full of difficulties and
obstacles just like human society. The new knowledge comes from the skill to adapt to the new
circumstances and stimuli and a new reaction to the environment is the proof that a learning process has
taken place.” (cited in Manno, 2005, p.23)
Can a teacher working in cooperation with his/her students become the designer of a hypothetical learning
trajectory (HLT) in mathematics or a sequence of HLTs? While this is not the aim of the concrete study, I
nonetheless agree with Gravemeijer, Bowers & Stefan (2003)
“To start developing a sequence of instructional activities, the designer first engages in a thought
experiment to imagine a route the class might invent (Gravemeijer, 1999). Here, knowledge of the history
of mathematics as well as prior research concerning students' invented mathematical strategies can be used
to develop what Simon (1995) has called a Hypothetical Learning Trajectory, or a possible taken-as-shared
learning route for the classroom community.” (p. 52).
Corcoran, Mosher & Rogat (2009) also stress that there are common characteristics shared by curricula based on
research and the learning trajectories. The most important is that both maintain a close connection between the
tasks and the students’ mathematical thinking. Corcoran, Mosher & Rogat (2009) defined a learning progression
in science based on an NRC (2007) report: “[...] empirically grounded and testable hypotheses about how
students’ understanding of, and ability to use, core scientific concepts and explanations and related scientific
practices grow and become more sophisticated over time, with appropriate instruction.” (p. 8)
According to Freudenthal (1973) mathematics education should be a process of guided reinvention. Guided
reinvention for Freudenthal means a faithful reproduction of a scientific activity by the student, and is thus an
elaboration on the Socratic Method.
“Freudenthal saw the reinvention approach as an elaboration of the Socratic method and to illustrate the
Socratic method, he spoke of ‘thought experiments’, i.e.the thought experiment of teachers or textbook
authors who imagine they are teaching students while interacting with the man dealing with their probable
reactions. One part of the thought-experiment, therefore, lies in anticipating student reactions. The other
part consists in the design of a course of action that fits anticipated student reactions. More precisely, the
idea is that teaching matter is re-invented by students in such interaction” (Gravemeijer & Terwel, 2000, p.
786).
The method of guided reinvention is linked epistemologically with the Socratic Method (“maieftiki” in Greek) by
which teachers ask questions designed to elicit the correct answer and reasoning processes. The questioning
process thus helps students determine and extend their underlying knowledge. Guided reinvention differs
qualitatively form the Socratic method because the aim of the method is the students to completely participate,
undertaking active role by self-acting for the construction of meanings. “Though the student’s own activity is a
fiction in the Socratic Method, the student should be left with the feeling that it [i.e. understanding and insight]
arose during the teaching process; that it was born during the lesson, with the teacher only acting as midwife”.
(Freudenthal, 1991, p. 100-101, cited in Gravemeijer & Terwel, 2000, p. 787)
Gravemeijer (2004) also supports that
“The teachers can influence their students’ inventing activity only in a more indirect manner. To do so,
teachers [adding here: or the designers of a learning trajectory] will have to put themselves in the shoes of
the students. This asks for a shift from an observer’s point of view to an actor’s point of view (Cobb,
Yackel and Wood, 1992), where the actor is the student, and the observer the teacher. The challenge for the
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teacher—and also for us—is to try to see the world through the eyes of the student. How much these
worlds may differ may be illustrated by other pictures of Watson’s strip about Calvin and Hobbes.” (p.8)
(Figure I).
Many researchers argue that working in a dynamic geometry environment allows students to reinvent their
personal knowledge by interacting with the other members of the group or with the teacher (or the participating
researcher). For example, Furringhetti & Paola (2003) support that “in this case, the reinvention is guided, [...]
by the use of the [dynamic geometry] environment”.

( )
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qura 1a shows the world of Calvin and "Figure 1b shows how we see
’ hxs tiger. tnend Hobbes seen through his 6_‘1‘ri11 and his tiger dokl“ )
e\ es' (Gru emeijer, 2004, p-8) (C,ravemeijer, 2004, p.8)
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F igure L. “Actor’s point of view” vs “observer’s point of view”
(Copied from Bill Watson (1996), It’s a magical world, Kansas City: Andrew and McMeal, page 58 and 82, cited in Gravemeijer, 2004,
p-8) (adapted)

Looked at from this point of view, learning geometry is a human activity and learning becomes a process of
dynamic reinvention (Patsiomitou, 2012a, b, 2014), following on from the guided reinvention posited by
Freudenthal (1973).
Papert (1984) in his paper “Microworlds: Transforming Education” describes the experience of a little girl who
discovered number “zero” as she played with a microworld. This was a crucial point for her understanding, as she
understood that the command “S0” made the microworld stop moving. As Papert argues (1984, p. 81)
“I think she was excited because she had discovered zero. They tell us in school that the Greek
mathematicians, Pythagoras and Euclid and others, these incredibly inventive people, didn't know about
zero. [...]The fact that not every child discovers zero this way reflects an essential property of the learning
process. No two people follow the same path of learnings, discoveries, and revelations. You learn in the
deepest way when something happens that makes you fall in love with a particular piece of knowledge.”
These words of Papert made me think of my own process with my students over the years teaching in class. They
loved particular pieces of knowledge, presented in static or dynamic geometry software (DGS environment), with
its active- “alive” representations (e.g., Patsiomitou, 2005a, 2012a, 2018b, 2019a, b) that made different students
discover concepts in several different ways, at different times over the years. I also fell in love with the particular
incidents, which have played an important role in my thinking process since then. The role the active- “alive”
representations play in the learning trajectory which, though it may take several different routes to reach it, has
the same learning goal, made me think of a way to define what a dynamic active learning trajectory is, based on
the previous definitions of Simon (1995) and Clement & Sarama (2004, 2014): Dynamic Active Leaning
trajectories (Patsiomitou, 2018a, p. 244) are sequential instructional tasks and activities engaged in [with] a
learning goal and designed with dynamic active linking representations to engender mental linking
representations which help students develop their thinking in the specific math domain.
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II. A trajectory for the teaching and learning of the “Didactics of Mathematics”
[using ICT]

Biehler, Scholz, Strdfer, and Winkelmann (1994), in the Preface of “Didactics of Mathematics as a Scientific
Discipline”, argue that “Didactics of mathematics is an applied area of activity: As in engineering, (applied)
psychology, and medicine, the boundary between scientific work and (constructive) practice is — to say the least —
"fuzzy". Didactics of mathematics shares a certain type of (social) problem with the above-mentioned disciplines,
namely mathematics education; and it uses a multiplicity of methods” (p. 3).
Novék (2003) states that “Didactics of math is usually considered a special didactics (a subject, possibly branch
didactics), in a sense of educational theory in math. It is a science with its own structure, logic and the way of
thinking. We can distinguish four dimensions in it: content, pedagogical, psychological, and constructive.”(cited
in Blazkova, 2013, p.5)
Chevallard (2005) in his study “Steps toward a new epistemology in mathematics education” determines what
didactics is. As he argues, “It derives from the Greek didaktikos, which means (or meant) “skilful at teaching”.
[...] The idea behind didactics is that someone attempts to do something so that someone — generally, someone
else — learns something. The adjective “didactic” refers to a cultural posture existing from time immemorial”
(p-D.
Chevallard’s (2005) definition on didactics is included in the following paragraph:
“Didactics should, in my view, be defined as the science of the diffusion of knowledge in any social group,
such as a class of pupils, society at large, etc. This “definition” requires some comments. In the first place,
let me emphasise that its referring to a science is no writing automatism. It points to the fact that research —
in mathematics education, for example — is not enough. Science is both a process of gaining knowledge,
and the organised body of knowledge gained by this process. (It happens that, in didactics, the knowledge
gained and organised is about... the diffusion of knowledge!) Doing didactics is therefore not only just
“doing research”, and, consequently, producing pieces of knowledge; it is also, inseparably, organising
these pieces into a body of knowledge — didactics —, with an experimental (or clinical) basis and a
theoretical superstructure endowed with a paradoxical capacity, that of strengthening its empirical
foundation” (p.2) (italics by the author).
Tchoshanov (2013) defines Didactics “as a science, engineering, and art of teaching and learning” (p.18).
Tchoshanov (2013) agrees with Chevallard and other scholars that Didactics is not only the science, but also the
art of teaching and learning. Tchoshanov additionally considers didactics to be “an engineering of teaching and
learning”, namely “the analysis, design and construction of teaching products for learning” (p.17-18) (Figure II).
Tchoshanov (2013) also adopts D’Angelo’s (2007) view of didactics which defines it as “e-Didactics”, an ICT-
integrated didactics (p. 21).

Didactics

Didactics . . Didactics
as Didactics as
a Science a an Art
an Engineering

Figure I1. Didactics as a science, engineering, and art of teaching and learning (Tchoshanov, 2013, p.18) (adapted)

For the current work, I have adopted a blending, an amalgam of the aforementioned definitions.

For me ‘Didactics of Mathematics’ [using ICT] is the science and art of teaching and learning mathematics,
designing and implementing teaching and instructional products for the learning of mathematics in static or
computing environments, incorporating the content of the subject of mathematics, mathematics pedagogy, the
history of mathematics, and psychological theories of learning, teaching and human-computer interactions.

In the current monograph, my aim is to organize these instructional products into a body of knowledge, a
trajectory for the teaching and learning of the ‘Didactics of Mathematics” [using ICT]. Trying to synthesize
everything I have read or heard I found myself “entangled” in knowledge items that can interconnect, or
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contradict one another. A small part of this body of knowledge will be presented over the next five chapters. I
have tried to present the content incorporating many illustrating figures-- the radiance of thoughts and wisdom of
the cited scholars-- which is itself “piece of the art for Didactics of Mathematics”. It is thanks to their efforts and
ideas that the Didactics of Mathematics [using ICT] is a scientific discipline as important as Mathematics,
Pedagogy, Engineering, Medicine or Psychology.
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Chapterl.

1.1. What are Mathematical Objects?

Dorfler (2002) in his study “Formation of Mathematical objects as decision making” asserts that the question
“what is a mathematical object” can be answered from different viewpoints:

(a) Mathematical objects are “exemplified above an apriori existence outside of time and space and
independent of human thinking”, an answer offered by Plato (360 B.C.);

(b) Mathematical objects “are or arise from structures, patterns and regularities in the physical world
(Kitcher, 1984)”;

(c) Mathematical objects “are, or reflect, structures, patterns and regularities in and of human actions and
mental operations (like counting, measuring, comparing, moving), according to genetic epistemology of
Piaget” (p.340).

According to Dorfler “All these philosophical or epistemological positions have in common that they in one way
or the other take a referential view on the mathematical objects as they occur in mathematical texts and
discourse in general” (p.340).
When a student endeavors to interpret the word “mathematical object”, s/he could consider it through different
lenses: as something material we can perceive through our sensory system, as something that we can act on,
or/and as something we can think about. Mathematical objects are a particular kind of object (e.g., functions,
operations on functions, spaces of all kinds-for example Banach spaces, geometrical figures).
Numerous researchers have investigated the nature of mathematical objects and tried to define them (e.g., Davis,
1983, 1984; Piaget, 1985; Gray & Tall, 1991, 1994; Dubinsky, 1991a, b; Dubinsky & McDonald, 2001; Sfard,
1987, 1989, 1991, 1992; Tall et al., 2000). As we know, since Plato, a mathematical object has been considered
as something abstract. Portnoy et al. (2006) report Plato’s (360 B.C.) perspective on the figural constructions of
geometers as a connection between the figural objects (perceived objects) and the corresponding conceptual
objects (conceived objects):
“they are not thinking about these figures but of those things which the figures represent; thus it is the
square in itself and the diameter in itself which are the matter of their arguments, not that which they draw;
similarly, when they model or draw objects, which may themselves have images in shadows or in water,
they use them in turn as images, endeavoring to see those absolute objects which cannot be seen otherwise
than by thought. (Plato’s Republic, 360 B.C., p. 391, reported in Portnoy et al., 2006, p. 199).
A large amount of researchers pointed out that a mathematical object can be represented using different models
and representations (e.g., Chevallard, 1989; Janvier, 1987a, b, ¢) or semiotic systems (e.g., Duval, 1993, 1995a, b,
1999, 2000). As Duval (1993) argues “[...] on the one hand, the learning of mathematical objects cannot be other
than a conceptual learning and, on the other hand, it is only by means of semiotic representations that an activity
on mathematical objects becomes possible” (p. 38). Moreover, according to Duval (1999) "the only way of
gaining access to mathematical objects is using signs, words or symbols, expressions or drawings"(p.60).

On the other hand, what is a mathematical concept? In the words of Peirce (1894): “We think only in signs.
These mental signs are of mixed nature; the symbol-parts of them are called concepts [...]” (Peirce, 1894,
reported in Stewart, 2008, p. 12). In order to develop an understanding of a concept, the students have to create a
transitional bridge between the ‘external’ and the ‘internal or mental’ representation of this concept (e.g, Kaput,
1999; Goldin & Shteingold, 2001; Pape & Tchoshanov, 2001; Tchoshanov, 2013). Tchoshanov (2013) also
argues that “the development of students’ representational thinking is a two-sided process, an interaction of
internalization of external representations and externalization of mental images” (p. 74).

Moreover, students’ visualization of an object may differ from their perception of it, while the important thing
is to understand which mathematical concept or relationship is being represented. A computer microworld can
encourage students to interact with visually represented mathematical concepts and ideas, promotes dynamic
imagery and can help them to translate between mathematical representations or interpret information received
from a real world environment (e.g., Battista, and Borrow, 1997). Kaput (1991) reporting Vergnaud (1987)
explains and depicts the relation between mental representations (i.e. the signified) and material representations
or physically instantiated symbols (i.e. the signifier), for example pictorial, diagrammatic notations, mathematical
symbols, diagrams, graphic representations (Figure 1.1). According to Kaput (1991)
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“When using such material notations, we build and/or elaborate our mental structures in cyclical processes
that go in opposite directions”. (p. 57)[...] The directionality of the reference depends on the cognitive
operations involved, which in turn depend on the context, and hence is not fixed”.(p.59).

4 Project A

(write, speak,
computer
input, etc.)

MENTAL OPERATIONS PHYSICAL OPERATIONS|
(hypothetical) (observable)
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read (construct)
OR
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\_ have evoked )

Figure 1.1. Kaput’s (1991) relation between mental representations and physically instantiated representations (p. 57) (an adaptation for
the current study)

“A science that studies the life of signs within society is conceivable. It would be part of social psychology
and consequently of general psychology. I shall call it semiology (from Greek semeion “sign”). Semiology
would show what constitutes signs, what laws govern them.” (Ferdinand de Saussure (1857-1913), cited in
Danesi, 2004).
Peirce (1933) conceptualized a semiotic triad consisting of three components: sign, object, and interpretant.
Kaput (1991) clarifies Peirce’s (1933) semiotic behavior as involving an interaction among ‘“sign, object and
interpretant”, giving an example: “a numeral A-the sign, that refers to the numerosity of a set of objects B-the
object and the mind in which the integration takes place-the interpretant [...]” (p.59). Similarly, Duval (2000)
supports that “interpretant is emphasized in such a way [in the triadic conceptualisation of Peirce] that
representations are mainly mental phenomena and individual beliefs” (p.58).
In other words the sign/’representamen’ represents somebody or something in a given way or capacity, the
‘representamen’ conveys an equivalent sign in the mind of someone else. This equivalent sign we call the
‘interpretant’ of the initial sign and the ‘interpretant’ represents the ‘object’ or ‘idea’ of the first ‘sign’, which we
call a ‘referent’. A representamen is the ‘vehicle’ for the sign, the interpretant is the ‘sense’ and the referent is the
‘object’. A representamen thus corresponds to Saussure’s ‘signifier’—it is a perceptible object which functions as
a sign. A ‘referent’ is an object the representamen stands for. The image the referent creates in the mind of
another is the interpretant. According to Adda (1984)
“First of all, being abstract, the objects of mathematics that are treated, the properties and the relations that
are studied can never be seen (in contrast, for example, with the objects studied by the physical and natural
sciences) and so the distance between the signified and the signifiers plays here a role that is more crucial
than for any other type of discourse. [...] By studying the «misunderstandings» brought about by this
confusion between signifier and signified we have observed the responsibility they bear not only in a very
great number of errors but also in the impossibility of acquiring the concepts themselves” (p.58).
Saenz-Ludlow & Kadunz (2016) elaborated on Peirce’s semiotics. In their study “Constructing Knowledge seen
as a semiotic activity” they discuss issues of signs, sign use, and communication. As Saenz-Ludlow & Kadunz
argue
e “[...] semiotics elucidates the way knowledge and experience of mathematics students can co-construct
each other;
o [...] shows how students’ construction of mathematical knowledge is linked to successful communication
mediated by visible signs with their rule-like transformations” (p. 1).
Saenz-Ludlow & Kadunz (2016) used the vertices of two joined triangles to position the three components sign,
object, and interpretant (Figure 1.2). According to Saenz-Ludlow & Kadunz (2016)
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“In the counter-clockwise direction (represented by the interior triangle), the sign vehicle materializes
certain aspects of the real Object. [...] The sign-vehicle evokes an interpretant in the mind of the Person
who perceives it and who is willing to make some kind of sense. This interpretant gives rise to an object, in
the mind of that Person,[...] Peirce calls this object a dynamic object. This dynamic object is continually
modified in the mind of the interpreting Person [...] Put it differently, the sequence of dynamic objects is
the result of the Person’s ongoing process of conceptualization” (p. 9).
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Figure 1.2. The sign-vehicle mediates between the object and the interpretant (Sdenz-Ludlow & Kadunz, 2016, p. 9)

Signs can be classified into three categories: icon, index and symbol (Yeh & Nason, 2004, p. 4):
e “A “Sign” can only represent certain aspects of the object and in addition, it has aspects that are not
relevant to the object (Yeh & Nason, 2004, p.4; Cunningham, 1992).
e An “Icon” stands for an object by resembling or imitating it.
The key characteristic of an icon is similarity to its object. Its main function is to represent relations.
Icons represent things by imitation, [...] (Peirce, EP II, 17; NEM III, 887, cited in Bakker &
Hoffmann, 2005, p.338).
o An “Index” refers to the sign which is the effect produced by the object.
The main function of indices is to direct someone's attention to something, exactly as in everyday
language when we use the indices 'here', 'there', 'now', tomorrow', 'next’, or the letters we use in
geometry or the variables in algebra |[...](Peirce, 1.369; NEM III, p. 887, cited in Bakker &
Hoffmann, 2005, p.339).
e A symbol refers to objects by virtue of a law, rule or convention. In this case, language could be a
prototype of symbols. (Yeh & Nason, 2004, p.5).
A Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually an
association of general ideas, which operates to cause the symbol to be interpreted as referring to
that Object. (Peirce, EP 11, 292, cited in Bakker & Hoffmann, 2005, p.339)

Kadunz and Straesser (2004) define sign “as an entity, which stands for something else, which points to

something else” (p. 242). They add that “it is not the sign, which points to something, but the person looking onto

the sign who links it to the object”.

Johnson-Laird (2004) in his study “The history of mental models” presents an alternative view of signs: “Peirce
distinguished three properties of signs [...] First they can be iconic and represent entities in virtue of
structural similarity to them. Visual images, for example are iconic. Second, they can be indexical and
represent entities in virtue of a direct physical connection. The act of pointing to an object, for example, is
indexical. Third the can be symbolic and represent entities in virtue of a conventional rule or habit. A
verbal description, for example, is symbolic. The properties can co-occur: a photograph with verbal labels
for its parts is iconic, indexical, and symbolic” (p. 181)

I shall try to explain the meanings of symbol and sign with simple examples. If we ask the question “What is a

quadrilateral?”, while pointing at a figure of a quadrilateral on the board, the object quadrilateral becomes the

signifying form for the word “quadrilateral”. This is to say that the word acquires a meaning when we point to a

correspondent object. In other cases the word can be used to represent the object, in order to communicate with
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other persons. If we have for example written an article on quadrilaterals in which we try to explain the
mathematical meaning, the article is a sign which represents the object of our knowledge, which is something we
want to share with other people. A quadrilateral constructed on a computer screen or on the blackboard can be
characterized as an image, a diagram, a metaphor or a figure. According to Peirce, 'images’, 'diagrams’, and
'metaphors’ are three subcategories of Icons. Diagrams in mathematics are “Icons of a set of rationally related
objects” in the words of Peirce.
"[...] a Diagram is an Icon of a set of rationally related objects. By rationally related, I mean that there is
between them, not merely one of those relations which we know by experience, but know not how to
comprehend, but one of those relations which anybody who reasons at all must have an inward
acquaintance with. This is not a sufficient definition, but just now I will go no further, except that I will say
that the Diagram not only represents the related correlates, but also and much more definitely represents
the relations between them, as so many objects of the Icon." (Peirce, 1906, 'PAP [Prolegomena for an
Apology to Pragmatism]', NEM 4:316, c. 1906, cited in Kadunz and Straesser, 2004, p. 245).
Building on the aforementioned researchers’ viewpoint, one might wonder: Are the students able to grasp logical
operations on abstract mathematical objects? What does it mean to obtain access to an abstract mathematical
object or a mathematical entity? What about their conceptions of geometrical objects?

1.2. Geometrical Objects: Drawings, Figures, Constructions

A number of researchers (for example Dina van Hiele, in Fuys et al, 1984; Parzysz, 1988; Fischbein, 1993;
Bartolini Bussi, & Mariotti1998; Mariotti, 1995, 1997; Pratt & Ainley, 1997; Jones, 1998; Mesquita, 1998;
Hollebrands, 2007; Battista, 2007; Patsiomitou, 2009a, b, 2011, 2012a, b) report distinguish among figures,
constructions, drawings and diagrams when they report geometrical representations.
Dina van Hiele made clear in her writings the distinction between the ‘drawing’ and the ‘construction’ of a shape.
She distinguished the notion of construction from the notion of drawing in order to express the difference
between the images that a student constructs (in a paper/pencil environment) when s/he tries to externalize his/her
mental representation, using geometry rules (or not in correspondence). According to Dina van Hiele “the teacher
[in order] to reach his goal [has] to refine [to his/her students] that there is a clear distinction between the drawing
of figures and the constructing of figures” (Fuys et al., 1984, p. 36).
Laborde (1993 quoted in Hollebrands, 2007) describes the drawing as referring to the material entity, and the
figure as the set of discursive representations and diagrams which links the drawing to the abstract mathematical
meaning (Hollebrands, 2007, p.167). Pratt & Ainley (1997, p.296) also argue that “a drawing incorporates many
relations which are to be disregarded when considering the corresponding figure [...]. Furthermore, a drawing is
fixed as a single case, whereas the figure is often intended to represent an infinite set of cases.” Pratt & Ainley
use the term “construction [...] as a way of incorporating both the drawing and the figure” (p.297).
Mesquita (1998) considers that the representation of a figure or a situation in geometry can suggest two different
possibilities:
o The possibility to conceive “its ‘finiteness’, in the sense of finite and diversified forms (Gestalten) in its
spatio-temporality”;
e The possibility to conceive “its ‘ideal objectiveness’ detached from the material constraints linked to
external representation” (p. 185-186).
This consideration is very close to the notion of figural concepts formulated by Fischbein (1993) in his study
“The theory of figural concepts”. Fischbein argues that:
“The objects of investigation and manipulation in geometrical reasoning are then mental entities, called by
us figural concepts, which reflect spatial properties (shape, position, magnitude), and at the same time,
possess conceptual qualities -like ideality, abstractness, generality, perfection” (p. 143).
Building on Fischbein’s figural concepts, Dvora and Dreyfus (2004) declare that
“the conceptual nature of the geometrical figures includes characteristics such as completeness, abstraction
and generalization while the figural nature includes characteristics such as colour, size and shape. The
conceptual and figural characteristics used when proving depend both, on the conceptual system that
includes abstract ideas and concepts and on the figural system that includes mental representations and
images.”(Dvora &Dreyfus, 2004, p. 311).
Parzysz (1991) in his study “Representation of space and students’ conceptions at high school level” mentions the
main purposes which can be fulfilled by drawings:
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o “they illustrate definitions or theorems |[...]. This is due to the nature of geometry [...], whose objects are
obviously linked with material realizations (drawings, or models which can be drawn).
e they sum up a complex set of information: the "figure", drawn in order to solve a geometrical problem,
allows a simultaneous glance at most of the data present in the wording.
e they help in conjecture: the "figure" also makes it possible to suggest potential relations between its
elements, which will have to be demonstrated afterwards [...]” (p. 576).
A crucial issue concerning geometrical meanings relates to the nature of the geometric reasoning students employ
to solve construction problems. During the problem-solving process, students develop different kinds of
reasoning including inductive, abductive, plausible and transformational reasoning (e.g, Harel & Sowder, 1998;
Peirce, 1992; Simon, 1996). Mariotti (1997) as far as geometrical reasoning is concerned, distinguishes between
geometrical figures as mental objects and visual images. Geometrical reasoning deals with a
"mixture of two independent, defined entities that is abstract ideas (concepts), on the one hand, and sensory
representations reflecting some concrete operations, on the other" (Fischbein, 1993, p. 140).
The perception of a visual image of a geometric object does not coincide with the mental object a student has in
mind. For example, the orientation of the geometrical object could play an important role to students
understanding of the geometrical figure. I use an example every year with my students, in the light of the
following episode that occurred one year in class. I was very surprised when, as I was using a material classroom
triangle tool (a right and isosceles triangle-tool) to investigate their understanding of “triangles’ classification”, a
student answered as follows (Figure 1.3):

- /

Figure 1.3. A right and isosceles material-triangle

Researcher: What kind of triangle is this?”
Student: It is an isosceles triangle.
Researcher: (Turning the triangle through 90 degrees) Now, what kind of triangle is this?
Student: It is a right-angle triangle
Researcher: So, what kind of triangle is it?
Student: ....It depends on the way you hold it!
It was the same object, but the orientation of the right angle played an important role in my student’s answer. The
way the student answered was also affected by his mental image of the right triangle, which Mesquita calls
“prototypical figure” (1998, p. 189) which is to say an internal representation recalling a prototype image (e.g.,
Hershkovitz, 1990) that s/he has shaped from a textbook or other authority.
Mesquita (1998) states that the term “figure” can be considered “as a synonym for external and iconical
representation of a concept or a situation in geometry. A concept in the words of Fischbein (1993) “expresses an
idea, a general, ideal representation of a class of objects, based on their common feature. In contrast, an image
(we refer here to mental images) is a sensorial representation of an object or phenomenon” (p. 139)
Parzysz (1988) in a similar way defined a drawing as a material representation of a geometrical object and a
figure as the “text defining it [the geometrical object]” (p. 80).
Fischbein (1993, p. 139) explains how one can prove a known geometrical proposition “using descriptions of
apparently practical operations”: “consider the isosceles triangle ABC with AB = AC. We want to prove that <B
= <C” (Figure 1.4).
“In this proof one has used a certain amount of knowledge expressed conceptually: the two sides AB and
AC have been declared to be equal. One has used the concepts of point, side, angle and triangle. One has
mentioned verbally the process of reversion. But, at the same time, one has used figural information and
figurally represented operations - mainly the idea of detaching the triangle ABC from itself, reversing it
and superposing it upon the original one” (Fischbein, 1993, p. 140) [...] What we assume is that, in the
special case of geometrical reasoning, one has to do with a third type of mental objects which
simultaneously possess both conceptual and figural properties. (Fischbein, 1993, p.144).
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Figure 1.4. Reversing and superposing the triangle ABC

Figure 1.4 illustrates the reversing and superposing of the triangle in Fischbein’s example mentioned above
(which I created to make the proof obvious).

In other words it is crucial for the students’ cognitive development to improve their ability to transform the visual
image or drawing they perceive, into a construction with concrete properties. The investigation of problems in the
dynamic geometry environment provides the feedback for the students to acquire a theoretical background,
necessary for the conceptual development in Euclidean geometry.

1.3. Diagrams, Diagrammatic Representations and Diagrammatic Reasoning

Diagrams are an important medium (or ‘vehicle’, to use Peirce’s terminology) in mathematics.
They are visual representations that can transfer information from the problem into a static or dynamic
environment. Mesquita (1998) states that the term “diagram” sometimes is used in the [same] sense” we use the
term figure (p 183). Bakker & Hogffmann (2005) argue that geometrical figures are diagrams as they represent
relations among the lines and the points-vertices, indicated by letters. According to Bakker & Hogffmann (2005):
“Peirce defines a 'diagram’ as a sign "which is predominantly an icon of relations and is aided to be so by
conventions. Indices are also more or less used." (Peirce, 4..418, 1903). Thus, a diagram is a complex sign
which includes icons, indices, and symbols (as indicated by the hint at conventions). Most important,
however, is its iconic character, which results from the fact that a diagram, first of all, is supposed to
represent relations. Thus, geometrical figures such as triangles are diagrams because they represent
particular relations of lines and vertices that are indicated by letters. Logical propositions are diagrams,
because they represent certain relations of other propositions, symbols and indices (e.g. the modus
ponens)” (Bakker & Hoffmann, 2005, p. 339).
Furthermore, scholars use the terms “image” or “metaphor” to refer to the material diagram we need to denote
relations among objects (or to turn a verbal or symbolic expression into a different representation (mental or
iconic). Kadunz and Straesser (2004) in their study “Image-Metaphor-Diagram: Visualization in Learning
Mathematics” define
e “images as potential representations (i.e.: a not necessarily material means to speak about something),
which can - by means of analogy - present a multitude of relations. [...] images - as analogous
representations - offer the heuristical part of learning [...] an image relates to something, it 'denotes’
something.
e metaphor as a pattern, which transports the meaning of a word into a meaning, which is valid only by
means of a mental comparison (Du Marsais, 1730, cited in Kadunz and Straesser, 2004, p. 243)
Diezmann (2005, p.281) considers that diagrams have three key cognitive advantages in problem solving:
e “They facilitate the conceptualisation of the problem structure, which is a critical step towards a
successful solution (van Essen & Hamaker, 1990)”.
e “They are an inference-making knowledge representation system (Lindsay, 1995) that has the capacity
for knowledge generation (Karmiloff-Smith, 1990)”.
e “They support visual reasoning, which is complementary to, but differs from, linguistic reasoning
(Barwise & Etchemendy, 1991)” (p. 281).
Reasoning through a diagram is called diagrammatic reasoning, namely diagrammatic reasoning is reasoning
through a diagram. Students often fail to generate accurate diagrams in mathematics as they do not have
experience or competence in what Peirce (1903), Bakker & Hoffman (2005) and others call “diagrammatic
reasoning”. For Peirce, diagrammatic reasoning involves three steps (Bakker & Hoffman, 2005):
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o “The first step is to construct a diagram |[...] Such a construction of diagrams is motivated by the need to
represent the relations that students consider significant in a problem. This first step may be called
'diagrammatization”’.

o “The second step is to experiment with the diagram (or diagrams). Any experimenting with a diagram is
being executed within a representational system and is a rule or habit-driven activity. [...]”

o “The third step is to observe the results of experimenting and reflect on them [...]” (pp. 340-341).
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go to page 4

Figure 1.5. A metaphor for the Proposition 5 (the algebraic identity a’*b?), from Euclid’s “Elements”, BOOK II, created by the author
in a DGS (Patsiomitou, 2008d, p. 199)

And although students have knowledge, they cannot use it effectively to represent a diagram that stimulates their
ability to make sense of mathematics. This is to say that diagrams as both representations encourage students to
reflect both on the structure of the problem they have been presented with, and on their own pre-existing
mathematical knowledge—meaning that the diagrams the students produce can serve as a window through which
to view their mathematical strengths and weaknesses. However, while diagrams can help students to
conceptualise a problem, they cannot make up for a lack of fundamental mathematical knowledge. Dvora &
Dreyfus (2004) similarly support that diagrams in geometry can become obstacles that can be divided in three
types:
e  Particularity of Diagrams: [...] This obstacle causes students to be trapped by the one case concreteness
of an image or diagram which may contain irrelevant details or may even introduce false data
e Prototypical Diagrams as Models: [...] a prototypical image may induce inflexible thinking thus
preventing the recognition of a concept in a non-standard diagram.
e [nability to "See" a Diagram in Different Ways: [...] It is only at level 2 [van Hiele level —analysis] that
the student can focus on parts of a diagram and analyze properties of figures. (p.311-312)
Dvora & Dreyfus, suggest that:
“In order to prevent the development of misconceptions regarding this phenomenon, teachers should be
equipped with appropriate tools for working with their students [...]” (p.318)
Figures 1.5 and 1.6 are snapshots of a diagram that I created in Geometer’s Sketchpad (Jackiw, 1991) to
represent in an interactive way the Proposition 5, in Euclid’s “Elements”. The conceptualization of its
construction is reported in details in the study “Do geometrical constructions affect students algebraic thinking”
(Patsiomitou, 2008c) and in extended version in the study “The impact of Structural Algebraic Units on students’
algebraic thinking in a DGS environment” (Patsiomitou, 2009a).
“Netz’s (1999) study of the practices of lettering diagrams in Greek geometry allows the observation that
Greek geometers would produce their diagrams at the same time that they would conceive their proofs. In
other words, the diagram would not be drawn at the end to merely illustrate the written proof; nor would
the diagram be drawn in its entirety before the production of the argument. Rather, the Greeks would use
the argument to complexify a diagram by adding new constructions, or at least complexify the reading of a
diagram by adding new signs to focus attention on previously ignored features of a diagram” (Herbst,
2004, p. 134).
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Figure 1.6. Interaction with the dynamic diagram (Patsiomitou, 2008c, p. 199)

Scholars have debated the effectiveness of diagrams in reasoning. Barwise and Etchemendy (1998) conclude that
diagrams play an important role in reasoning as a diagram can assist students visualize the steps of a proof.
[...] Diagrams, like sentences, carry information: they carve up the same space of possibilities, though
perhaps in very different ways.|[...] Maps. charts. diagrams, and other nonsentential forms of representation
can be and often are, of equal importance to sentences. (p. 109, cited in Sinclair, 2001, p. 27).
Herbst (2004) has proposed four modes of interaction with diagrams: empirical, representational, descriptive,
and generative; these are also reported and clarified in the study of Gonzalez & Herbst (2009, p. 157).
“Within the empirical mode of interaction, a student uses proximal, physical experiences with diagrams as
resources for making statements about geometric objects of discourse. These statements are the symbols
that point to the properties of diagrams as referents. Conversely, within the representational mode, the
agent uses distal physical experiences (oral declarations and questions) to describe how diagrams as
symbols represent abstract geometric objects of discourse. These two modes of interaction, the empirical
and the representational, portray two opposite views about how students may work with diagrams when
solving problems in geometry.[...]”.
Michal Yerushalmy (2005) in her study “Functions of Interactive Visual Representations in Interactive
Mathematical Textbooks” argues that
“While any diagram presents information and point of view (thus implicitly engaging the viewer in
meaningful interpretations), the interactive diagram [like the interactive math applets accessed across the
Web], explicitly requires from the viewer to take action, to change and inscribe the diagram within given
limitations” (p.228).
Gadanidis (2000) also argues that “well designed interactive applets enable students to engage in investigations
of mathematical relationships without having to spend a lot of time learning how t use the tool that creates the
various representations of these relationships”(p.1).
“Building with blocks” (Figures 1.7a, b) is a math applet provided by the Freudenthal Institute for Science and
Mathematics Education (FI). It is available from the Institute’s website (Webpage [6]). Students of any age can
use this applet to play and develop their spatial reasoning. Parts of the diagram are hidden, but the student can
change the orientation of the diagram to better view another option. Students can also add or remove blocks to
“build” a construction (e.g., a castle).
Boon (2006) in his article “Designing didactical tools and micro-worlds for mathematics education” has drawn a
distinction between three different kinds of applets:
e “Applets that offers a 'virtual reality'. These applets are used for representing and simulating real-world
objects and processes that form the basis of mathematical reasoning.
o Applets that facilitate the use of 'models’. These applets offer interactive models that can be helpful in
building and understanding the more abstract mathematical objects and concepts.
e Applets that offer a mathematical microworld. In these applets mathematical objects like formulas,
equations and graphs can be constructed and transformed” (p.1).
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Figures 1.7a, b. “Building with blocks” math applet (Freudenthal Institute for Science and Mathematics Education) (Webpage [6])

According to Boon (ibid.) “the block building environment [Figures 1.7a, b] gives the user freedom in making
his own constructions, but the environment also enforces a cubic structure that draws the attention more easily to
orthogonal co-ordinates as a means to model space” (p.2).

Students can visualize the effect of modifying the coefficients of the trigonometric functions in the NCTM
interactive diagrams (Figures 1.8 a, b, ¢, d). This action on interactive diagrams helps students to acquire a direct
perception of transformations of the mathematical objects (Patsiomitou, 2006g, in Greek); they also prompt the
students to examine the role which the coefficients play in the graphic representation of the trigonometric
function.
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Figures 1.8 a, b, ¢. Trigonometric functions and their graphic representations (Webpage [7])

Teachers can use the interactive applets to create an interactive assignment. Students can use them to scaffold
their understanding: the applets let them focus their attention on the modified objects and the reasons for the
modifications; most importantly, the students can save time as they can experiment at home--the diagrams are
web-based and easy to understand.

The NCTM interactive math applet (Figures 1.9.a, b, ¢, d) allows students to modify the graphic representations
and trace the changes to the families of the quadratic function which result from the modification of its
coefficients. The coefficients are the same colour as the sliders, which help the students to focus and directly
perceive the role played by the coefficients of the functions in relation to the graphic representation. They can
articulate this, thanks to the direct manipulation of the sliders and the effect they have on the interactive diagram.
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Figures 1.9 a, b, c. Investigating the families of functions (Webpage [8])

The same is true in the graphs below (Figures 1.10 a, b, ¢, d); the student can construct a graphic representation
from the three points that are the roots of the polynomial function. Then, s/he can view the graphic representation
of its derivative, as well as the calculation of the area, representing a definite integral.
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Sinclair (2001) in her Thesis “Supporting Student Efforts to Learn with Understanding: An Investigation of the
Use of JavaSketchpad Sketches in the Secondary Geometry Classroom” argues that “if we expect students to
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develop [reasoning] based on a given diagram, we must ensure that they are able to interpret what is shown
(p.27)[...] The challenge will be to use or create [diagrams] that help students concentrate on important details
(p-28).

Sinclair (2001) concludes that “[her] study results show that JavaSketchpad [pre-constructed applets] motivates
and engages students. It helps students strengthen their geometric thinking skills-especially at the visualisation
and analysis levels, by supporting student exploration, visual reasoning, and communication activities” (p. 136).
On the other hand, Sinclair (2001) states that “colour and motion [of pre-constructed diagrams in JavaSketchpad]
attracted the students’ interest, but this was not always enough to help them interpret visual details. Students
needed to be prompted to notice particular features and relationships™ (p. 134). Generally speaking, students face
it difficult to notice relations among objects in a diagram, whether it is constructed in a static of in a dynamic
environment. This is because the students are working in the spatio-graphical field of geometry, while their
teachers are teaching them --and expecting them to answer-- in the “axiomatic” or theoretical field of geometry.
This is in accordance with what Parzysz (2002) and Jore & Parzysz (2005) assert. The way of teaching geometry
at the beginning of junior high school can be distinguished between the:

e ‘spatio-graphical’ geometry (Parzysz, 2002) [...which] is a formalisation of the physical space; in this
geometry, the objects (e.g., models, drawings on a sheet of paper, or a blackboard, or a computer screen
have a physical nature); the actions are actually carried out on the objects [...];

e ‘proto-axiomatic’ geometry (Parzysz, 2002) can be considered as a geometry partially theorized, the
implicit reference of which is a Euclidian axiomatic theory[...]. Its objects (configurations) have a
theoretical nature; the actions refer to these theoretical objects and the validations are of a ‘hypothetic-
deductive’ type (mathematical proofs) (Jore & Parzysz, 20035, p.113)

T

T question answer

SG

SG question result

Figure 1.11. Tllustration of the activity of the problem solver (Laborde, 2005, p. 162) (adapted)

Laborde (2005) in her study “The hidden role of diagrams in students’ construction of meaning in geometry”
distinguishes between robust and soft diagrams created in a DGS environment, placing emphasis on difficulties of
students to connect their construction with the theory of geometry. As Laborde claims “diagrams in two-
dimensional geometry play an ambiguous role: on the one hand, they refer to theoretical geometrical properties,
while on the other, they offer spatio-graphical properties that can give rise to a student's perceptual activity” (
Laborde, 2005, p. 159)
In a DGS, students can construct either a robust or a soft diagram. In a DGS milieu “robust constructions are
constructions for which the drag mode preserves their properties” (Laborde, 2005, p.22). Laborde (2005) made a
distinction between the domain of geometrical objects and relations (which she denoted by T, referring to
Theoretical) and that of spatio-graphical entities (which she denoted by SG, referring to Spatio-Graphical),
instantiated by diagrams on a static or a dynamic environment.
Laborde (2005, p.162) illustrates the activity of the problem solver according to this view in the case of a
problem that starts and ends in the T domain (Figure 1.11). Laborde (2005) constructed the diagram to explain
that the way in which figures /or diagrams are used in school problems requires “the use of both domains and
several moves between them” (p.162).
According to Laborde, a continuous interplay between the T domain (e.g. a theoretical question posed by the
teacher) and the SG domain (e.g. an experimental process in a DG environment relating to the issue) scaffolds
students’ answer in the theoretical field.
“[...] our thinking is performed upon signs of some kind or other, either imagined or actually perceived.
The best thinking, especially on mathematical subjects, is done by experimenting in the imagination upon a
[dynamic] diagram or other scheme, and it facilitates the thought to have it before one's eyes. (Peirce,
NEM 1, p.122, cited in Bakker & Hoffmann, 2005, p.335).
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Paraphrasing Peirce’s argument, I think that dynamic diagrams facilitate thought “to have it before our eyes”.
Dynamic diagrams make it easier than static diagrams to experiment, since students are provided with feedback
(or receive feedback) from the on-screen results.

The reason for this is the continuous interplay between the spatiographical and theoretical aspects of the
environment, which helps students to overcome the expected difficulties. These difficulties also have to do to the
students’ competence at relating procedural knowledge with conceptual understanding.

1.4. Kinds of Knowledge Pairs

High-school students’ ability to rightly and accurately construct a figure using static or dynamic means relates to
two factors: whether they know how to construct it, and whether they know why the concrete method of
construction results in a figure with concrete properties and not a drawing—which is to say a shape that looks like
a figure. The answer to the question “How do we construct it?” relates to what is called procedural knowledge.
The answer to the question “Why to construct it in this way?” relates to what is called conceptual knowledge.
Which is to say there is a duality or polarization in mathematical knowledge between “Knowing how” and
“Knowing why” (Scheffler, 1965; Hiebert & Lefevre, 1986). Even and Tirosh (2008) state that the notions
“knowledge” and “understanding” are the focal interest and subject under analysis of many researchers.
According to them:
“Different forms of knowledge and various kinds of understanding are described in the mathematics
education literature (e.g., instrumental, relational, conceptual, procedural, implicit, explicit, elementary,
advanced, algorithmic, formal, intuitive, visual, situated, knowing that, knowing how, knowing why,
knowing to)” (p. 206).
Many theorists and researchers in the field of developmental psychology, educational psychology, cognitive
science etc. have for various reasons investigated why students cannot apply their previous conceptual knowledge
(in other words, knowledge of the concepts and the relations among them) to solve unfamiliar problems, or use
concrete concepts to accomplish procedures (e.g., Byrnes & Wasik, 1991; Kitcher, 1984; Hiebert, 1986; Rittle-
Johnson, & Alibali. 1999; Carpenter, 1986; Carpenter et al.,1999; Kadijevich, & Haapasalo, 2001; Schneider &
Stern, 2010; Rittle-Johnson, & Schneider, 2014). According to Hiebert & Lefevre (1986):

e “Conceptual knowledge is characterized most clearly as knowledge that is rich in relationships. It can be
thought of as a connected web of knowledge, a network in which the linking relationships are as
prominent as the discrete pieces of information. Relationships pervade the individual facts and
propositions so that all pieces of information are linked to some network In fact, a unit of conceptual
knowledge cannot be an isolated piece of information; by definition it is a part of conceptual knowledge
only if the holder recognizes its relationship to otherpieces of information. The development of
conceptual knowledge is achieved by the construction of relationships between pieces of information.”
(Hiebert & Lefevre, 1986, pp. 3-4).

e “Procedural knowledge of mathematics encompasses two kinds of information. One kind of procedural
knowledge is a familiarity with the individual symbols of the system and with the syntactic conventions
for acceptable configurations of symbols. The second kind of procedural knowledge consists of rules or
procedures for solving mathematical problems. Many of the procedures that students possess probably
are chains of prescriptions for manipulating symbols” (Hiebert & Lefevre, 1986, pp. 7-8).

Haapasalo and Kadijevich (2000) suggest the following “dynamic” characterizations for conceptual and
procedural knowledge (cited in Haapasalo, 2008, p.55):

e “Procedural knowledge denotes dynamic and successful utilization of particular rules, algorithms or
procedures within relevant representation forms. This usually requires not only the knowledge of the
objects being utilized, but also the knowledge of format and syntax for the representational system(s)
expressing them.

e Conceptual knowledge denotes knowledge of and a skilful “drive” along particular networks, the
elements of which can be concepts, rules (algorithms, procedures, etc.), and even problems (a solved
problem may introduce a new concept or rule) given in various representation forms”.

Baroody, Feil & Johnson (2007) define procedural knowledge as the “mental actions or manipulations, including
rules, strategies, and algorithms, needed to complete a task.” (p. 123).
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In the words of Schneider & Stern (2010, p. 179) “procedural knowledge can be automatized to different degrees,
depending on the extent of practice. Automatized procedural knowledge can be used with minimal conscious
attention and few cognitive resources (Johnson, 2003)”.

The point of investigation is: how conceptual and procedural knowledge influence each other? What kind of
knowledge must be developed first during the teaching and learning of mathematics if students are to understand
mathematics? Do students have to learn the concepts before they apply them during procedures or vice versa?

In my opinion, procedural knowledge can support the conceptual knowledge and vice versa. How does this
occur?

The students use their conceptual knowledge to construct a figure in different ways. For example, they can use a
definition or a theorem as the basis for the construction of an equilateral triangle: thus, according to the
definition, an equilateral triangle is a triangle all of whose sides are congruent. This means that students can use
their rulers to construct a triangle with three equal sides. Alternatively, if the student knows the theorem “an
equilateral triangle has three angles equal to 60 degrees”, they can also use the information incorporated in it and
use a protractor to construct a triangle whose angles are equal to 60 degrees. In the DGS software, students have
to cooperate with the environment in order to accomplish their constructions. They cannot touch the tools, but
they can create constructions using the mouse in accordance with their mental representation.

However, if a student has not grasped the concept of “equilateral triangle” but knows how to construct an
equilateral triangle, then s/he can perceive the properties of the figure and can be guided, through proper
questioning, to discover and formulate them (e.g., Patsiomitou, 2008a).

One of the cognitive aims in my teaching is my students to actively construct the properties of a figure and the
connections between them -in other words I want them to be able to link conceptual and procedural knowledge.
In the table below, I present an example of the conceptual and procedural knowledge needed to construct a
parallelogram in a DGS environment, The Geometer’s Sketchpad (Patsiomitou, 2012a, p.125, in Greek).

Table 1.1: Construction of a parallelogram

Procedural knowledge Conceptual knowledge

1. Constructing a segment AB The following Propositions in Euclid’s

2. Constructing a point C above | “Elements”, BOOK I, support students’
segment AB conceptual understanding.

3. Constructing a parallel line from | Proposition 27: If a straight-line falling across
point C to AB. two straight-lines makes the alternate angles

4. Joining points A and C with a | equal to one another then the (two) straight-lines
segment. will be parallel to one another. (reported in

5. Constructing a parallel line from | Fitzpatrick, 2007, p. 30) (Figure 1.12)
point B to AC. Proposition 31: To draw a straight-line parallel to

6. Constructing the intersection point | a given straight-line, through a given point.
D (reported in Fitzpatrick, 2007, p. 33)

7. Hiding the parallel lines Proposition 33: Straight-lines joining equal and

8. Joining points C and D, and D and | parallel (straight lines) on the same sides are
B, with segments CD and DB. | themselves also equal and parallel. (reported in

(Figure 1.13a, b, ¢, d, e ) Fitzpatrick, 2007, p.35)
Definition 23 (xy’) in Euclid Elements, BOOK I :
c 5 / Parallel lines are straight-lines which, being in

the same plane, and being produced to infinity in
each direction, meet with one another in neither
(of these directions). (reported in Fitzpatrick,
2007, p.7)
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Figure 1.12. The concept of parallelism [Proposition 27 (k") in Euclid Elements, BOOK I]
(Fitzpatrick, 2007, p.30)
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Figures 1.13a, b, ¢, d, e, f: A step-by-step construction of a parallelogram —[and] a script describing the process of
constructing a parallelogram

The steps of the construction are also described in a script (a custom tool created using Sketchpad), as it is
illustrated in the Figure 1.13f. Lopez-Real and Leung (2004) argue that DGS environments promote links
between procedural and conceptual knowledge. In order to construct a parallel line using the software, one has to
select two objects: a straight object (for example a line) and the point from which the line parallel to the initial
line will be drawn. I intentionally familiarize the students with the software, “‘step by step’, in parallel with the
corresponding theory” (Mariotti, 2000, p. 41): all too often, students make purely mechanical use of the software,
which makes it impossible for them to understand the logic underlying the command options. Furthermore they
would not be able to construct the connections between the spatiographical field and the theoretical field of the
software (Laborde, 2005). Through the procedure of constructing a perpendicular or parallel line, the student is
led to understand the necessity of two given objects: the point and the straight object (line). Therefore, is the
construction that leads the student to “shape” the respective notion (for example the meaning of perpendicularity
or parallelism) as well as their connection to the Euclidean proposition. Furthermore, the construction of the
parallel line using the software’s tools (point and straight line) is related to the notion of the figure as theoretical
object. In this case, students use the definition of the parallelogram to construct the figure. The construction is a
drawing (or a perceptual object), since the starting point is random and the lines drawn do not necessarily form a
parallelogram, or dragging may mess the construction up as it does not maintain its properties.
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The notion of “knowledge” is closely related to the notion of “understanding”. Skemp (1978) was a pioneer who
investigated "What does it mean to understand mathematics?" (Byers & Herscovics, 1977, p. 24). Skemp (1978)
presented his view on the distinction between two kinds of understanding in mathematics: relational and
instrumental.

e Relational understanding is described as knowing both what to do and why. This kind of understanding
denotes the ability of the student to infer particular rules or procedures by considering some general
relationships.

o [Instrumental understanding entails “rules without reasons” (Skemp, 1978, p. 9). This kind of
understanding denotes the ability of the student to apply /utilize rules without knowing why they work
(see also Even and Tirosh, 2008, p.206; Haapasalo, 2013, p.2).

Skemp (1978) proposes three advantages for the “instrumental understanding”:

o “Instrumental mathematics is usually easier to understand [...]

e The rewards are more immediate and more apparent |...]

e One can often get the right answer more quickly and reliably by instrumental thinking [...]” (p.12)
Skemp (1978) also proposes four advantages for “relational understanding”:

e "It is more adaptable to new tasks [...]

e [t is easier to remember [...]

e Relational knowledge can be effective as a goal in itself [...]

o Relational schemas are organic in quality"[...] “very much like a tree extending its roots” (p.12-13)
Moreover, ‘logical understanding’ (Skemp, 1986) “is the ability of the student to reason deductively or the ability
to connect mathematical symbolism with relevant mathematical ideas and to combine these ideas into chains of
logical reasoning” (p.166). Given that these kinds of knowledge differ so much, he argues, should we perhaps
distinguish between instrumental mathematics and relational mathematics, in the same way we do between
instrumental and relational understanding? Looked at thus, learning instrumental —mathematics entails
learning a number of maps showing us how to get from A to B, while learning relational mathematics means
constructing a conceptual structure that will allow us to generate an infinite number of ways of getting from any
A to any B within a structure. White and Mitchelmore (2002) in their study “Teaching and learning
mathematics by abstraction” discuss Skemp’s ideas (1986) and “how concepts are formed through an abstraction
process” (p.236). According to Skemp (1986) abstracting is "an activity by which we become aware of
similarities [...] among our experiences" and a concept as "some kind of lasting change, the result of abstracting,
which enables us to recognize new experiences as having the similarities of an already formed class" (p. 21 cited
in White and Mitchelmore, 2002, p. 236).

Skemp also distinguished between “primary and higher-order concepts, explaining that higher-order concepts are
abstractions of earlier abstractions and so progressively removed from experience of the outside world" (1986, p.
24, cited in White and Mitchelmore, 2002, p. 237).

In one way or the other, researchers have developed theories that seek to explain how students develop abstract
processes which encompass an experience broader than the primary concept developed previously. For example,
“green” or “red” is a primary concept developed from sensory experience while “colour” is a secondary concept,
developed through a generalization, a synthesis of the primary concepts which ultimately becomes an abstract
concept which incorporates all the primary concepts (Skemp, 1986, p. 24). “Generalizing, synthesizing and
abstracting” is a sequence also for Dreyfus (1991) that a student has to follow as “abstraction may be seen as a
many-to-one function where generalisations about the base contexts are synthesized to form a new abstraction”
(White and Mitchelmore, 2002, p. 236).

AO6..O

Figure 1.14. Links between an idea and Ci concrete objects (White, & Mitchelmore, 2002, p. 239) (adapted)
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White and Mitchelmore (2002) illustrate with figures how they conceive the links between an “idea” and Ci
concrete objects, based on Skemp’s (1986, p.20) notion of concept. As White and Mitchelmore make clear “The
word "idea" [...] could refer to any mathematical object such as a concept, an operation or a relation[...] These
links enable the learner both to recognize the idea in each Ci and to call up a variety of contexts in which the
abstract idea is found” (p.239) (See also Figure 1.14).

White and Mitchelmore (2010) developed a teaching model called “Teaching for Abstraction” which consists of
four phases:

e “Familiarity. Students explore a variety of contexts where a concept arises, in order to form
generalizations about individual contexts and thus become familiar with the underlying structure of each
context.

o Similarity. Teaching then focuses on helping students recognise the similarities and differences between
the underlying structures of these contexts.

e Reification. The general principles underpinning the identified similarities are drawn out, and students are
supported to abstract the desired concept into a mental object that can be operated on in its own right.

e Application. Students are then directed to new situations where they can use the concept.” ( cited in
White, Wilson & Mitchelmore, 2012, p.761)

Pirie and Kieren (1989) characterize understanding as follows: “Mathematical understanding can be characterized
as leveled but non-linear. It is a recursive phenomenon and recursion is seen to occur when thinking moves
between levels of sophistication [...] each level of understanding is contained within succeeding levels. Any
particular level is dependent on the forms and processes within and, further, is constrained by those without™. (p.
8).

Observing

Formalising

Knowing

Figure 1.15. The Pirie & Kieren (1994, p.186) model for the growth of mathematical understanding (adapted)

Pirie & Kieren (1994) consider "[...] understanding as a whole dynamic process and not as a single or multi-
valued acquisition, nor as a linear combination of knowledge categories" (Pirie & Kieren, 1994, p. 165). They
developed a model for the growth of mathematical understanding. They identified eight levels of understanding
and depicted their model as nested rings or embedded layers (see also, Sinclair, 2001 p.12; Slaten, 2006, p.32).
Pirie & Kieren model support that students can move back and forth between the rings: they come to the learning
task with “primitive knowledge”, their understanding is informal when they are operating in any of the three next
modes, but can ultimately become more abstract. According to Pirie & Kieren (1994) the model explains how a
student understands is an interactive process of organizing and reorganizing his/her conceptual structures (Figure
1.15).

Primitive Knowing refers to the starting knowledge, at the beginning of instruction. For me it is the preexisting
knowledge that a student has in his/her mind at the beginning of the teaching and learning process.

Image making refers to the mode of understanding that is developed through actions and reflections on those
actions.
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Image having refers to the mode of understanding that is developed without having to act on the objects. Now the
student can use his/her mental representations of the involved concept.

Property noticing refers to the mode of understanding when a student can construct properties, combining aspects
of images relevant to the objects.

Formalising in the next level of understanding when the student constructs formal or abstract methods from the
previous images, from which s/he has constructed properties.

Observing refers to the mode of understanding where a student can reflect on his/her formal understanding.
Structuring is the next level where a student can use deductive reasoning and logical argumentation.

Inventising is the level where a student can create a new concept from his/her structural understanding.

Sfard (1991, 1994) identified the dual meanings of “operational understanding”, which is to say knowledge of
the operations that can be performed on mathematical objects, and “structural understanding”, meaning
knowledge of the structure of a mathematical object.

Stard (1991, p.5) in her study “On the Dual Nature of Mathematical Conceptions: Reflections on processes and
objects as different sides of the same coin” illustrates through examples the duality of structural and operational
understanding (Figure 1.16), presenting in this way the “dual nature of mathematical conceptions™. It seems that
processes and objects are what are conceptualized as “different sides of the same coin” (p.1).

Sfard (1989, 1991, 1992) argues that a mathematical object, or an abstract object generally, can be conceived or
interpreted both operationally, when it is considered as a performed process or a process to be carried out, and
structurally when it is interpreted as a permanent object with concrete properties. She identifies the meaning of
reification as the next step in the mind of learner as “it converts the already condensed process into an object-like
entity” (Sfard, 1992, pp. 64-65, in Davis, Tall & Thomas, 1997, p.133). In Sfard’s opinion mathematical objects
can be seen as discursive objects within a mathematical discourse occurred or taking place in a classroom.

4 Structural Operational N
Function Set of ordered pairs Computational process
(Bourbaki, 1934) or

Well defined method of
getting from one system
to another (Skemp, 1971)

Symmetry Property of a Transformation of

geometrical shape a geometrical shape
Natural Property of a set 0 or any number obtained
number or from another natural

The class of all sets number by adding one

of the same finite ([the result of]

cardinality counting)
Rational Pair of integers [the result of] division
number (a member of a specially of integers

defined set of pairs)

Circle The locus of all points [a curve obtained by]
equidistant from rolating a compass
\_ a given point around a fixed point J

Figure 1.16. Structural and operational descriptions of mathematical notions (Sfard, 1991, p. 5) (adapted)

Concretely, according to Sfard (1991) “seeing a mathematical entity as an object means being capable of referring
to it as if it was a real thing [...] it also means being able to recognize the idea “at a glance” and to manipulate it
as a whole[...]” (p. 4).

Sfard describes a historical example regarding “the development of the notion of number as a cyclic process [...]
whenever a new kind of number was being born” (p.13). Sfard summarized schematically in a figure the whole
process of the development of the concept of number in the Figure 1.17 below.

As Sfard (1991) concludes and summarizes: “the history of number is a long chain of transitions from operational
to structural conceptions [...] processes performed on already abstract objects have been converted into compact
wholes, or reified[...] “(p. 14).

Stard (1991) distinguishes three stages in concept development: interiorization, condensation and reification.
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e Interiorization is the stage through which “a learner gets acquainted with the processes which will give
rise to a new concept” (Sfard, 1991, p. 18) [...] A process has been interiorized if it can be carried out
through mental representations “(Piaget, 1970, p.14).

e (Condensation is the stage through which a learner “becomes more and more capable of thinking about a
given process as a whole [...] (Sfard, 1991, p. 19).

e Reification is defined “as an ontological shift —a sudden ability to see something familiar in a totally new
light [...] * (Sfard, 1991, p. 19).
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Figure 1.17. The Development of the concept of number (Sfard, 1991, p. 13) (adapted)

Sfard (1991) argues that “the terms “operational” and ‘“structural” refer to inseparable, though dramatically
different, facets of the same thing” (p.9). Thus, unlike “conceptual and procedural” or algorithmic and abstract”
she argues that “we are dealing here with duality, rather than dichotomy” (p.9).
Even and Tirosh (2008) in their article: “Teacher knowledge and understanding of students’ mathematical
learning and thinking” have investigated among others the meanings of instrumental understanding and
relational understanding, also trying to clarify if they consist a “dichotomy or a continuum” (p.206). According
to Even & Tirosh,
“Skemp argued that although instrumental mathematics is easier to understand within its own context, its
rewards are more immediate and apparent, and one can often obtain the right answer more quickly and
reliably, relational mathematics has the advantages of being more adaptable to new tasks, being easier to
remember and capable of serving as a goal in itself” (p.206).
Eventually, Even & Tirosh (2008), conclude that “While Skemp assumes a dichotomy between instrumental and
relational knowledge, and Nesher (1986) and Resnick and Ford (1981) question its usefulness, Hiebert and
Carpenter (1992) and other researchers suggest that absolute classifications are impossible” (p. 207). Concretely:
e Nesher(1986) does not consider there to be a dichotomy between performing procedures with algorithms
and learning through understanding concepts. In his view students must acquire the competence to use
both algorithms and concepts.
e Resnick and Ford (1981) consider competence with algorithms to help students extend their working
memory.
e Hiebert and Carpenter (1992) argue that both conceptual and procedural knowledge are important for the
acquisition of competence in mathematics.
Moreover, Mason and Spence (1999), determined a special form of knowing: “Knowing-to act in the moment”,
which is “the type of knowledge that enables people to act creatively rather than merely react to stimuli with
trained or habituated behavior” (cited in Even and Tirosh, 2008, pp. 207-208).
Schneider & Stern (2010, p. 190) report also other theorists who have proposed numerous other pairs of
knowledge kinds, for example,
e “competence and performance (Chomsky, 1965),
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e structures and procedures of the mind (Inhelder & Piaget, 1980),

e declarative and procedural knowledge (Anderson, 1983),

e explicit and implicit knowledge (Schacter, 1987)”.

Schneider & Stern (2010) argue that “researchers are far from understanding how these kinds of knowledge relate
to each other and how they shape development. Valid empirical measures are an indispensable precondition for
scientifically investigating these questions rather than merely speculating about them.” (p. 190)
Stein and Smith (1998) state that “tasks that ask students to perform a memorized procedure in a routine manner
lead to one type of opportunity for student thinking; tasks that require students to think conceptually and that
stimulate students to make connections lead to a different set of opportunities for students thinking”
(Tchoshanov, 2013, p. 67).
Research into mathematical education has long concerned itself with the transition from a process to a concept.
Many researchers (e.g. Dienes, 1960; Piaget, 1972 a, b; Davis, 1983, 1984) also, “focused on the idea of a
process becoming a mental object [...] as a fundamental method of cognitive development in mathematical
thinking” (Davis, Tall & Thomas, 1997, p.132). On the other hand, in the words of Sfard (1989)
“Although ostensibly incompatible (how can anything be a process and an object at the same time?), they
are in fact complementary. The term “complementary” is used here in much the same sense as in physics,
where entities at subatomic level must be regarded both as particles and as waves to enable full description
and explanation of the observed phenomena [...]”(Sfard, 1991, pp. 4-5)
The process-object duality is important for the learning of mathematics. If a student has developed his/her
conceptual understanding then s/he has also developed the ability to see both the process-facet and the object-
facet of a concept. This development is called encapsulation (Dubinsky, 1991a) or reification (Sfard, 1991) as a
redefinition of the notion of “conceptual entity” introduced by Piaget (1977). Beth & Piaget (1966) consider the
notion of encapsulation to be a “dynamic” process which transitions into a mental object when “[...] a physical or
mental action is reconstructed and reorganized on a higher plane of thought and so comes to be understood by the
knower” (Beth & Piaget 1966, p. 247). Gray & Tall (1991) defined the meaning of ‘procept’ as a combination of
the words “pro-[cess] + [con]-cept”, “to be the amalgam of process and concept in which process and product is
represented by the same symbolism” (Gray &Tall, 1991, p. 73). A procept, “is consisted of a collection of
elementary procepts which have the same object” (Gray & Tall, 1994 reported in Davis, Tall & Thomas, 1997,
p.134). The meaning of an elementary procept is according to them “an amalgam of [...]: a process which
produces a mathematical object and a symbol which is used to represent either process or object [...]” (Gray &
Tall, 1994 reported in Davis, Tall & Thomas, 1997, p.134). Gray and Tall (1994) “hypothesise that successful
mathematical thinkers can think proceptually, that is, they can comfortably deal with symbols as either process or
object. An operational orientation would thus interpret 2(a + b) and 2a + 2b quite differently, whereas
proceptually the two expressions would be seen as identical” (White and Mitchelmore, 2002, p. 236).
Kadijevich & Haapasalo (2001) argue that, using computers, students can spend less time on procedural skills
and more on developing their conceptual understanding (Fey, 1989).
Moreover, Kadijevich (2018) in his study “Relating procedural and conceptual knowledge” reports the ways that
promote relations between procedural and conceptual knowledge. As he argues:

e “Links from procedural to conceptual knowledge may be established through the elaboration and
coordination of several microworlds [...].The links in question can be promoted through replicating
solutions with technology on the basis of technology-generated partial solutions]...]

e By applying some general problem solving productions (i.e. if-then rules), links from conceptual to
procedural knowledge may be established [...]Problem solving through the development of expert
system knowledge bases comprising if-then rules (the so-called knowledge engineering)[...]

e By using the notion of procept (i.e. “a combined mental object consisting of a process, a concept
produced by that process, and a symbol which may be used to denote either of both”)[...].
Relatingdifferentproblemrepresentationswouldestablishlinksbetweenprocedural and conceptual
knowledge [...]

e Procedural and conceptual knowledge may be unconnected, [...] and it is big ideas (e.g. equal
partitioning) that, applied as overarching concepts, connect concepts and procedures [...]JUsing
comparisons (e.g. comparing methods whereby problems are solved; comparing problems solved with
the same procedures) may be a way to promote links between procedural and conceptual knowledge

[...]” (pp.19-20).
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Given the core role in mathematics education of developing procedural and conceptual knowledge and forging
links between the two, a key question is how different technologies affect the relationship between the two.

1.5. The Concept of Reflective Abstraction

Piaget introduced the concepts of empirical abstraction, pseudo—empirical abstraction and reflective abstraction
“to describe the construction of logico—mathematical structures by an individual during the course of cognitive
development” (Dubinsky, 1991a, p.95).

e “Empirical abstraction: a subject (e.g., a student) proceeds to this kind of abstraction after the observable
experience with a few objects through which the subject understands that these objects have a common
property or in the words of Dubinsky “the subject observes a number of objects and abstracts a common
property” (p.98) Empirical abstraction derives knowledge from the properties of objects (Beth & Piaget,
1966, pp.188—189).

e Pseudo—empirical abstraction: a subject (e.g., a student) proceeds to this kind of abstraction after the
experience with actions performed on the objects (p.98). Pseudo—empirical abstraction “is intermediate
between empirical and reflective abstraction and teases out properties that the actions of the subject have
introduced into objects” (Piaget, 1985, pp.18-19).

o Reflective abstraction, “is completely internal” (p.97). Reflective abstraction is drawn from what Piaget

(1980, pp. 89-97) called the general coordinations of actions and, as such, its source is the subject and it
is completely internal.

An action must be
inferiorized. [...]
An interiorized action isa

Interiorization process.

Action PROCESSES
OBJECTS |
Coordination
Reversal
Encapsulation
Generalization
If theprocess is interiorized,
the word “dbjects” the student might be leto
encompasses the full range reverseit to solve prablams
of mathematical objects

Figure 1.18. Schemas and their construction (Dubinsky, 1991a, p.105) (adapted)

According to Piaget, “The development of cognitive structures is due to reflective abstraction” (Piaget, 1985, p.
143)”Reflective abstraction is the construction of mental objects and of mental actions on these objects. Piaget
found that the development of children’s logical thinking could be described in terms of five sub-operations or
forms of construction in reflective abstraction: interiorization, coordination, encapsulation, generalization, and
reversal (Dubinsky, 1991a, p. 103).
e [Interiorization “is the translation of a succession of material actions into a system of interiorized
operations” (Beth & Piaget, 1966, p. 206, cited in Dubinsky, 1991, p.100).
e Coordination “of successive displacements can form a continuous whole” (Piaget, 1980, p. 90, cited in
Dubinsky, 1991a, p.100)
e Encapsulation “of actions or operations become thematized objects of thought or assimilation” (Piaget,
1985, p. 49, cited in Dubinsky, 1991, p.100).
e Generalization “is the passage from “some”to“all, from the specific to the general (Piaget & Garcia,
1983, p. 299, cited in Dubinsky, 1991, p.97)”.
Paschos & Farmaki (2006) analyzed the mental operations of university students, employing the Piagetian theory
of reflective abstraction. As they conclude
“[...] the mental mechanism and operations of the students are gradually revealed. Understanding this
mechanism will allow us to decide and distinguish whether the students come to a true understanding of
the definition of the definite integral concept, as opposed to having just an empirical perception of
integration, by which they can act effectively only in a limited and particular framework. The methodology
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developed here may have a wider applicability in guiding our actions to help students develop advanced
mathematical thinking” (p. 343-344).
A schema is a reasonable, consistent and coherent collection of actions on objects and processes (Figure 1.18). I
attempted to briefly give the following description of the organization and construction of a schema based on the
above figure, which can, in my opinion, be used in several mathematical areas, and not only at the advanced level
of mathematics:
“[...the word] “objects” encompasses the full range of mathematical objects [...] each of which must be
constructed by an individual at some point in her or his mathematical development. [...] At any point in
time there are a number of actions that a subject can use (italics used by Dubinsky) for calculating with
these objects [...] an action must be interiorized. /.../ An interiorized action is a process. Interiorization
permits one to be conscious of an action, to reflect on it and to combine it with other actions.[...] If the
process is interiorized, the student might be able to reverse it to solve problems|...]” (Dubinsky, 1991a,
p-105-106)
Lehtinen & Repo (1996) elaborated on the Piagetian theory of reflective abstractions. They conducted a study,
aiming to investigate the construction of advanced mathematical concepts in a computer-based environment.
According to them, a student can solve typical problems with the help of “horizontal generalization” (empirical)
but “is not able to construct an adequate conceptual understanding because their medal models are limited to the
level of concrete mathematical knowledge” (p.108).
According to Lehtinen & Repo (1996) “reflective abstraction refers to a process in which the student tries to
construct abstract structure and operations by reflecting on his /her own activities and the arguments used in
social interaction” (p.106)

N Representational systems or
supportive .features of representational tools offered
the enviroment by the environmant

external guidance external guidance and
towards relevant

- multiple teach lodelling fi
activity sequence activities related P a eacher modelling tor

mobility between
representation forms

to th 5 representations
given by the o the concep the concept

teacher

REFLECTIVE
ABSTRACTION

Tools for facilitating Strategic guidance and
social interaction mathematical concepts

given by teacher

Figure 1.19. Presuppositions of adequate reflective abstraction (Lehtinen & Repo, 1996, p. 113): (an adaptation
for the current study)

Lehtinen & Repo in their study systematically analyze the prerequisites for effective abstraction with a focus to
“(a) critical activities, (b) multiple representations, and (c) challenging and facilitating social interaction” (p.108).
In Lehtinen & Repo’s opinion, the basic activities should be of optimal difficulty and allow time for the
construction process. The activities should also relate to the concept to be learned in a way that activates the
student’s relevant prior knowledge and provides opportunities for all the sub-operations of reflective abstraction
Continuous guidance is also needed from the teacher in the form of direct or indirect intervention, as is the
utilization of multiple representations and the continuous shifting between different representational systems with
expert modeling of the use of digital tools. Lehtinen & Repo “elaborated a model that summarizes the previous
described presuppositions of adequate reflective abstraction in the following figure” (p. 112) (Figure 1.19)
Finally, Lehtinen & Repo concluded that
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“good school achievement in mathematics is not always a valid indicator of a high —level understanding
of mathematical concepts and operations” (p.124)

“the average level of conceptual understanding can be improved noticeably by involving students in a
sequence of critical activities and by changing the quality of their social interaction” (p. 125).

(28]



ChapterlIl.

2.1. Visualization and Dynamic Visualization

Trying to understand more deeply the activities of teaching and learning, a number of educators, researchers and
psychologists have turned their attention to representations and systems of representations of mathematical and
scientific objects and ideas (e.g., Goldin, 1988; Greeno, 1991; Kaput, 1987; Janvier, 1987a, b, c).
Representations, representational systems and visualization of mathematical objects are reported as being
fundamental in the international literature. Most researchers, educators and teachers agree that representations of
mathematical and scientific objects positively impact on students’ understanding and on the way they
communicate and share mathematical meanings; they also help students develop their mathematical reasoning
during the problem-solving process (e.g., Palmer, 1977a, b; Vinner, 1983; Presmeg, 19864, b; Janvier, 1987a, b, c;
McCormick, DeFanti,& Brown, 1987; Vergnaud, 1987; Glasensferd, 1991; Zimmermann & Cunningham, 1991;
Goldin, 1998 a, b; Boulton-Lewis, 1998; Kaput, 1987, 1989, 1991, 1992, 1998, 2001; Lakoff, 1993; Duval, 1993,
1995a, b; Arcavi, 2003; Ainsworth, 1999a, b, 2006; Clements & Sarama, 2007, 2009; Lavy, 2006; Duval, 1998,
1999, 2006; Goldin, 2003, 2008; Hitt, 2002; Zazkis, & Liljedahl, 2002; Patsiomitou, 2008a, b, 2012a, b, 2013a,
b). The increasing research interest regarding representations and representational systems, is a result of the need
to face practical and theoretical issues concerning the difficulties students encounter when they try to translate
from one form of representation to another (e.g., to transform a verbal expression in a geometrical problem into a
figure using static or dynamic means, or to transform an algebraic type of a function into a graphical
representation). Specifically, a problem representation is “a cognitive structure which is constructed by a solver
when interpreting a problem” (Yackel, 1984, p. 7, cited in Cifarelli, 1998). Word problems are a kind of
representation. In the words of Susan Gail Gerofsky (1999) “The word problems represent a final test of students'
competence in recognizing problem types [...] and translating those problems into tractable diagrams and
equations which can be solved using taught algorithmic methods. School word problems are not social events not
part of an oral culture. They are ideally meant to be solved silently, individually, using pencil and paper”.

From a cognitive psychological point of view a major problem in constructing a representation of a problem is
that we need to know which lines go together to form objects (Anderson, 1983/2015, p.34). In other words how
to organize the components of the figure in geometry. Anderson (2015) states that “we organize objects into units
according to a set of principles called the gestalt principles of organization, after the Gestalt psychologists who
first proposed them (e.g., Wertheimer, 1912/1932)” (p.34).
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Figure 2.1. Tllustration of the gestalt principles of organization (Anderson, 1983/2015, p. 34).

Anderson (2015) defines gestalt principles of organization as “the principles that determine how a scene is
organized into components. The principles include proximity, similarity, good continuation, closure, and good
form” (p. 368). Figure 2.1 illustrates the gestalt principles (Anderson, 2015, p. 34):
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o  “Figure 2.1a illustrates the principle of proximity: Elements close together tend to organize into units.
Thus, we perceive four pairs of lines rather than eight separate lines.

e Figure 2.1b illustrates the principle of similarity: Objects that look alike tend to be grouped together. In
this case, we tend to see this array as rows of o’s alternating with rows of x’s.

e Figure 2.1c illustrates the principle of continuation. We perceive two lines, one from A to B and the
other from C to D, although there is no reason why this sketch could not represent another pair of lines,
one from A to D and the other from C to B. However, the lines from A to B and from C to D display
better continuation than the lines from A to D and from C to B, which have a sharp turn.

e Figure 2.1d illustrates the principles of closure and good form. We see the drawing as one circle
occluded by another, although the occluded object could have many other possible shapes. The principle
of closure means that we see the large arc as part of a complete shape, not just as the curved line. The
principle of good form means that we perceive the occluded part as a circle, not as having a wiggly,
jagged, or broken border” (Anderson, 2015, p. 35).

Another source of difficulty for many students during the problem-solving process in geometry is that they
compare the image with a prototype which they have in their mind - (an archetype, a prototype which differs for
each individual student). “A prototype is a mental representation which is a good example of a category” (Lakoff,
1987, p. 43, cited in Presmeg, 1992, p. 597). Mesquita (1998) in her study “On Conceptual Obstacles Linked with
External Representation in Geometry” defined also the notion of “Prototypical Figures” as
“those ones corresponding to a regular organization of contour, orientation and form; prototypical figures
tend to respect enclosure laws (closed borders are preferentially perceived), privileging some directions
(such as horizontal and vertical ones) and forms (which tend to be regular, simple and symmetric); the
components of the figure (sides, angles, for instance) have approached dimensions. Stability and aesthetic
preoccupations may reinforce the perception of these prototypical figures. In opposition to them, we can
consider the limit-cases figures” (p. 189)
In view of the fact that most students face cognitive obstacles when a part of their knowledge, generally effective
for their problem-solving processes is inadequate and cannot be adapted to the process at hand (Brousseau, 1992,
1997), the utilization of proper representations helps students overcome obstacles (Goldin & Shteingold, 2001).
According to Brousseau (1997)
“Students start their learning process in an environment that is unbalanced and full of difficulties and
obstacles just like human society. The new knowledge comes from the skill to adapt to the new
circumstances and stimuli and a new reaction to the environment is the proof that a learning process has
taken place.[...] “ the problem s/he has to face has been chosen in order to make him learning and gaining
a new knowledge, this knowledge is justified by the inner logic of the situation”(cited in Manno, 2006,
p-23)
In addition, Mesquita (1998) distinguishes two roles of external representations in geometrical problems: a
descriptive one and a heuristical role.

e ‘“an external representation is descriptive when its sole function is to give a synoptical apprehension of
the properties mentioned in the problem statement” (p. 191)

e “an external representation has a heuristical role if it acts as a support for intuition, suggesting
transformations that lead to solution” (p.191).

Difficulties in mathematics generally are associated with visual processing and may be overcome. The role of
visualization and visual reasoning in geometry and generally in mathematics understanding have been the focus
of interest for many researchers, educators and psychologists (e.g., Tall & Vinner, 1981; Vinner, 1983).
There is a substantial bibliography on visualization, spatial visualization, spatial ability, visual thinking, mental
imagery and their relation with students’ mathematical performance (e.g., Presmeg, 1986a, b, 1992, 1997;
Zimmerman & Cunningham 1991; Goldenberg, 1992). A few researchers use the terms visualization and mental
imagery alternatively (e.g., Drake, 1996). Guttierez (1996) argues that
"There is no general agreement about the terminology to be used in this field: It may happen that an author
uses, for instance, the term "visualization" and another uses "spatial thinking", but we find that they are
sharing the same meaning for different terms. On the other hand, a single term, like "visual image", may
have different meanings if we take it from different authors. Such an apparent mess is merely a reflection
of the diversity of areas where visualization is considered relevant and the variety of specialists who are
interested in it " (p. 4)
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Norma Presmeg (1986b) in her study “Visualization in High School mathematics” defines the notion of visual
image, as “a mental scheme depicting visual or spatial information” (p.42). Presmeg (1986b) classified the kinds
of imagery used by students/visualisers in her study as follows (p.43):
@) Concrete pictorial imagery: pictures created in the mind by the learner [...] Concrete imagery is
effective in alternation with abstract non visual modes such as analysis, logic, or a facile non visual
use of formulae (p. 45).
(ii) Pattern imagery: pure relationships depicted in a visual-spatial scheme [...]
(ili)  Memory images of formulae: visualisers “see” a formula in their minds [...]
@iv) Kinaesthetic imagery: imagery involving muscular activity [...]
W) Dynamic (moving) imagery: use of moving images [...]Dynamic imagery is potentially effective
(p:45)
Abraham Arcavi (2003) in his study “The role of visual representations in the learning of mathematics”
introduces the notion of visualization as a way we can “see” what is unseen. He makes a metaphor and reports
examples of the way we can “see” what is unseen through the use of technology (for example, the zoom function
in computer environments is a way to “see” the unseen). According to Arcavi (2003)
“In a more figurative and deeper sense, seeing the unseen refers to a more “abstract” world, which no
optical or electronic technology can “visualize” for us. Probably, we are in need of a “cognitive
technology” (in the sense of Pea, 1987, p. 91) as “any medium that helps transcend the limitations of the
mind ... in thinking, learning, and problem solving activities.” Such “technologies” might develop visual
means to better “see” mathematical concepts and ideas” (p.26).
Arcavi defines visualization “blending and paraphrasing the definitions of Zimmermann & Cunningham (1991,
p-3) as well as Hershkowitz et al. (1989, p.75)” as follows:
“Visualization is the ability, the process and the product of creation, interpretation, use of and reflection
upon pictures, images, diagrams, in our minds, on paper or with technological tools, with the purpose of
depicting and communicating information, thinking about and developing previously unknown ideas and
advancing understandings.” (p.26)
In the below I have brought together indicative definitions of visualization reported in the international
literature, as well as definitions of related notions.

Visualization
Author Definition of visualization
Hershkowitz, Ben- “Visualization, generally refers to the ability to represent,
Chaim, Hoyles, transform, generate, communicate, document, and reflect on visual

Lappan, Mitchelmore, information” (p. 75).

& Vinner, S. (1989)

Cunningham (1991) defines visualization as “the ability to focus on specific
components and details of very complex problems, to show the
dynamics of systems and processes, and to increase the intuition
and understanding of mathematical problems and processes”. (p.
70, cited in Elliot, Hudson & O'Reilly, 2000, p. 152).

Presmeg (1986b) argues that “a visual image is a mental scheme depicting visual or
spatial information” (p. 42).

Presmeg (1997) defines visualization as “the process involved in constructing and
transforming visual mental images...” (p. 304).

Zimmerman and define visualization as "the process of producing or using

Cunningham (1991) geometrical or graphical representations of mathematical concepts,

principles, or problems, whether hand drawn or computer-
generated" (p. 1). [ ...] Consider visualization to be “the process
to form a mental image” (with paper and pencil, or with the aid of
technology)” (p. 3).

Goldenberg (1999) “Visualizing [is] picturing (and drawing) what is inherently
visible as well as that which is not (either because it is an abstract
object or relationship, or because it is a concrete object that has not
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yet been built)” (p.197).

Duval (1999) argues that “Vision refers to visual perception and, by extension, to
visual imagery. The epistemological function of vision consists in
giving direct access to any physical object [...] The synoptic
function of vision consists of apprehending simultaneously several
objects or a whole field” (p. 12)[...] visualization is based on the
production of a semiotic representation” [...which] does not show
things as they are. A semiotic representation shows relations or,
better, organization of relations between representational units (p.
13).

Spatial ability and spatial visualization are defined as the ability to perceive and mentally manipulate visual
images, as the following researchers support:

Kelly (1928) defines spatial ability as the combination of two ingredients: (1)
the ability to percept and reserve visual images; and (2) the ability
to mentally manipulate these images (cited in Lawrence Joseph
Pleet, 1990, p. 17).

Lohman (1979) defines spatial ability as the ability to generate, retain, and
manipulate abstract visual images”(p. 188).
Chien (1986) defines spatial visualization ability as: “the individual's ability to

mentally manipulate, act upon, and transform visual stimuli. The
ability to anticipate mentally a series of object movements is also
involved in this process”. (p. 11, cited in Lawrence Joseph Pleet,
1990, p. 17)

In the international bibliography we read also about ‘dynamic imagery’ (Presmeg, 1986a, b), ‘dynamic reasoning,
dynamic visualization, or dynamic imagery’, (Goldenberg, 1992). There is also a substantial bibliography
investigating the inter-relationships between visualization, mental imagery, and mathematical performance.
A visual image in the words of Presmeg is “a mental construct depicting visual or spatial information” (Presmeg,
1992, p. 596). Moreover, visual reasoning is legitimated as a way of reasoning through visualization, which is
recognised as fundamental to mathematical reasoning. Barwise and Etchemendy (1991, p.16) consider that visual
reasoning can be considered as valid reasoning: 1. visual information is part of the given information from which
we reason; 2. visual information can be integral to the reasoning itself; 3. visual representations can play a role in
the conclusion of a piece of reasoning (cited in Elliott, Hudson, O’ Reilly, 2000, p.152)
Goldenberg (1992) suggested visual representations as a mean for the students to discover the properties of
geometrical figures. Goldenberg considers
“that by ignoring visualization and qualitative reasoning, curricula not only fail to engage a powerful part
of students’ minds in their mathematical thinking, but also fail to develop students’ skills at visual
exploration and reasoning” (cited in Rahim & Olson, 1998, p. 374).
Goldenberg (1999) incorporates visualization among other “habits of mind” as a close interaction with skills
(p-197). Cuoco, Goldenberg & Mark (1996) in their study “Habits of mind: an organizing principle for
mathematics curriculum” support that there are many kinds of visualization in mathematics (pp.381-382):
e One involves visualizing things that are inherently visual [...]
e A second involves constructing visual analogues to ideas or processes that are first encountered in non-
visual realms [...].
e Finally, there are, for some people, visual accompaniments (not analogues, exactly) to totally non-visual
processes [...].
Then they subdivided these three categories to more categories (for example, visualizing data, relationships,
processes, change, calculations)
Cuoco, Goldenberg & Mark (1996) consider the following repertoire of habits of mind that students should have
(pp. 3-8): Students should be pattern sniffers, experimenters, describers, tinkerers, inventors, visualizers,
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conjecturers. Cuoco, Goldenberg & Mark argue that “high school curricula should strive to develop these habits”
(p-3).

Zazkis, Dubinsky and Dautermann (1996a) expand the notion of visualization and define it as a dynamic process,
meaning the action of alternating transformations between external media (/stimuli) and a student’s mind. Zazkis,
Dubinsky, and Dautermann (1996a) define visualization as "an act in which an individual establishes a strong
connection between an internal construct and something to which access is gained through the senses" (p. 441).
My review of the related literature, makes me view visualization as a dynamic process whose dynamism is
further expanded /or enriched in a computer environment, in which a student-user can make transformations on
screen that have an impact on his/her mental transformations (Patsiomitou, 2012a, b; 2019a). Visualization
functions as a microscope through which to view an abstract idea, or to dynamically transform ideas or processes
using visual or non-visual means. In other words, visualization is a person’s competence to “move” images in
mind, even if s/he is working in a paper-pencil environment, operating by thus dynamically. A student’s
competence at transforming mental images is rooted in dynamic visualization. Dynamic visualization can become
a mediator in the problem-solving process, as it can be a very powerful instrument for the students to gain a
greater understanding of the mathematical concepts embodied in the problem. In other words, the peculiar
property of dynamic visualization is that individuals who possess this ability can reason.

“Representation is a crucial element for a theory of mathematics teaching and learning,
not only because the use of symbolic systems is so important in mathematics, the syntax
and semantic of which are rich, varied, and universal, but also for two strong
epistemological reasons: (1) Mathematics plays an essential part in conceptualizing the
real world; (2) Mathematics makes a wide use of homomorphisms in which the reduction
of structures to one another is essential”. (Vergnaud, 1987, p. 227, cited in Goldin, 2008)
Goldin (1998b) in his study “Representational Systems, Learning, and Problem Solving in Mathematics” through
a brief but comprehensive and in depth discussion regarding the evolution of theories for the learning of
mathematics argues
“In my study of mathematical problem solving, learning, and development over the past 25 years, I have
become persuaded that the notion of representational systems and their construction can provide the
foundation for a model incorporating and synthesizing all the above ideas][...]” (p. 140).
Researchers in the sphere of the Didactics of Mathematics take different approaches to conceptual determination,
the theoretical interpretation of the notion of representation, and the ways that representations are used.
Indicatively, I shall report issues 1 and 2 of the Representations and the Psychology of Mathematics Education
journal and Vol. 17, No. 1 and 2, of the Journal of Mathematical Behavior, in which the researchers approach the
matter in different ways. For example:
Goldin (1998b) denotes the notion of “Representational systems” or “representational modes,” as that systems
“which include systems of spoken symbols, written symbols, static figural models or pictures, manipulative
models, and real world situations, discussed by Lesh (1981)[...]” (p.143). He terms them as “external systems of
representation”. Goldin (1998b) also mention that the term representational system bears some resemblance to
what Kaput (1987, p.162) calls “symbol scheme”.
“What Kaput (1985, 1987), following Palmer (1977), called a “representation” or “representation system”
corresponds most closely in my terminology to a relationship of symbolization between two
representational systems.” (Goldin, 1998b, p. 143).
Kaput (1998) in his study “Representations, Inscriptions, Descriptions and Learning: A Kaleidoscope of
Windows” defines internal representations as hypothesized mental constructs and the “external representations”
as material notations of one kind or another. Kaput also defines the term “notation system” in an interchangeable
way with the meaning of “representation system” and even “symbol system” (p. 270). Kaput adds that “We now
turn to an illustration of how the computational medium offers notational opportunity for instructional design
within a curricular context” (p. 272).
Vergnaud (1998) in his study “A Comprehensive Theory of Representation for Mathematics Education” argues
that “representation is not a static thing but a dynamic process that borrows a lot from the way action is
organized. This leads to strong objections to the metaphor of the triangle ( ), on which many authors
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have commented, in one way or another, since Aristotle. It is too static, and does not offer any insight for the

representation of relationships, while most scientific concepts are relational.” (p. 167)

Similarly, Vergnaud (2009, p.93) argues:
“Representation is a dynamic activity, not an epiphenomenon that would accompany activity without
feeding it or driving it. [...] it organizes and regulates action and perception; at the same time, it is also the
product of action and perception. Therefore, the operational form of knowledge must be considered as a
component of representation. Schemes are essential: they organize gestures and action in the physical
world, as well as interaction with others, conversation, and reasoning.[...]”.

of the thing associated with
the thin
Figure 2.2. The metaphor of the triangle (Vergnaud, 1998, p. 168) (adapted)

Duval (1988a, b) “coined the term “register” in order to refer the different semiotic systems used to present
information or to objectify a representation. [...] Basically, in geometry, three registers are used: the register of
natural language, the register of symbolic language, and the figurative register. This register is linked to the
perceptual visual system, which has its own organization laws” (Mesquita, 1998, p.183).
Duval (2000) in his study “Basic Issues for Research in Mathematics Education” supports that when we talk of
"representations” the four following aspects must be taken into account:

o “the system by which representation is produced |...]

o the relation between representation and the represented object |...]

o the possibility of an access to the represented object apart from semiotic representation |...]

e the reason why representation using is necessary [...]”(p.58)
I shall cite a few examples to explain the notion of representational systems with which students can express,
communicate and/or share ideas in mathematics. For example the Proposition 25, in BOOK 5, of Euclid’s
“Elements” [“If four magnitudes are proportional then the (sum of the) largest and the smallest [of them] is
greater than the (sum of the) remaining two (magnitudes)” (reported in Fitzpatrick, 2007, p. 154)], expresses an
abstract idea for which diagrams of the reported objects can provide considerable support (Figure 2.3).
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Figure 2.3. Proposition 25, in BOOK V of Euclid’s “Elements” (Fitzpatrick, 2007, p. 154)

The formulation of the proposition belongs to a “verbal” representation system (or is a written symbol) while the
figures belong to another representation system: “the pictorial”.

If we transfer the proposition into a DGS environment using parameters supported by the environment and
following the mode of construction I describe in my study “Hybrid-dynamic objects: DGS environments and
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conceptual transformations” (Patsiomitou, 2019b), then we have a representation system which supports iconic
representations in an interactive way (Figures 2.4 a, b).
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Figures 2.4.a, b. Proposition 25, using DGS tools

I know from my classroom experience that students find it difficult to translate a formal Euclidean proposition
into a figure on screen, which is to say they encounter difficulties translating between different systems of
representation.

Sakonidis (1994) also argues that “representations which are too abstract for the child lead to rote manipulation
of symbols and rules, and to excessive concern with learning the representations at the expense of the concept
represented”’ (p. 42).
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Figure 2.5. Investigating and validating Proposition 25 in a DGS environment

We can validate the truth of the Proposition by changing the values of the parameters in the figures constructed in
the DGS environment (Figures 2.4b, 2.5), --something that can also be done in a paper and pencil environment
using a compass and a ruler for construction.

Different semiotic systems will produce different representations for any mathematical object. Each new
representational system (or semiotic system in the words of Duval) provides new means of representation, new
ways to process mathematical representations and consequently new ways to mathematical thinking. Suppose we
try to explain the Proposition 25 mentioned above in a paper pencil environment. We will produce different
representations for the same mathematical object. We have, therefore, to adapt Peirce’s triadic conceptualization
thus:

[Object, "representamen” (sign), "interpretant] to [Object, one of the various semiotic systems, composition of
signs] (Duval, 2000, p. 59).

Duval (2000) constructed a diagram (Figure 2.6) to visualize what he supports: “In that perspective, deeper
causes of misunderstanding appear. Whenever a semiotic system is changed, the content of representation
changes, while the denoted object remains the same. But as mathematical objects cannot be identified with any of
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their representations, many students cannot discriminate the content of representation and the represented object:
objects change when representation is changed!” (p. 59)
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Figure 2.6. Representation and understanding for mathematical knowledge (Duval, 2000, p. 59) (adapted).

Goldin (1998a) in his study “The PME Working Group on Representations’ noted several different meanings that
have been given to the notion of representation “in connection with the learning, teaching, and development of
mathematics (Goldin, 1998, p.285):

“A. External physical embodiments (including computer environments)-any physical situation or set of
situations external to the individual, which can be described mathematically or seen as embodying a
mathematical concept; e.g., (1) a number line, drawn and labeled, illustrating order relationships among
numbers; (2) a configuration of pegs on a peg-board providing an array model for multiplication; or,
more broadly, the peg-board apparatus itself, (3) a calculator- or computer-based environment, within
which mathematical constructs such as functions and graphs can be displayed and manipulated.

B. External linguistic embodiments-we also took “representation” to include verbal, syntactic, and related
semantic aspects of the commonly shared language in which mathematical problems are posed and
mathematics is discussed.

C. Formal mathematical constructs-still with emphasis on a problem environment external to the
individual, a different meaning of “representation” is that of a formal structural or mathematical analysis
of a situation or set of situations; e.g., (1) state-space representations of problems or games such as the
Tower of Hanoi, Nim, etc.; (2) representations of mathematical entities, such as groups, rings, functions,
etc., by means of other mathematical entities, such as linear operators on vector spaces representing
elements of groups, graphs representing elements of function-spaces, etc. Though there is a sense in
which all mathematics can be regarded as “internal” to individuals, the emphasis here was on
“representation” as an analytical tool for formalizing or making precise mathematical ideas or
mathematical behavior.

D. Internal cognitive representations- we considered a very important meaning of the term
“representation” to refer to internal, cognitive configurations of learners and problem-solvers. Thus we
could talk about a student’s internal, individual representation(s) of or for mathematical ideas such as
“area,” “functions,” etc. We also considered systems of cognitive representation in a broader sense, as
constructs to assist in describing the processes of human learning and problem solving in mathematics”.
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Goldin (2008) in his study “Perspectives on representation in mathematical learning and problem solving”
argues that “to discuss representation, we must be able to consider at a minimum configurations of symbols or
objects external to the individual learner or problem solver, configurations infernal to the individual, relations
between them, and structures within and across them. These basic notions are essential to characterizing the
nature of the patterns that mathematics is about” (p. 178).
Goldin (2008) defines the term “representation” using the notion of configuration. He defines representations by
means of a number of synonymous verbs, also used by different researchers and scholars when they deal with the
term “representing configuration”.
“a representation is a configuration that can represent something else in some manner. [...] the
representing configuration might, for instance, act in place of, be interpreted as, connect to, correspond to,
denote, depict, embody, encode, evoke, label, link with, mean, produce, refer to, resemble, serve as a
metaphor for, signify, stand for, substitute for, suggest, or symbolize the represented one”. (Goldin, 2008,
p-179)
A mathematical object is a creation in a person’s mind that is formed as we have defined /or determined it
through our experience or has been formed previously. The mathematical concept as it has been mentioned
previously embody a web of relations between objects; they cannot be touchable through our daily experience
neither through our sensory system just like the real of natural objects of the environment around us. In other
words the mathematical concepts as mathematical objects are touchable only through their signs and the semiotic
representations. Sakonidis (1994) considers that students / learners acquire the ability to use a representation in a
gradual process which involves the following steps:
e “Identification of the elements of the representing world
o Establishment of relationships between the elements of the representing world
e Transformation of the above relationships to the ideas for which these elements stand for, that is, to
relationships between elements of the represented world
Moreover, includes, the ability to move between representation systems”. (p.42)
Verhoef & Broekman (2005) in their study “A process of abstraction by representations of concepts” consider
that experience with objects in the real world is important for the development of students’ knowledge and can be
divided into direct experience with objects and mediated experience through media. They support that during the
representation process “the representing medium (the representation) is related to the represented object (the
reality) through a set of mapping principles that maps elements of the reality to elements in the representation”.
o The term pictures have been chosen by Verhoef & Broekman to characterize the kind of representations
“if they are (almost) similar to the represented object, such as photographs or statues. In these cases, [...]
there is a one-to-one mapping or isomorphism between the two” (p. 274).
o The term icons have been chosen by Verhoef & Broekman to characterize the kind of representations that
“[...] represent the represented object to some extend of similarity. [...] An example of this is the figure of
a man or a woman on a toilet door. The relationship between an icon and the represented object depends on
their ‘mode of correspondence’” (p. 274).
e The term “symbol” has been chosen by Verhoef & Broekman to characterize the kind of representations
when “[they] have no similarity at all with their represented object. These are chosen arbitrarily by
convention. Examples of these are the letters of the alphabet, or numerals” (p. 274).
De Vries, Demetriadis and Ainsworth (2009) identify “a pervasive underlying distinction into dyadic and triadic
views of representation:
e From a cognitive perspective a representation can be characterized as dyadic, referring to Palmer’s
definition: a representation is something that stands for something else.
e From a triadic perspective, “a representation involves three entities: [...] the referent or object existing in
the world, the signifier or representamen (i.e., a mark, an idea, a word, an image, a sound, a smell), and
the signified or interpretant (the idea evoked in someone’s head), referring to Peirce’s definitions of a
sign” (de Vries, Demetriadis and Ainsworth, 2009, p. 139).

[37]



The most researchers and scholars agree that a potentially useful distinction can be drawn between external
representations and internal representations. Others, think there is no such distinction. According to Sakonidis
(1994)
“Mason (1987) and von Glasersfeld (1987) criticize the internal/external distinction, on the grounds that
for the child inner representations are not a representation of the real world but of a child’s inner world.
Von Glasersfeld suggests that is more appropriate to talk about inner experiences, and their expression in
terms of pictures, diagrams, words or symbols as a presentation of an inner world”’(Sakonidis, 1994, p.41)
Tschoshanov (2013) also states that “scholars claim that representation could refer to both internal and external
manifestations of concepts (Pape & Tchoshanov, 2001)” (p.73).

CInterna I-Mental Representatio ns)

Interactions

C External-Physical Representatio ns)

Internal versus external representations (Goldin & Kaput, 1996, p. 399) (adapted)

Goldin & Kaput (1996) in their study “A joint perspective on the idea of representation in learning and doing
mathematics” provide a “sound basis for further development” with regard to the concept of representation in the
psychology of mathematical learning and problem solving. They distinguish internal from external
representation:

e  With the term internal representation Goldin & Kaput (1996) “refer to possible mental configurations of
individuals, such as learners or problem solvers. Of course, being internal, such configurations are not
directly observable” (p. 399). Also, they do not “refer to the direct object of introspective activity [...]
although the experience of introspection is subjective, the descriptions that result from introspection are
observable as, for example, verbal and gestural behavior” (p.400).

e With the term external representation Goldin & Kaput (1996) “refer to physically embodied, observable
configurations such as words, graphs, pictures, equations, or computer microworlds. These are in
principle accessible to observation by anyone with suitable knowledge” (p. 400).

Goldin & Kaput (1996) depict an interaction between mental representations (“as those [...] that are encoded in
the human brain and nervous system and are to be inferred from observation”) (p. 402) and external
representations (as those accessible to direct observation, for example, written words, speech, formulas, concrete
manipulatives, computer microworlds as they appear on a screen [...]). presents a correspondence
between what is accessible by and what is in the human brain.

For example, if a teacher writes on a computer screen the formula sin (2x-1) (an external representation) the
resulting function should plot a sinusoidal curve ( ). The students may mentally relate the formula with
the (internal) visual image of the graph as a sinusoidal curve representing the graphic representation of the
function written with the symbolic expression.

According to Goldin & Kaput (1996) “[...] intrinsically, an interaction or at of interpretation is involved in the
relation between that which is representing and that which is represented (von Glasersfeld, 1987) (p. 399).

Such correspondence “involve complex prior constructions achieved through representational acts” (Goldin &
Kaput, 1996, p. 401). If the student has developed an interaction between the external and the internal
representation of the concept then s/he has developed the level of understanding of this concept.
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The above example reminds me of an example provided by Karadag (2009) who explains the “dynamically
nested RBC model of abstraction” introduced by Hershkowitz, Schwarz, and Dreyfus (2001) ! (see also, Schwarz,
Hershkowitz, & Dreyfus, 2002). Karadag (2009) clarifies that
“[...] in order to calculate sin 2x by knowing the value of sin x or cos X, students need to recognize (or is
guided to recognize) that they can use sin (A+B) as a reference point. By taking summation identity of the
trigonometry, they can build sin 2x identity with sin (A+B) = sin (x+x). After obtaining sin2x=2sinxcosx,
they can construct this knowledge to produce the formulas for sin 3x, cos 2x, etc. In order to produce new
knowledge structures, the process starts from the beginning” (p. 24).

Transform Measure Graph Window Help
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Figure 2.8. Sinusoidal curves graphically representing the symbolic form of the trigonometric functions (constructed in Sketchpad
dynamic geometry software)

Similarly, Piaget (1937/1971) claims that we understand new constructs by assimilating or accommodating them
into our pre-existing cognitive structures. Piaget and Inhelder (1956) also pointed out that a student has
developed his/her perceptual thinking when s/he can internally manipulate his mental images. They emphasize
that in this case the students has been fully developed their representational thinking. According to Pape &
Tschoshanov(2001)

“[...] representational thinking [is] the learner’s ability to interpret, construct, and operate (communicate)

effectively with both forms of representations, external and internal, individually and within social

situations” (p. 120).
Tschoshanov (2013) poses a key question concerning the relationship between external/ internal representations
in learning and the meanings of assimilation/accommodation: “how students’ internal schemata assimilates
external representations, and how new external representations help students to accommodate their emerging
internal representations”. (p. 74). This assumption is depicted in the Figure 2.9 (Tchoshanov, 2013, p. 74),
namely an interplay between students’ external and internal representations in developing understanding of a
concept (the concept five). According to Tchoshanov (2013) “the development of student’s representational
thinking is a two-sided process, an interaction of internalization of external representations and externalization of
mental images” (p. 74)

! “Hershkowitz, Schwarz, and Dreyfus (2001) presented a theoretical and practical model for the cognitive analysis of
abstracting in mathematics learning.[...] Processes of knowledge construction are expressed in the model through three
observable and identifiable epistemic actions: Recognising, building-with, and constructing (RBC). Recognising takes place
when the learner recognizes that a specific previous knowledge construct is relevant to the problem he or she is dealing with.
Building-with is an action comprising the combination of recognised constructs in order to achieve a localised goal, such as
the actualisation of a strategy or a justification or the solution of a problem. The model suggests constructing as the central
epistemic action of mathematical abstraction. Constructing consists of assembling and integrating previous constructs by
vertical mathematisation to produce a new construct. [...] Vertical mathematisation represents the process of constructing
new mathematical knowledge within the mathematics itself and by mathematical means” (Hershkowitz et al., 2007, p. 44) .
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Figure 2.9. Tchoshanov’s (2013, p.74) illustration for the relationship between external and internal representations in developing
understanding of the concept five (Tchoshanov, 2013, p. 74, modified from Pape and Tchoshanov, 2001)

In the words of Mesquita (1998) the terms “external” and “iconical” representation in geometry, are used in the
following senses: “External, embodied materially on paper or other support; Iconical, or figurative: centered on
visual image (in opposition to other possible semiotic systems). We also use the term “figure” as a synonym for
external and iconical representation of a concept or a situation in geometry” (p. 183). Mesquita (1998) argues that
the “external representation of a geometrical problem, per se, does not enable one to solve the problem, but it
may contribute to the definition of the structure of the problem in order to facilitate treatments” (p.184).

Cifarelli (1998) examined the development of mental representations during the problem solving situations,
involving a constructivist point of view. The mental representations occur as a mathematical conceptualization
during problem solving. Cifarelli (1998) claims that students develop three increasing abstract levels of solution
activity (Figure 2.10).

( TABLE 3. Levels of Conceptual Structure \
Level of Activity Attributes Examples
High  Structural Abstraction  Solver can “run through” Solver can draw inferences
' (4)" potential solution activity from results of potential
B in thought and operate on activity without the need
its results to carry out solution
activity
Re-Presentation Solver can “run through" Solver can anticipate
(2) prior activity in thought potential difficulties
Recognition Solver encounters new Solver recognizes
2) situation and identifies diagrammatic analysis
activity from previous activity as appropriate
tasks as relevant for for solving Tasks 2-9
solving current task
Low
k a. Indicates number of solvers achieving given level. _/

Figure 2.10. Levels of Conceptual Structure (Cifarelli, 1998, p. 246) (adapted)

According to Cifarelli (1998) “The construct of problem representation has played a central role in describing the
knowledge that learners bring to mathematical problem solving situations [...].” (p. 239). Cifarelli
complementary states that “we need to reconsider traditional views of representation, and adopt a perspective
which:

e acknowledges both the constructive function of representation in the development of conceptual
knowledge and the resulting mental objects which solvers can then reflect on and transform as they
interpret problem situations. [...]

e the process of representation appears much more dynamic than previously articulated by traditional
theories of mathematics learning.|...]

e the finding that the solvers demonstrated increasingly abstract levels of solution activity while solving
the problems suggests the need to address qualitative aspects of mathematical performance seldom
considered as important in the study of representations in mathematical problem solving.[...]” (p.262)

The term ‘‘representation’’ in the words of Scaife and Rogers (1996)
“has a variety of different meanings, depending on the context. A common distinction is between
representation as process, and representation as product, as the outcome of this process. Process concerns
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the transformations and preservations that occur in deriving the representation from what is being
represented” (p. 190)
In the Table 2.2. below, I have brought together indicative definitions of the notion of representation and how
researchers conceive its role.

Table 2.2. The Notion of Representation
Author /s Definition of the notion of representation
Stephen Palmer (1977b) A representation is “first and foremost something that stands
for something else”
There are five elements/aspects involved in a representation:
@) [what] the represented world is
(i) [what] the representing world is
(iii))  [what] aspects of the represented world are being
represented /[modeled]
(iv)  [what] aspects of the representing world are doing the
representing /[modeling]

(V) [what] are the correspondence between the two worlds
(cited in Sherin, 2000, p.404)
Johnson-Laird (1983) e Propositions are strings or symbols that correspond to

natural language

e Mental models are structural analogues of the world
Images are perceptual correlates of models from a
particular point of view (cited in Sakonidis, 1994).

Lesh, Post & Behr (1987) “The term representation is interpreted in a naive and restricted
sense as external (and therefore observable) embodiments of
students' internal conceptualizations-although this
external/internal dichotomy is artificial” (p.33).(Webpage [10])

Kaput (1991) has distinguished between

o mental structures as means by which an individual
organizes and manages the flow of experience, and

e notation systems as materially realizable cultural or
linguistic artifacts shared by a cultural or language
community.(p.55)

Seeger, Voight & | “[...] a mental reproduction of a former mental state” “a

Werchescio (1998) structurally equivalent ‘presentation’ through pictures, symbols

or signs,” and “something ‘in place of’ something else”

(Seeger, 1998, p. 311 cited in Pape & Tchoshanov, 2001, p.

120).

Pape & Tchoshanov (2001) | “use the term representation(s) to refer to both the internal and
external manifestations of mathematical concepts. [They] write
representation(s) with the parenthetical “s” to emphasize that,
[they] are speaking of both the act of representing (the verb, to
represent) and the external form of the representation (the noun
form)” (p. 118).

Tschoshanov (2013) “as external stimuli (numerals, equations, graphs, tables,
diagrams, etc.) of concepts or internal cognitive schemata —
abstractions of ideas that are developed by a learner through
experience. Representation could also refer to the act of
externalizing an internal, mental abstraction” (p.73).

defines representational thinking “as the ability of the student
to construct, interpret, and communicate effectively with both

[41]



forms of representations, external and internal, individually and
in social context” (p. 75)

In other words, researchers consider representations to be actions developed within the mind of the learner, but
also the object created / brought into being during the action, using static or dynamic means. Computer
microworlds can be viewed as specific forms of external representations or external representational systems.
Having taken on board the aforementioned definitions in the literature, I think that a representation is both (a) an
external entity (such as a verbal expression, a graph, a figure, a map, a picture), which is to say an external
correspondence of objects or processes with the objects that are represented by the entities brought into being as
representing objects by the modelling process, and (b) an internal mental entity, meaning a structurally
equivalent modification of physical/mental objects/processes which are constructed in the mind as a result of the
processing/elaboration of information and the manipulation of objects and concepts due to the cognitive schemes
which have developed in the subject’s mind.

2.4. Multiple External Representations

Students’ mathematical thinking can be “represented” using different modes. Bruner (1966) proposed three
sequential modes of representation that can be used to build a hypothetical learning path for the learning of a
concept (for example, the number 7):
e FEnactive representation
This mode of representation is based on actions. For example, the pupil uses his/her pencils to understand
the number 7. S/he has to touch them, put them in order, count them, act on them and experiences the
correspondence between the seven pencils and number “7”. S/he acts on them through direct action. The
same happens if the pupil counts his/her fingers.
e Jconic representation
This mode of representation is based on images. For example, the student uses an image of 7 pencils.
S/he has to look at them and count them. S/he recalls the material objects-pencils in his mind. Before the
age of 6 the pupil cannot classify the materials from more than one characteristic (e.g., combining color
and size, or color and shape).
o Symbolic representation
This mode of representation is based on symbols. For example, the student uses the symbol 7 that has
replaced the image with the seven pencils, which has already been replaced by the seven material objects
or manipulatives used to understand the concept. Now, s/he has constructed a mental representation of
the numbers and begins to understand the concept of the number.
Bruner (1966) argues that a child’s development has to follow the sequential learning representational path for
the mastering of the concepts: from concrete real-world objects representation through iconic representation to
symbolic representation. The concrete materials help students develop connections between conceptual and
procedural knowledge and makes new learning easier and more meaningful. These kinds of representation take
under consideration an increasing degree of abstraction.

Bruner's iconic level

Written
Symbols
oA

Bruner's symbolic le\'e

Manipulative
ids

w oA

Biuner's enactive level

Figure 2.11a. Lesh’s model (1979) for translation between modes of representation (cited in Post, 1988, p.11) (an adaptation for the
current study)
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Post (1988) in his study “Some notes on the nature of mathematics learning” examines the implications that
behavioral and cognitive theories have for the teacher in the mathematics classroom, as “two broad theoretical
umbrellas under which the vast majority of learning theories can be classified” (p.1). According to Post (1988)

“when learning a new concept, it is important that students “see” the concept from a variety of perspectives
or interpretations. [...] These modes, [shown in ] represent an extension of Bruner’s early
work in representational modes (Bruner, 1966). The term "manipulative aids" in this figure relates to
Bruner's enactive level, "pictures" relates to Bruner's iconic level, and "written symbols" relates to Bruner's
symbolic level. Lesh (1979) added verbalization ("spoken symbols") and "real-world situations" to
Bruner's model and stressed the interdependence of these modes. Expanding (to five) the number of modes
of representation and stressing the various translations within and among these modes are the two most
important contributions of this model” (p. 10) [...] Mathematical problem solving requires a move from the
real-world situation to mathematical symbolism. Manipulative aids are in a sense halfway between the
concrete real world of problem situations and the world of abstract ideas and mathematical symbols
(written or oral). They are symbols in that they are made of physical materials, which in turn represent real-
world situations” (p. 13).

Real scripts /rea
life situations

statc
pictures

Pictures or
Diagrams

Manipulative or

manipulativé
concrete models

written
symbols

. models J

Written symbols

spoken language

real spoken
saipts language |

The Lesh (1979) multiple representation
Translation model, adapted from Lesh, Post, and Behr (1987,
p.34) (an adaptation for the current study).

Interplay among distinct types of
representation systems (Lesh, Post, and Behr, 1987)
(Webpage [10]) (adapted)

Behr, Lesh, Post, & Silver (1983) have identified five distinct types of representation systems that occur in
mathematics learning and problem solving:
“experience-based "scripts"-in which knowledge is organized around "real world" events that serve as
general contexts for interpreting and solving other kinds of problem situations;

manipulatable models-like [...] arithmetic blocks, fraction bars, number lines, etc., in which the
"elements” in the system have little meaning per se, but the "built in" relationships and operations fit

many everyday situations;

pictures or diagrams-static figural models that, [...] can be internalized as "images";

spoken languages-including specialized sub languages related to domains like logic, etc.;

written symbols-which, like spoken languages, can involve specialized sentences and phrases (X+3=7,
AUB) as well as normal English sentences and phrases’ (reported in Lesh, Post & Behr, 1987) (Webpage

[10m

Lesh, Post and Behr (1987) proposed a multiple representation model in which they suggest a student
understands a concept if s/he has the competence to translate between different modes of representation of the
concept. Many similar figures have been constructed. For example Lesh & Doerr (2003) replaced the “Real
scripts/or Real life situations” mode of representation with the “Experienced-based Metaphors”, adding by this
new information in the multiple representation figure (
Lesh (1979) considers that translation among representations in problem solving process occurs in three steps:
“translating from the given situation to a mathematical model; transforming the model so that the desired results
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are apparent; translating the model based result back to the original problem situation to see if it is helpful and
makes sense” (cited in Shavelson et al., 1987, p.4). Lesh Post and Behr (1987) identify five steps in the
translation process, concerning to modeling a problem in mathematics: “simplifying the problem by ignoring
irrelevant information; mapping between the givens and the “model”; transforming the properties of the model to
arrive at a result; translating the result back to the givens; evaluating the fit of the result to the givens” (cited in
Shavelson et al., 1987, p.4).

Lesh, Landau & Hamilton (1983), Behr, Lesh, Post, & Silver (1983), Lesh, Post & Behr (1987) emphasize the
“translation among these distinct types of representational systems and transformations within them”
( ). Lesh, Post & Behr (1987) argue that a student understands a concept or an idea (for example
what does it mean 1/3) if s/he: “(a) can recognize the concept in different representational systems ; (b) can
flexibly manipulate the idea within given representational systems and (c) can accurately translate the idea from
one system to another” .

For example if a student reads a mathematical word problem, s/he understands it if s/he can reformulate it in
his/her own words. This is a transformation within the same representational system. S/he can also use a
symbolic expression to express it [the problem] using mathematical symbols. This is a translation among
different representational systems.

TRANSLATION TRANSFORMATION

TRANSLATION

Translations and transformations during problem solving (Lesh, Landau & Hamilton, 1983) (Webpage [11]) (adapted)

As mentioned above, we can represent a concept with multiple representations, such as pictorial representations,
verbal representations, real-world representations, manipulatives or concrete representations, and symbolic
representations.

o Pictorial representations or iconic representations: Pictorial representations are any two—dimensional
pictures generated in a paper-pencil or computer environment which represent concrete objects. (e.g., Ainsworth,
1999a, b; Ainsworth et al., 2002; Tabachneck-Schijf & Simon, 1998; Gagatsis & Elia, 2004; Gagatsis, Spyrou,
Kapetanidou, Patsiomitou & Evangelidou, 2004, in Greek). These pictures (e.g., a photograph, a picture, a graph,
a map) can be generated by the teachers, the students or they form part of a problem in textbooks.
Students/teachers can also construct their own pictures in a static or dynamic environment in order to experience
several aspects of mathematical ideas and meanings kinesthetically.

Carney and Levin (2002) study has proved that the function of pictures/images in mathematics can be very
influential. They identify five different functions for pictorial representations in mathematics problems and tasks
(e.g., decorative, representational, organizational, interpretational and transformational)(reported in Finesilver,
2014, p. 72):

e “Decorative pictures simply decorate the page, bearing little or no relationship to the text content,
Representational pictures mirror part or all of the text content.
Organizational pictures provide a structural framework for the text content.
Interpretational pictures help to clarify difficult text, and
Transformational pictures include systematic mnemonic components designed to improve recall of text
information”.
Many studies implemented this model (e.g., Gagatsis & Elia, 2004) to investigate how students perceive the
pictorial representations in mathematics. Finesilver (2014) concludes that there is a “relationship between the
development of representational strategies and multiplicative thinking.” (p.2).
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Lesh, Landau & Hamilton (1983) put pictorial representations in the centre in the following figure ( )
during problem solving process because a picture can help a student to understand fractions as “s/he can express
fraction ideas presented with circular regions using rectangular regions, or using written symbols” (Webpage

[L1D).
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Translations among modes of representation during problem solving (Lesh, Landau & Hamilton, 1983) (Webpage [11])
(adapted)
Johnson-Laird (2010) in his study ‘Mental models and human reasoning” states that iconic representations help
persons to visualize a verbal expression of a problem and how the different objects mentioned in the problem
relate to each other. As he writes:

“A visual image is iconic, but icons can also represent states of affairs that cannot be visualized, for

example, the 3D spatial representations of congenitally blind individuals, or the abstract relations between

sets that we all represent. One great advantage of an iconic representation is that it yields relations that
were not asserted in the premises (24, 28, 29). Suppose, for example, you learn the spatial relations among

five objects, such as that A is to the left of B, B is to the left of C, D is in front of A, and E is in front of C,

and you are asked, “What is the relation between D and E?”’[...] “You could use formal rules to infer this

relation, given an axiom capturing the transitivity of “is to the left of.” (p. 2)

An iconic representation can also be used in a problem presented in a DGS environment. If we copy-paste a
picture into a DGS environment, we can process it using the tools provided by the software. In this case, the
picture becomes an illustration that can help students to understand and organize the objects in the picture (e.g.,
Patsiomitou, 2014).

e Verbal representations: These are representations that are generated through the language and verbal
expressions we use while discoursing in a mathematics class. Examples of verbal representations include the
definitions, theorems or geometrical properties, that a student formulates in support of his/her logical reasoning
as s/he tries to solve an equation or a geometrical or mathematical problem. But the students fail to support their
thinking when they do not know the exact terminology in mathematics, or when they confuse the meanings.
Moreover, when students do not understand a concept, they cannot “speak™ about it. Vergnaud (2009) in his
study “The Theory of Conceptual Fields” considers that the linguistic and symbolic expressions are a “part” of a
concept which can be developed during didactic situations:

“Because language and symbols play an important role in the conceptualizing process, many researchers

identify conceptualization and symbolization, as if the wording and symbolizing activity were sufficient

roots of knowledge, particularly mathematical knowledge. This is not the case. The analysis of situations
and schemes shows that the conceptualizing process already takes place in the simplest forms of activity

(even without language): the reason is that no action can be efficient without the identification of some

objects and their properties. Even more complex concepts, to gain sense and operationality, need to be

contextualized and exemplified in situations. Therefore, from a developmental point of view, a concept is
altogether: a set of situations, a set of operational invariants (contained in schemes), and a set of linguistic

and symbolic representations” (p. 94).
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Skinner (1957/1992) in his monograph “Verbal Behavior” poses a very important issue concerning the
correspondence between verbal expressions and the things or situations these verbal expressions represent:
“It has been tempting to try to establish the separate existence of words and meanings because a fairly
elegant solution of certain problems then becomes available. Theories of meaning usually deal with
corresponding arrays of words and things. How do the linguistic entities on one side correspond with the
things or events which are their meanings on the other side, and what is the nature of the relation between
them called “reference”? Dictionaries seem, at first blush, to support the notion of such arrays. But
dictionaries do not give meanings; at best they give words having the same meanings. The semantic
scheme, as usually conceived, has interesting properties. Mathematicians, logicians, and information
theorists have explored possible modes of correspondence at length. For example, to what extent can the
dimensions of the thing communicated be represented in the dimensions of the communicating medium?
But it remains to be shown that such constructions bear any close resemblance to the products of genuine
linguistic activities” (p.41).
This is a very important issue and one that every teacher may find themselves facing when s/he tries to teach a
concept in class using only verbal expressions (e.g., a lecture). A few students will be unable to understand the
teacher, because they cannot translate the information in their mind according to their pre-existing structures, or
because they simply cannot imagine it. Certainly, when we teach geometry or mathematics, a figure (or a graphic
representation) generally contributes to a better understanding of the concepts. This issue is supported
theoretically by the theory developed by Paivio (1986), as well as by Baddeley’s (1986) model of the architecture
of memory.
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The Dual Coding Theory (Paivio, 1986, cited in Gilbert, 2010, p.4) (adapted)

Paivio (1986) in his “Dual Coding Theory” proposes that when a person /a student is studying a subject, s/he
encounters the meaning of the concrete subject (e.g. quadrilaterals) in a network of words and ideas (Paivio
attaches a common label ‘logogens’ to the verbal information) and separately in the images or non-verbal
information (e.g., information received through touch, sight, sound, taste) relating to the concrete subject (Paivio
attaches a common label “imagens” to the non-verbal information). They can be linked together to provide an
understanding of the subject ( ). Gilbert (2010) states that
“Paivio proposes that verbal stimuli — those which come in verbal form— and non-verbal stimuli — are
processed in different ways by sensory systems that are in common to them both. [...]These can be linked
together to provide an enriched understanding of that system. Most importantly, the two types of
associative structures are capable of ‘cross-linking’ to form ‘referential connections’. [...]JWhen called
upon to do so, an individual will either produce a verbal or a non-verbal output based on the relevant
associative structures, or will produce one or both of them based on the referential structures that have been
developed. As the presentation of a comprehensive account of verbal stimuli, non-verbal stimuli, their
associations and referential connections would be very lengthy, this introductory paper is only concerned
with those non-verbal stimuli presented in visual form™ (pp. 3-4).
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Moreover, according to Baddeley’s (1986) model, if a verbal expression is accompanied by a visual picture of the
object, their relation will be strengthened. De Vries, Demetriadis and Ainsworth (2009) distinguish internal
representations to: propositional representation, mental images and mental models.

“Following Paivio (1971, 1990), cognitive psychology has typically distinguished two types of internal

representations depending on the type of correspondence relations: propositional representation, which is a

verbal or text-like mode, and mental images which correspond to a visual-pictorial mode of representation.

In addition a third kind is often postulated which are mental models as structural or logical analogues of the

word (Johnson-Laird, 1983)” (de Vries, Demetriadis and Ainsworth, 2009, p. 139)

Mayer and Anderson (1992) claim that a student has to construct three types of connections during a meaningful
learning process, connecting iconic with verbal representations:
e “representational connections between verbal information that is presented and the learner’s verbal
representation of that information;
e representational connections between pictorial information that is presented and the learner’s visual
representation of that information; and
e referential connections between corresponding elements in the learner’s verbal and visual
representations.” (Reported in Sullivan, 2004, p. 9).
Mayer and Moreno (1998) propose also that meaningful learning occurs when “five active cognitive processes
are involved in learning from multimedia presentations: selecting words, selecting images, organizing words,
organizing images, and integrating words and images. This has become known as the SOI (Select, Organize, and
Integrate) model of meaningful learning. Selecting words and images equates to building mental representations
in verbal and visual working memory (respectively). Organizing words and images consists of building internal
connections among either the propositions or the images (in that order). Integrating implies building external
connections between a proposition and its corresponding image”(Sullivan, 2004, p. 7).

o Symbolic representations: These are representations which include/incorporate symbols such as letters,
numbers, other symbols, formulas, operations on numbers and formulas, arithmetic, algebraic or geometric
symbols (e.g., Vergnaud, 1988; Ainsworth, 1999a, b; Johnson, 2017).

For example, the solution of an equation represents the structure of a symbolic representation in which a student
performs calculations between numbers of different variables. The symbols can have different meanings,
depending on the framework in which we implement them. For example, the symbol “<” has different meanings
depending on whether it is implemented in an algebraic or geometric utterance (e.g., 3x +2 < 5, < xOy =90°).
Symbolic representations may be produced in a static or a computer environment.

Kalavasis (2018) in his study “Mathematics and the real world in a systemic perspective of the school” presents
examples of the history and epistemology of mathematics, (e.g. the figurate numbers) and their symbolic

representations as they have been conceived by Pythagoreans ( ).
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Symbolic representations of the figurate numbers (conceived by Pythagoreans, cited in Kalavasis, 2018, p.17) (adapted)

Kalavasis (2017) states that the figurate numbers “evolved their representational constructions using the practical
and noetic instrument of the gnomon ™ (p.16). As Kalavasis argues:
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“The role of representations and symbolic languages, playing a crucial role in mathematics, becomes an

obstacle in the interdisciplinary learning path of the students in the everyday school timetable across their

differentiated uses in the different disciplines. Thus, the widely studied didactical transposition is

effectively enriched with the praxeological transposition” (p. 9).

® Real-world representations: These representations are correlated with situations, events and objects that
take place in the real world. The students who use these representations are supported to make mathematical
connections among the objects in the real world and the abstract mathematical meanings (e.g., Lesh, Post & Behr,
1987). Real-world representations may be produced in a static or a computer environment.
For example, in the Figures 2.14a, b, I have pasted a picture of an island into a DGS environment; it is an
isosceles triangular shape and can support the solution to Viviani’s theorem [Vincenzo Viviani (1622-1703)].
Point D lies on the base of the isosceles triangle. As we know, the sum S of the length of the perpendiculars from
the point D to the sides is equal to the altidute h (CG in the Figures 2.14 a, b). The students can experimentally
prove that the sum S will not be modified if we change the position of point D.
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Figures 2.14a, b. A real world representation for Viviani’s theorem in a dynamic environment (Patsiomitou, in
press)

Viviani’s problem could be reformulated as following: “A man lives in a triangular island. His house is located
on a side of the equilateral triangle. Every morning he starts out from his house to buy several things and walks
along two paths that are perpendicular to the other sides of the triangle. He counts his steps and finds that even if
he does not always starts from his house, but from the side of the triangle on which his house stands, and walks
along perpendiculars to other sides, he always walks the same distance in total. Could you explain this?”
This representation is complex as it combines pictorial, symbolic and real-world options, which I implemented in
a dynamic environment.
Tiinde Kantor (2013) investigates many occasions of Viviani’s Theorem. Tiinde Kéntor (2013) gives among
others the following benefits of using historical problems (p.81):

e “We can show the continuity of mathematical concepts and processes over past centuries |...]

e We motivate learning process in the classroom, because our pupils deal with problems which were

objects of investigation centuries ago. [...]

e Pupils connect mathematics to various cultures and other intellectual developments in science [...]”
A real-world representation can be an interpretation of a real-world problem. Such problems are incorporated in
the “Nine Chapters on the Mathematical Art” (Jiuzhang suanshu). According to O’Connor and Robertson (2003)
“Jiuzhang suanshu is a practical handbook of mathematics consisting of 246 problems intended to provide
methods to be used to solve everyday problems of engineering, surveying, trade, and taxation.” (Webpage [33]).
I chose to set the following problem for my university students last year, as I think it is very interesting:
“There is a square town of unknown dimensions. There is a gate in the middle of each side. Twenty paces outside
the North Gate is a tree. If one leaves the town by the South Gate, walks 14 paces due south, then walks due west
for 1775 paces, the tree will just come into view. What are the dimensions of the town”.
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Figure 2.15. Solution to the real-world problem in a DGS environment

My questions on the problem concern the way that proactive teachers of mathematics would use the concrete
problem in class. What kind of representations would they use, how would they model the problem etc.?
Figure 2.15 is an image of the solution to the problem resulting from the interpretation of the problem into the
DGS environment.

o Manipulatives, or concrete representations: These are objects (e.g., Dienes cubes, geoboards, pattern
blocks, fraction pieces) which are designed to mediate between a particular mathematical concept and the way
students learn the concept. Students can manipulate them by touching or moving, and thus are concrete means
(Dienes, 1960; Baroody, 1989; Van de Walle, 2005; Johnson, 2017). Ross (2004) defines manipulatives as
follows: “[...] materials that represent explicitly and concretely mathematical ideas that are abstract. They have
visual and tactile appeal and can be manipulated by students through hands-on experiences” (p. 5).

Clements & Mcmillen (1996) in their study “Rethinking “concrete” manipulatives” argue that “attidutes towards
mathematics are improved when students are instructed with concrete materials by teachers knowledgeable about
their use[...]” (p.270).

Clements & Mcmillen (1996) in an extended and substantial study present the advantages/ key benefits of using
computer manipulatives, and rethink the meaning of “concrete” manipulatives. They argue that” ““ (1) Computers
offer a manageable and clean manipulative, (2) Computers afford flexibility, (3) Computer manipulatives allow
for changing the arrangement or representation, (4) Computers store and later retrieve configurations, (5)
Computers record and replay students’ actions, (6) Computer manipulatives link the concrete and the symbolic
by means of feedback, (7) Computer manipulatives dynamically link multiple representations, and (8) Computers
change the very nature of the manipulatives” (p.272-274). Clements & Mcmillen highlight also the advantages of
computer manipulatives for teaching and learning “Computer manipulatives link the specific to the general,
encourage problem posing and conjecturing, build scaffolding for problem solving, focus attention and increase
motivation and encourage and facilitate complete, precise explanations “(p. 275-276). They finally support that

“Now when teachers close their eyes and picture children doing mathematics, manipulatives should still be

in the picture, but the mental image should include a new perspective on how to use them” (p. 278).
Janvier (1987b) considers a representation to be a combination of both ingredients: external objects, as “written
symbols and real objects” and “mental images”. He created an illustration to present “a visual resemblance
between a representation and a star” (Figure 2.16).

A strong argument that a student cannot understand a concept from one type of representation of the concept
alone is that this type of representation cannot describe a mathematical concept thoroughly-- each representation
has its own distinct advantages. The core of mathematical understanding can thus be reached /achieved through
the use of multiple representations.

Janvier’s (1987b) Model of multiple representations incorporates ‘“Tables, Graphs, Formulations, Verbal
Descriptions and Object”. Janvier (1987b, c) considers that the translation (meaning the psychological process
mediating between different forms of representations) occurs as the star turns around to appear another foot.

[49]



Ob/ ect e\ a?
oA o
o°3’ o”o)
> %
L Gdé
2

Figu re 2.16. A visual resemblance between a representation and a star (Janvier, 1987b, p.69, cited in Coskun, 2011, p.33) (adapted)
Arcavi (2003) states that:
“Another cognitive difficulty arises from the need to attain flexible and competent translation back and
forth between visual and analytic representations of the same situation, which is at the core of
understanding much of mathematics. Learning to understand and be competent in the handling of multiple
representations can be a long-winded, context dependent, non-linear and even tortuous process for students
(e.g. Schoenfeld, Smith and Arcavi, 1993). The sociological difficulties, include what Eisenberg and
Dreyfus (1991) consider as issues of teaching. Their analysis suggests that teaching implies a “didactical
transposition” (Chevallard, 1985) which, briefly stated, means the transformation knowledge undergoes
when it is adapted from its scientific, academic character to the knowledge as it is to be taught” (p.38).
Johnson (2017) in her study “A New Look at the Representations for Mathematical Concepts: Expanding on
Lesh’s Model of Representations of Mathematical Concepts” expanded Lesh’s model including the
“technological type of representations”. Johnson (2017) created an exagon to incorporate this model (p. 6). As
Johnson argues “future research on representations should directly include technology as a distinct
representation” (p.7).
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Figure 2.17. My proposal for the connections between multiple external digital representations and mental images of the concept for
the development of understanding of the concept
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Figure 2.17, which I created to illustrate connections between external and internal representations of a concept,
incorporates Janvier’s, Lesh’s and Tchoshanov’s translational model of multiple representations. I think that
technological and digital representations that can be developed on several computer have the potential to change
the way the students perceive the manipulation of objects, the written or oral language, as well as the symbolic
and graphic representations provided to them. We can still provide animated real-life situations that enrich the
problem-solving with an external representation which does not stand as an obstacle exactly as Mesquita (1998)
reports.
In Figure 2.17 arrows connect the different modes as well as the different technological modes, as I think that
every mode can be expanded to encompass its technological/digital version.
According to Kaput, Noss & Hoyles (2002) in their article “Developing New Notations for a Learnable
Mathematics in the Computational Era” the aim to introduce and incorporate digital infrastructures in the
teaching and learning of functions “is to put phenomena at the center of the representation experience, so children
can see the results, in observable phenomena, of their actions on representations of the phenomenon, and vice
versa. These are
e The definition and direct manipulation of graphically defined and editable functions, especially
piecewise-defined functions [...]
e Direct, hot-linked connections between functions and their derivatives or integrals. [...]
Direct connections between these new representations and simulations to allow immediate construction
and execution of variation phenomena. |[...]
e Importing physical motion-data [...] and reenacting it in simulations [...] to drive physical phenomena
(including cars on tracks)”. (p. 19)
As Kaput, Noss & Hoyles (2002) conclude
“Thus we wish to challenge our community to focus attention on the design and use of representational
infrastructures that intimately link to students’ personal experience. This is a necessary step if we are to
move away from a 19th century school mathematics concentrating on isolated skills based on static
representational systems in a tightly-defined curriculum (with only a minority able to engage in
independent problem solving). Our contention is that knowledge produced in static, inert media can
become learnable in new ways, and new representational infrastructures and systems of knowledge become
possible, serving both the learnability of previously constructed knowledge and the construction of new

knowledge” (p.39).
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Figure 2.18. Affective states interacting with heuristic configurations (Goldin, 2000, p. 213) (an adaptation for the current study)
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Goldin (2008) in his study considers to be five types of mature systems of internal representation (Goldin, 1987,
1992, 1998), psychologically fundamental, extending earlier “dual code” and “triple code” models (Paivio, 1983;
Zajonnc, 1980). These are (Goldin, 2008, p. 184)
o “Verbal /syntactic systems, that include natural language capabilities-lexicographic competencies, verbal
association, as well as grammar and syntax;
e [magistic systems, including visual/spatial, tactile/kinesthetic, and auditory /rhythmic encoding;
e  Formal notational systems, including the internal configurations corresponding to learned, conventional
symbol-systems of mathematics (numeration, algebraic notation, etc.) and how to manipulate them;
o A system of planning, monitoring and executive control that guides problem solving, including strategic
thinking, heuristics, and much of what are often referred to as metacognitive capabilities; and
e An affective system that includes not only the “global” affect associated with relatively stable beliefs and
attitudes, but also the changing states of feeling as these occur during mathematical learning and problem
solving. The characterization of affective structures is emerging as an important way to help understand
students’ mathematical engagement and motivation” (p. 184)
Goldin has elaborated on the role that affective states play in the problem—solving process in numerous articles.
Goldin (2000) in his study “Affective Pathways and Representation in Mathematical Problem Solving” constructs
a realistic model from problem-solving competence. He outlines in the above figure ( ) and discusses
in the article, “two major affective pathways, one favorable and one unfavorable, together with conjectured
relationships between affective states and useful or counterproductive heuristic configurations” (p. 209)
According to Goldin (2000)
“The affective states described are not global attitudes or traits, but local changing states of feeling that the
solver experiences and can utilize during problem solving-to store and provide useful information,
facilitate monitoring, and evoke heuristic processes. Thus affect, like language, is seen as fundamentally
representational as well as communicative)(p. 209)[...] affect is not incidental but fundamental, and it
cannot be handled simply by a commitment to make mathematics fun or enjoyable.
Learning style is how a learner process information and prefer to learn. There are four main learning styles: (a)
Visual (a person learns more effectively through seeing) (b) Auditory (a person learns more effectively through
hearing) (c). Kinesthetic (a person learns more effectively through feeling) (d). Tactile (a person learns more
effectively through touching). The terms learning style and cognitive style differ among scholars. Kordaki (2005)
in her study “The role of multiple representation systems in the enhancement of the learner model in open
learning computer environments” states that “learners seem to arrive at schools with different learning styles,
such as: intuitive, visual, holistic, field dependent, reflective, rational, analytic and field independent” (p. 253).
Hartley (2008) defines “learning styles” as the ways that the subjects/students/learners conduct their learning
tasks. He also defines “cognitive styles” as the ways that the subjects conduct their cognitive tasks.
Ainsworth (1999) in her study “Designing effective multi-representational learning environments” supports that
“Multi-representational learning environments are used by a wide range of learners in a number of domains and
many advantages are claimed for their use. By using multiple external representations (MERs), it is hoped that
learners can benefit from the properties of each of the representations and that ultimately this will lead to a deeper
understanding of the subject being taught. However, research that has evaluated how effectively multi
representational environments support learning has produced mixed results. A number of studies have shown that
learners find working with MERs to be very difficult (e.g., Tabachneck, Leonardo & Simon, 1994; Yerushalmy,
1991).” (p. 1).
A few difficulties that can occur relate to the format of the representations as well as to the operators that act on
them (Ainsworth, 1999b, p. 34). These kinds of difficulties are presented in the following table:

Difficulties with MERS (Ainsworth, 1999b, p. 34)
Difficulties with MERS have to do with: | Referring to:
(Ainsworth, 1999, p. 34)
1. “the m()da]ity of the representations — | “differences in the format of representations
(propositional v graphical)” (and hence their operators)”
2. “the levels of abstraction (e.g. concrete to
symbolic representations) [...]”
3. “the type of representation (e.g.
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histogram, equation, table, line-
graph)[...]”
4. “the specificity of representations]...]”
5. “whether representations are static or
dynamic [...]”
6. “differences in labeling and symbols on
the representations [...]”
7. “alternative uses of representations [...]”
“the interface to the representations [...]” | “differences in operators as the format of
9. “self-constructed & selected | these representations need not necessarily

o

representations  versus  pre-determined | differ”.
representations [...]”

10.“whether the representations encourage
different strategies [...]”

Consequently, designers of multi-representational learning environments are faced with the question of how to

develop a system where the learners can benefit from the advantages of MERs. Ainsworth (1999a, 2006)

introduced taxonomy of the functions of MERs and created a diagram to visualize theses functions ( ).

According to Ainsworth (1999a) in her study “The functions of multiple representations” supports that
“A conceptual analysis of existing multi-representational learning environments suggests there are three
main functions that MERs serve in learning situations — to complement, constrain and construct. The first
function is to use representations that contain complementary information or support complementary
cognitive processes. In the second, one representation is used to constrain possible (mis)interpretations in
the use of another. Finally, MERs can be used to encourage learners to construct a deeper understanding of
a situation” (p.3).

Complementary functions: MERs differ either in the processes each supports or in the information each contains

(Ainsworth. 2006, p.188):

o “Individual differences: if learners are presented with a choice of representations, they can choose to
work with the representation that best suits to their learning style

o Task: [...] learners given MERs can benefit from choosing the best representation for the current task
[...].

e Strategy: Different forms of representation can encourage learners to use more or less effective
strategies” [...] “as each strategy has inherent weaknesses, switching between strategies made problem
solving more successful by compensating for this”(p.188)

Constraining functions: “A second advantage of using MERS is that certain combinations of representations can
help learning when one representation constrains interpretation of a second representation [...]” (Ainsworth.
2006, p.188)

Constructing [deeper understanding] functions: MERs support deeper understanding “when learners integrate
information from MERs to achieve insight [...]” (Ainsworth. 2006, p. 189)

o “Abstraction is the process by which learners create mental entities that serve as the basis for new
procedures and concept at a higher level of organization [...]”;

e  “Extension can be considered as a way of extending knowledge that a learner has form a known to an
unknown to representation, but without fundamentally reorganizing the nature of that knowledge
[...]"and

e “Relational understanding is the process by which two representations are associated again without
reorganization of knowledge [...]” (p. 189).

Ainsworth (2006) argues that “multiple external representations can provide unique benefits when people are

learning complex ideas [...] the effectiveness of multiple representations can best be understood by

considering three fundamental aspects of learning: the design parameters [...], the functions that multiple
representations serve in supporting learning and the cognitive tasks that must be undertaken by a learner

interacting with multiple representations” (p. 183)
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Figure 2.19. A taxonomy of functions of MERs (Ainsworth, 1999a; 2006, p. 187) (an adaptation for the current study)

A very powerful way to facilitate and enhance students’ understanding can be achieved with the use of multiple
representations, particularly in computer-based learning environments (e.g., Moreno 2002; Mayer& Moreno,
2003). A few examples of multiple representations in a computer-based learning environment include “interactive
diagrams with embedded transcripts, [...] video presentations, interactive graphs and forms, audio explanations
of concepts, and still images™ (Sankey, Birch and Gardiner, 2011, p. 20). Sankey, Birch and Gardiner (2011)
argue that “students reported very favorably on their use of the multimodal learning elements and perceived that
these had assisted comprehension and retention of the material” (p. 18). Wong, Yin, Yan and Cheng (2011) also
in their study “Using Computer-Assisted Multiple Representations in Learning Geometry Proofs” propose and
use a multimedia learning environment to let students interact with multiple representations relevant to a
geometry proof. Concretely, they propose a “computer-assisted learning environment called MR Geo to help
students in learning to do theorem proving, with the help of multiple representations including problem
description, static figure, dynamic geometry figure, formal proof and proof tree” (p. 43). (Figure 2. 20)
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Figure 2.20. A formal proof and its proof tree provided by the MR Geo computer-assisted learning environment (Wong, Yin, Yang, &
Cheng, 2011, p. 47)

According to Wong, Yin, Yang, & Cheng (2011, p. 52) “The connection between formal proof and proof tree
raised students’ comprehension of geometry proof. Some LG students indicated that after understanding the
geometry proving process, they no longer hated geometry classes. The above results indicated that MR Geo
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might offer an attractive, alternative approach to geometry education with multiple representations in a computer-
assisted learning environment, comparing to traditional classroom teaching”.

Duval (1995b, p.145-147) provides an analytic framework for analyzing the semiotics of geometric objects
as theoretical and abstract objects. Duval identifies or distinguishes four types of cognitive apprehension, namely
how we perceive (with our sensory system) and conceive (in our mind) a figure. These types of cognitive
apprehension are the following (reported also in Jones, 1998; Deliyianni, Elia, Gagatsis, Monoyiou & Panaoura,
2009; Patsiomitou, 2011, 2012a, b, 2018b, 2019a, b; Forsythe, 2014):

e perceptual apprehension: this is what is recognised at first glance; how one perceives a figure, what are

the sub-figures in the figure; in other words what one can view in the figure or perceive in regard of the

objects that belong to the figure.

e sequential apprehension: how one understands the order of the construction steps; what are the geometric

properties and definitions used for the construction of the figure. Using a DGS or computing environment

generally a student can enrich his understanding of the different paths that can be used for the same

construction of a figure (see also Gomes and Vergnaud, 2004, cited in Forsythe, 2014, p.40)

e discursive apprehension: how one verbalizes the construction steps and explicate/interpret the

construction steps using reasoning; “the definition of a geometrical object and a description of its

construction are part of discursive apprehension” (Forsythe, 2014, p.40)

® operative apprehension, how one operates the figure “which involves manipulating the figure mentally or

physically to provide an insight into a problem” (Jones, 1998, p. 31). “Operative apprehension depends on

the various ways of modifying a given figure: the mereologic, the optic and the place way” (Deliyianni et

al. 2009, p. 697).

Duval (1999) in his study “Representation, vision and visualization: cognitive functions in mathematical
thinking. Basic issues for learning”, describes three kinds of operations delimited by how a given figure is
transformed:

e “The mereologic way: you can divide the whole given figure into parts of various shapes [...] and you can

combine these parts in another whole figure or you can make appear new subfigures.[...] We call

«reconfiguration» the most typical operation.

e The optic way: you can make a shape larger or narrower, or slant, as if you would use lenses. In this way,

without any change, the shapes can appear differently [...].

o The place way: you can change its orientation in the picture plane. It is the weakest change. It affects

mainly the recognition of right angles, which visually are made up of vertical and horizontal lines” (Duval,

1988, pp. 61-63; 1995, p.147).

The mereologic, the optic way and the place way constitute what Duval defined as “the operative apprehension”
of the figure, which according to him differs from the perceptual apprehension “because perception fixes at the
first glance the vision of some shapes and this evidence makes them steady” (p.19) [...] Operative apprehension is
[also] independent of discursive apprehension”(p.21)

Duval (1995b) supports that “a mathematical way of looking at figures only results from co-ordination between
separate processes of apprehension over a long time, something that is supported with work with computers, if
the software has been defined having this in mind” (reported in Jones, 1998, p.31). Duval (1998, p.38) proposes
“that geometrical reasoning involves three kinds of cognitive processes which fulfil specific epistemological
functions, namely ( ):

* visualisation processes, with regard to space representation (italics by the author) for the illustration of a
statement, for the heuristic exploration of a complex geometrical situation, for a synoptic glance over it, or
for a subjective verification” (p.38).

* construction processes, by tools (e.g., ruler, compass, protractor) or dynamic tools (e.g., a DG software’s
primitives): “construction of configurations can work like a model in that the actions on the representative
and the observed results are related to the mathematical objects which are represented” (p.38);

* reasoning processes “in relation to discursive processes for extension of knowledge, for proof, for
explanation” (p.38).
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Duval argues, “[...] these three kinds of cognitive processes are closely connected and their synergy is cognitively
necessary for proficiency in geometry” (ibid. p38)
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Figure 2.21. The cognitive interactions involved in geometrical activity (Duval ,1998, p.38)( Webpage [12]) (an adaptation for the
current study)

In the Figure 2.21, Duval illustrates the different cognitive processes and the arrows that represent the way that
one of these can support another in any geometrical activity. For example, an arrow starts from the ‘construction’
cognitive process towards ‘visualization’ but this arrow is not reversed. Namely, Duval points out that (a) these
different processes can be performed separately and (b) a cognitive process (e.g., visualization) does not
necessarily depend on another cognitive process (e.g., the construction process). The arrow 2 is dotted as Duval
considers that visualisation does not always help students to reason or formulate an argumentation. Arrows 5A
and 5B show how that reasoning can emerge along a path separate from the processes of construction or
visualisation. Of course, construction can leads to visualisation, but even then the actual processes of that
construction stem from links between pertinent mathematical properties and from the limitations/or constraints
imposed by the tools used. In the same way, even if visualisation can help students formulate their thinking by,
guiding them in the direction of a proof, it can still be misleading at times (Jones, 1998, p. 32).

To facilitate visualization Duval suggests the student has to develop the operative apprehension of the figure,
namely the mereologic, the optic way and the place way of the figure and its subfigures. This will happen
physically by manipulating the figures in a static or a dynamic environment or mentally when a student has
developed the competence to achieve it. It is very crucial for the teachers to find ways to trigger and elicit it
through proper activities.

2.6. Linking Visual Active Representations
The topic of LVAR is discussed extendedly in Chapter 5.

2.7. Indicative Representational Environments used for the Teaching and
Learning of Mathematics

Edwards (1998) argues that “we can speak of a microworld as "embodying" a sub domain of mathematics or
science: not because of some reifying link between the representation and the mathematical or scientific entity,
but because of the opportunity that such environments provide for learners to kinesthetically and intellectually
interact with the designers' construction of these entities, as mediated through the symbol system of a computer
program” (p. 74).
Kynigos (2007) introduces the term “half-baked” microworlds
“to describe digital media designed to facilitate communication between researchers, technicians, teachers
and students as they become engaged in changing them. Microworlds have been the main Logo-based
vehicles through which the key ideas of generation of meanings through communicational and
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constructionist activity have been mediated within the field of instructional design (Goldenberg, 1999)”
(p-335).

Figures 2.22 a, b, ¢, d, e, f. Multiple Linked Representations created in the E-slate microworld
(Patsiomitou, 2012c, p.144)

E-slate (Kynigos, 1997; Kynigos et al., 1997) (http: //e-slate.cti.gr) is a logo-based microworld, used in Greek
schools in the teaching and learning process of mathematics at several levels, but also for investigating different
aspects of educational practice. E-slate consists of three distinct but interlinked work areas, the components of E-
slate. According to Kynigos (2004)
“In the E-slate environment, components are black boxes in that the user cannot alter their main
functionality and in that they are developed primarily to be technically efficient. However, each component
is designed so as to be as generic as possible in the sense that it can be used for a family of activities and
not just a few activities” (p.31).
The linked representations I have constructed using the E-slate microworld (Figures 2.22 a, b, ¢, d, e, f) reveal
an approach to the concept of the circle which uses an increasing number of circumscribed regular polygons. E-
slate “emphasizes connectivity by adopting a variety of ways to connect components” (Kynigos, 2004, p. 33).
Sliders also have been designed “in order to allow the user to manipulate some value by changing it continually
through the slider” (Kynigos, 2004, p. 35).
The mathematical component which is called “the variation tool” “extends traditional Logo to the role of a
scripting language and on a database component” (Kynigos, 1997; Kynigos et. al., 1997). According to Kynigos
(2002) (paper available at Webpage [35])
“The variation tool is designed so that it provides a kinesthetic means for continually changing the
independent variable of the respective world to which it is connected and observing what remains constant
and what changes. In this case, when the language, turtle, canvas and variation components are connected
to each other, execution of a variable procedure with any value for the variable(s) and clicking on the
turtle’s trace “energizes” the variation tool which recognizes which command resulted in that particular
trace (fig. 1). A slider appears for each variable with editable range and step. Dragging the slider results in
a continual reshaping of the figure according to the corresponding variable value. The effect is that of the
same figure dynamically changing form (in a way similar to that of Geometry Sketchpad). More important,
it gives a feeling of the way things change and the rate of change” (p. 15).
MalLT is also a constructionist microworld environment (Kynigos & Latsi, 2007) widely used in Greek schools
(especially in Model Schools). Other packages also used in the teaching and learning process are Cabri II
(Laborde et al., 1988), Function Probe (Confrey & Smith, 1992), Geogebra (Hohenwarter, 2001), Geometer’s
Sketchpad (Jackiw, 1991), Web Sketchpad (McGraw Hill, 2019) etc.
Many activities have been constructed in the MaLL'T environment and are available online through Digital School
Platform (Webpages [13, 14]). Teachers and students can even access them (in class during the lesson or out of
the class) using their mobile phones (e.g., Geogebra, Web Sketchpad) or tablets for the teaching and learning
process of mathematics. Furthermore, MaLT is a 3D programming environment that enables dynamic
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manipulation; it is a very useful Web tool for the construction of meanings. According to MaLt Manual (retrieved
in May 2018):
“MaL T+ (MachineLab Turtleworlds) is an online tool of symbolic expression in mathematical activity by
means of programming for the creation and tinkering of 3D dynamic graphical models [...] On the left side
of MaL T+ appears the component of the ‘3D scene’, which also includes the avatar. The avatar is a 3D
object that you can move it in the 3D space by executing some Logo commands” (p.4). (See also, Webpage
[15])
For example, constructing a rectangular shape or a cube in the MaLT environment along with its 2D or 3D
transformations makes MaLT a very important tool for the intuitive perception, construction and deep
understanding both of meanings in 2D and 3D figures and of the figures’ properties. In the Figures 2.23 a, b, ¢, d
the screenshots of four linked representations could constitute part of a sequence of actions and processes for the
construction of the meaning of rectangle and cube. The rectangle is projected along the axis system of the grid. A
slider appears for each variable (i.e., for every side of the rectangular shape). Students can also measure the sides
of the quadrilateral, using the grid provided by the MaLT environment, and then use formulas to continue their
calculations, combining symbolic, graphic and visual representations. The MaL T environment also provides
dragging facilities through the manipulation of the sliders or the object on screen. According to Kynigos & Latsi
(2007) “Studying in a dynamic way 3D geometrical objects students have to analyze a 3D figure, break it into
smaller parts and determine angle measures and lengths of line segments. Projecting themselves into the place of
the turtle and moving from the visual to the descriptive level of thought students have to search for ways to
reconceptualize 3d objects in terms that can be explained to the 3d turtle through logo commands. Moreover
through the use of sliders students are provided with a direct manipulation metaphor for sequentially changing
variables’ values and simultaneously observing the variation both of 3d object and of their place in 3d space”
(p.360).

I
Y [elders of unfoldcube funcbon
1 ” Name From 1 To Step
as e
“
b -~ =
o ]

square :a ri
square :o fo
i

‘ unfoléCut S . *

[ of wivaiage raon

Name From ToStep [Fliders of unfoidcube function.

> as 1t )
o : £ .t

Figures 2.23 a, b, ¢, d: Screenshots of figures in the 2D or 3D MaLT constructionist microworld
(Webpage [16])

When a representational environment is combined with another environment (e.g., a DGS environment), the two
can complement one another, offering to learners advantage through the properties of different representations.
This will ultimately lead to a deeper understanding of the meaning under investigation. Research has evaluated
how effectively representations constructed in different environments can support learning by operating
complementarily.
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Figure 2.24. Construction of two rectangular figures in a DGS environment.

For example, constructing two rectangular shapes--a square with 4 cm sides and a rectangle with sides a, b equal
to 8cm and 2cm respectively--in a DGS environment (e.g., Sketchpad, Geogebra or other DGS software) and
experimenting with them helps students by allowing dragging and direct manipulation of the object, to move
from visualizing a square to describing and analyzing it as that a square is the rectangular shape with the
minimum perimeter among rectangular shapes that all have the same area. (Figure 2.24, Area of square Ag =
16cm?, area of rectangle Ag= 16cm?, perimeter of square Ps= 16cm , perimeter of rectangle Pg= 20cm).

At an advanced level the students can solve the problem “Suppose a rectangle has a fixed area of ¢ square
meters. Find the dimensions that minimize the perimeter” (Kreider and Lahr, 2002, p.1).

If we suppose that a and b are the lengths of the sides, then the area of the rectangle is A = a b, and the perimeter
P of the rectangle is P = 2a + 2b.

A
A=ab=>b=—

a
If we substitute it b into the equation of rectangle's perimeter then

A
P=2a+2 — (a>0)
a

Taking the derivative of P, we get

A
P'(a) =2-2— =0 which implies a = \/K
a?

Thus, the perimeter will be a minimum when the rectangle is a square ant its side is \/X meters.

The use of Cabri3D (Laborde, 2004) also enhance the visualization of a figure’s properties as well as
experimentations with “real” object on screen, --importantly, this is true not only for students in the first classes
of Secondary or in Primary education, as every student needs to directly manipulate a geometrical object to
understand it (Figures 2.25a, b). Cabri 3D is a three-dimensional interactive software package for exploring
geometry. It was launched in 2004. According to El-Demerdash (2010, p. 22-23) the key features of Cabri 3D can
be summed up in the following points:

e “Create solid geometric construction with just a few clicks of the mouse.

o Integrate numeric data using measurements and calculation tools.

e Manipulate and animate constructions and reshape objects using only the mouse.

e Print out patterns from virtual constructions and transform them into real objects”.
Cabri 3D also allows the construction, transformation and on-screen unfolding of three-dimensional objects (such
as cubes, cones and pyramids). New objects may also be formed when planes intersect with each other: the
intersection of a cone with a plane that does not go through the vertex of the cone, for instance, generates conic
sections (see also Kosaa, & Karakus, 2010, p.1386)
I shall focus on this favorite to me example, which combines History of mathematics and the use of technology:
the conics sections. According to Bogomolny (2004) “Menaechmus (c. 375-325 BC), a pupil of Eudoxus, tutor to
Alexander the Great, and a friend of Plato (Smith, p. 92), is credited with the discovery of the conics. A more
revealing term is conic sections on account of their being found as the intersections of circular cones by planes. If
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the planes pass through the vertex of the cone, the conics are said to be degenerate, otherwise they are not. There
are three non-degenerate conics: the ellipse, the parabola, and the hyperbola” (Webpage [36]).
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Figure 2.25a. Unfolding a cube in the Cabri 3D Figure 2.25b. Implementing direct manipulation using
dynamic geometry environment (Webpage [17]) the mouse (Webpage [17])

Conic sections have remained at the epicentre of interest since antiquity. If we try to answer the question “what is
the definition of conic sections” we will receive answers depending of the frame within we are investigating the
construction. Thus, a conic section is a curve in the plane, a locus of points or, in a 3D plane, the intersection of a
cone (Patsiomitou, 2007d).

Bartolini Bussi & Mariotti (1999) argue “Since the age of Apollonius, a deep understanding of the properties of
conic sections has been achieved. However, most of the properties were expressed through relationships, which
are neither immediately related to the shape of the cone to be cut nor to the shape of the section[...] in addition to
the historical point of view, the relationship between the arguments used in theoretical and in practical geometry
seems interesting to investigate from a cognitive perspective.” (p.28)

Figures 2.26 a, b, ¢, d. Creating conics sections using Cabri3D (Patsiomitou, 2007d, p. in Greek)

In the Figures 2.26 a, b, ¢, d, I have constructed a few illustrations of conic sections using Cabri3D
(Patsiomitou, 2007d, p. 40, in Greek). It is crucial for students directly manipulate the representation and
subsequently the abstract object, as Laborde & Laborde (2011) in their study “Interactivity in dynamic
mathematics environments: what does that mean?” argue: “Direct manipulation has proven to be a key feature to
facilitate creative user interaction with computer and has slowly generalized to most of computer platforms.
(Laborde and Laborde, 2011, p.1).
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Figures 2.27 a, b: Creating conic sections using linkages (cited in Masami Isoda, 1998, p. 87)

Isoda (1998) has written the article “Developing the Curriculum for Curves Using History and Technology” in
which, history of mathematics is combined with technology, meaning how linkages can be combined with new
technological systems for the teaching and learning of mathematics. According to Isoda (1998) “in the age of
Descartes, curves were only figures defined by geometry and drawn using devices such as ruler and compass,
linkages, and mechanics, etc (p.86).” For example in the Figures 2.27 a, b which are van Schooten’s linkages
(1657, cited in Masami Isoda, 1998, p.87) a tangent of a parabola is constructed by the mechanical linkage. Isoda
(1998) argues that “[...] students should know the reason why we can draw a parabola using the linkage [...as]
the visual and manipulative feature of these devices helps student to reflect on their own experiences” (p.87).
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Function Function
Differentiation, Integration

Infinite Approach Igebraic Approach

Igebraic Expression of |

Making Algorithm Infinite Geometry -
for Calculation Theory of Motion

Table, Graph,
Figure, Formula
Experiment,

Equation figure

Geometric Construction

Motion
Algebraization . Analysis of
Paradigm of Motion
Geom etry Proportional Theory of
Geometry motion
/ Numerical, Figural
Verbal
Representation

Proposition
of Figure

Philosophy

Dogma

/ Idea of
proportion

Geometrization Arithmetization
Survey, Astronomy, Motion in the Middle East

Figure 2.28. A Historical Root of Calculus from Ancient Greek Mathematics to the 17" Century Focused on
Mediterranean and European Area (Isoda, 1996, cited in Isoda, 1998, p.84) (an adaptation for the current study)

Figure 2.28 depicts “a historical root of calculus from Ancient Greek Mathematics to 17" century focused on
Mediterranean and Europe Area”, created by Isoda (1996) and reported in Isoda (1998, p. 84). The figure depicts
a brief but meaningful history of the evolution of calculus since antiquity. As the evolution of calculus does not
fall within the ambit of the current work, I shall only mention what Isoda (1998) highlights “Dynamic Geometry
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Software enhances and realizes Descartes dream” (p.82) as DG is an evolution of ancient drawing tools, such as
the linkages are.
On the other hand, Isoda & Matsuzaki (1999) discussed the roles of old technology and new technology in the
teaching of mathematical modelling. As they argue:
“But does new technology alternate old technology? For example if we use DGS in geometry, can we
discard a ruler and a compass? Of course we cannot, but we have to consider how the roles of a ruler and a
compass should be changed” (p.268).
Bartolini Bussi (2005) also claims that it is very difficult to build a concept only through a one-sided process, for
example through the algebraic definition. What must be also mentioned is the instructional sequence that will a
teacher follow in class and the activities that will be used in the learning trajectory exactly as Laborde & Laborde
(2011) support: “learning [can] emerge from the interactions between the students and appropriate tasks to be
done with the machine”. Laborde & Laborde highlight also the important role of the teacher in the teaching and
learning process for the development of abstract ideas on the part of the students.

ﬁ.‘.l_imct manipulation has proven to be a key feature to facilitate —\
creative user interaction with a computer and hasslowly
generalized to most of computer platforms. For educational
software nevertheless Direct manipulation cannot be designed by
chance and has to follow some additional principles, one of them
is called epistemic fidelity: the representation of mathematical
objects have to avoid any contradiction with the abstract object
they are supposed to represent; and this has to be true to the
graphical level as at the level of their behavior under direct

wanipulaﬁnn. (Laborde & Laborde, 2011, p.1} _/

Tall, Gray, Ali, Crowley, DeMarois, McGowen, Pitta, Pinto, Thomas, Yusof (2001) also argue that the
development of abstract concepts “begins from the ability to perceive things, to act on them and to reflect upon
these actions to build theories” (p.81) (Italics by the authors). They constructed sequential figures in their study
“Symbols and the Bifurcation between Procedural and Conceptual Thinking” to illustrate that. The Figure 2.29 b
below right (Figure 16, page 98 in Tall et al (2001)) is an evolution of the Figure 2.29a on the left (Figure 2,
page 82 in Tall et al (2001)).

FORMAL
definitions & proof
Axiomatic Euclidean proof T calculus
Mathematics PERCEPTUAI, Platonic objects algebra PROCEDURAL -

R 1i
_PLATONIC realworld  cton
Space & Symbolic prototypes
Shape  Befection  Npathematics percepts
/ | \ Perception ————p Action

Perception <—p Action
B of on
‘\of on

Environment

arithmetic PROCEPTUAL

counting, measuring

Environment

Figure 2: Various types of mathematics Figure 16: From perceptual & procedural to formal mathematics

Figures 2.29a, b: From perceptual to formal mathematics and advanced mathematical thinking (Tall et al, 2001)

According to Tall et al (2001)
“The transition to advanced mathematical thinking makes a complete shift in focus from the existence of
perceived objects and symbols representing actions on the objects to new theories based on specified
properties of formally defined mathematical structures. Geometric experiences can be used to focus on
certain properties (points, lines, intersections, curves, continuity, etc) to formulate new axiomatic systems
such as non-euclidean geometry, topology and analysis. Properties of arithmetic and algebraic symbols are
formulated and generalised to give axioms for groups, rings, fields, vector spaces, and so on. [...]

[62]



However, the essential quality that makes advanced mathematical thinking different from elementary

mathematics is the introduction of formal definitions and proof” (p.98)
The concept of a function is a mathematical object that cannot be smoothly understood by high school students,
especially by students who find maths difficult. Function Probe is a multi-representational software package
which can be used to teach functions to students (Confrey & Smith, 1992). Function Probe is a Java —based,
cross-platform software which opens with three separate but linked windows: a Table window, a Graph window
and a Calculator window. According to Confrey & Maloney (2008, p.183) “Function Probe was designed to
support student thinking about, and exploration and understanding of families of functions, including linear,
quadratic, exponential, polynomial, rational and trigonometric. The software was built to permit students to
explore the contrasting and complementary appearance and behavior of these functions using different
representations” (p. 183).
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Figure 2.30c: Visualizing the transformation Figure 2.30d: Visualizing the graph of the
(translation) of the function y=x> to generate y=x" + 3. 72; inequality y> sinx
the original remains on screen, while the translation
appears on screen after being moved horizontally 3.72
units to the right (having previously been moved vertically
2 units).

Using the software’s features, anyone can easily construct graphs of functions from equations, show asymptotes,
visualize the transformations of functions or visualize the graph from inequalities --all of which were very
extremely hard to visualize using traditional means. Transformations of functions were --and still are-- a very
important issue in the teaching and learning process, given both the difficulty the students have in moving
between different families of functions, and the way in which the translation from the symbolic/ tabular to
graphic representations occurs.
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In the I created a few graphs using Function Probe’s features, absolutely agreeing with

what Borba & Confrey (1996) claim:

“[...] new forms of representation change the mathematics to be taught (Confrey, 1993a, 1993b).
Mathematics does not exist independently of its representational forms; it exists through those forms”
(p- 335).

A translation between representations --that many learning environments have been designed to embody in their

features-- helps the students to what Ainsworth (1999a) calls “dyna-linking” or “automatic translation”, through

which
“[if] a learner acts at one representation the effects of their actions are shown on another]...] the cognitive
load placed on learners should be decreased and so free them to learn the relation between representations
(e.g., Kaput, 1992; Scaife & Rogers, 1996)” (p.133).

Artigue (1997) in their paper “Teaching and Learning elementary analysis: what can we learn from didactical

research and curriculum evolution” mention some main categories of difficulties that students face when they

learn functions (Artigue, 1997, p. 208-209): (a) “Difficulties in identifying what really a function is and in
considering sequences as functions. (b) Difficulties in going beyond a process conception of functions and

being able to link flexibly the process and the object dimension of this concept, and develop with respect to it a

perceptual view (Tall & Thomas, 1991). (c) Difficulties in linking the different semiotic registers (Duval, 1995)

which allow us to represent and work out functions and (d) Difficulties in going beyond numerical and algebraic

modes of thinking” (Artigue, 1997, p. 208-209).

Even (1998) also in her study “Factors Involved in Linking Representations of Functions” illustrated “how
knowledge about different representations [of a function] is not independent, but is interconnected with
knowledge about different approaches [...] knowledge about the context of the presentation, and
knowledge of underlying notions.” (p. 120). Moreover, “the ability to identify and represent the same thing
in different representations, and flexibility in moving from one representation to another, allow one to see
rich relationships, develop a better conceptual understanding, broaden and deepen one's understanding, and
strengthen one's ability to solve problems” (p. 105).

Even (1998) reports three factors involved in linking representations of functions that can be extended in other

areas. These factors are:

(a) “Different ways of approaching functions: An important aspect of knowledge about a mathematical
concept is the different ways of approaching or conceiving the concept. A common distinction today is
between an operational approach to a concept as a process, and a structural approach as an object (e.g.,
Dubinsky, 1991; Sfard, 1991). [...] Flexibility in moving from one representation to another is
intertwined with flexibility in using different approaches to functions. [...] (p.108-109)

(b) Context of the presentations: Another critical aspect that intertwines with the ways representations come
into play in the understanding of a concept is the context of the problem presentation. [...] (p.115).

(c) Underlying notions: The quality of the knowledge of underlying notions of the functions being dealt
with, is also intertwined with the ability to translate from one representation to another [...]” (p.117).

Students face many difficulties when they have to deal with the concept of function. I shall mention a path

concerning the concept of function, based on my experience as a teacher of mathematics, which can scaffold

secondary-level students learning process and allow them to gradually grasp abstract mathematical objects

(Patsiomitou, 2019b, p. 33):

Elementary level arithmetic and algebraic approach: “1 kg of apples costs 2 Euros, 2 kg cost 4 Euros [...]
x kg cost y Euros. What is the relationship between x and y?” The appearance of the variables x and y
reveals a limited understanding on the part of students because x and y are symbols used as signifiers
referring to objects; in the words of Piaget (1952/1977), they are “intentionally chosen to designate a class
of actions or objects.” (p.191). The question is how the relationship between different kinds of objects can
be shown? Which procedure/or procedures can we apply so that the concept of function is easily
understandable for students? Do these procedures or processes lead to an understanding of the concept of
function?

Ist level. The variable’s approach: 1 continue: 1 kg of apples costs 2 Euros, 2 kg costs 2*2 Euros etc.; [...]
the number 6 is represented /signified by the product 2*3 and the symbol y is represented /signified by the
product 2*¥x. (i.e., x kg cost 2x Euros). The expression 2*3 is the same notation to represent both a process
and the product of that process. In other words it “could be used both operationally, as denoting an
operation, and structurally, as signifying an object (the result of an operation). The fact, however, that the
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same signifier had to be employed in two seemingly incompatible roles, operational and structural,
certainly aggravated the difficulty of reification” (Sfard, 2000, p.50).
2nd level. A diagrammatic approach: The next step is the construction of Venn diagrams in which arrows
connect the A set of numbers representing kilograms with the B set of numbers representing Euros. When
representing objects in Venn diagrams, we use dots for objects. Constructing Venn diagrams allows
students to think about the classification of objects, while the arrows help them to describe relations
between objects and understand meanings such as “one to one” and “onto”.

1 kg of apples costs 2 Euros, | kg of apples costs 2 Euros,
2kgofapples cost 4 Euros [ 2kgcost 2¥2 Euros [.]
x kg cost ¥ Euros % kg cost 2x Euros
1 2[.]x 1 L]ix
2 4]y / 2 2%2L.]2*x
arithmetic and < 4 numbers and variables
algebraic approach | used operationally and
b structurally
X 1 2 3
y |2 4 6
tabhular representation
B Fde Edt Display Construct Transform  Mes
Venn's diagrammatic [x, %
approach * |
— f(x)=2x
9|
7l
A / graphic representation
© Stavroula Patsiomitou »

Figure 2.31: Linking the different kinds of representation of a function (Patsiomitou, 2019b, p. 33) (modified)

3rd level. A graphic and tabular approach: A function is used to describe the expressed relationships
between variables. Replacing the numbers 1, 2, 3... that represent the kilograms with the variable “x” and
constructing a function (y=2x) in which we determine a rule for a sequence of objects, ultimately provides

us with a definition of the concept of function and its graph. Thus, in response to the symbol of the
function y=2x (‘representamen’ in the words of Peirce, 1955) one can draw a line which would be the
interpretant of the symbol y=2x (Figure 2.31).

The prerequisite here for students is the structural knowledge of numbers which allows them to use numbers to
build a more complex concept. In Figure 2.31, we can view both treatments and conversions (Duval, 2002, p.3)
between the aforementioned semiotic representations:
o “Treatments are transformations of representations which happen within the same register [...] (Duval,

2002, p.3)

e Conversions are transformations of representation which consist of changing a register without changing
the objects being denoted [...]” (Duval, 2002, p.4).
Duval (2002) in the Figure 2.32 clarifies what he means with the notions freatment and conversion between

different semiotic representations.

TRANSFORMATION

frrom one semiotic representation to a different

semiotic representation

C TREATMENT

taying in the SAME SYSTEg

the reference to the same objects :

CONVERSION

HANGING THE SYSTEM but conservjng)

Figure 2.32. Types of transformations of semiotic representations (Duval, 2002, p.3) (an adaptation for the current study)
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Treatments and conversions express connections or links between different modes of representation. In a short
literature review I shall summarize in the next table how different researchers examine, and report the role of
linking representations in learning and understanding of mathematical concepts.

Linking Representations

Kaput (1989) “The cognitive linking of representations creates a whole that is more than
the sum of its parts.”(p.179)

Even (1998) “Connectedness between different representations develops insights into
understandings of the essence as well as the many facets of a concept” (p.
105).

Ainsworth (1999b) | reports the way that linking representations affect students’ —users’ thinking.
As she mentions: “One question facing designers of learning environments
is whether to provide automatic (dynamic) linking between representations.
Here, one acts in one representation and sees the results of these actions in
another. Thus, it is hoped that the relation between the representations is
made more explicit and hence understandable to learners than has
traditionally been possible with static media” (p. 39).

Ainsworth (2006) | “Dynamic linking or representations is assumed to reduce the cognitive load
upon the student —as the computer performs translation activities, students
are freed to concentrate upon their actions on representations and their
consequences in other representations”. (p. 194)

Hihkioniemi investigated how students development of understanding of the concept of

(2006) derivative. He found that “students had two kinds of connections: they
changed from one representation to the other or they explained one
representation with the other” (p.18).

Hegedus & Kaput | report the importance of linking representations in Simcalc —a long time

(2004) project—and they stated “We are confident, however, that by combining the
two key ingredients, dynamic representations and connectivity technology,
students can better understand fundamental, core algebra ideas by forming
new, personal identity relationships with the mathematical objects that they
construct individually and collaboratively with their peers”. (p. 136)

The growth of digital resources that allow interaction with mathematical content has enriched the ways in which
teachers and students engage by employing new kinds of representations: the “dynamic representations” or
“dynamic diagrams”. Ainsworth (1999) mentions the kind of “dynamic representations as follows (p. 35):
“The introduction of information technology into the classroom has brought a new type of representation
to learning situations - dynamic representations. These include animations which have been defined as a
series of rapidly changing static displays giving the illusion of temporal and spatial movement (Scaife &
Rogers, 1996).
Ainsworth, & Van Labeke (2004) define dynamic representations as those which “display processes that change
with respect to time” (p.241).
GeoGebra (Hohenwarter, 2001, 2002) is an open source mathematics education software tool which is used by
millions of users worldwide. It allows for experimentation even in a web browser in full HTMLS mode. (Botana,
& Kovics, 2016) http://www.geogebratube.org/student/b128631)
Geogebra dynamic geometry software (http://www.geogebra.org), is also a multi-representational dynamic tool,
especially when learners use software’s CAS (Computer algebra systems) features to perform procedures in
algebra and calculus.
According to Hohenwarter, Hohenwarter, Kreis, and Lavicza (2008, p.1):
“The multi-platform, open-source dynamic mathematics software GeoGebra (Hohenwarter & Preiner
2007) tries to combine the ease-of-use of dynamic geometry software with the versatile possibilities of
computer algebra systems. The basic idea of the software is to join geometry, algebra, and calculus, which
other packages treat separately, into a single easy-to-use package for learning and teaching mathematics
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from elementary through university level. GeoGebra is available free of charge on the Internet, has been
translated to 36 languages by volunteers, and gathers a rapidly growing worldwide user community”.
In the Figure 2.33a below, on the left we can see the symbolic expression of a polynomial, how we can turn it
into a function; on the right, we can see the graphic representation of the function and its roots. “Through the
Geogebra environment and also by using different kinds of instructional materials (such as worksheets on paper,
interactive applets etc.) students can be guided towards discovering the concepts of derivative and /or integral and
to explore, visualize and understand basic calculus concepts” (Hohenwarter et al, 2008, p.8).
According to Caligaris, Schivo, Romiti (2015):
“the incorporation of the GeoGebra Applets, and the teaching situations arising there from, is a much more
effective teaching methodology than traditional one to facilitate the learning of the fundamental concepts
of Calculus [...]The graphics in books, as well as on the blackboard, are static and require students’
imagination adequately trained. When thinking about teaching strategies to discuss the fundamental
concepts of Calculus, both its dynamic characteristics and the study of change and movement, have to be
kept in mind. Nowadays, the existence of free programs with versatile capabilities and interactive
representation helps to improve the presentation of content taught in this area of knowledge, allowing
dynamic visualization” (p. 1188).
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Figure 2.33a: Symbolic and graphic representations of a function using Geogebra

It is also possible to find derivatives and integrals of functions. Teachers can use Geogebra to help their students
understand meanings: generating the graph of any function on screen from its symbolic representation makes a
strong metacognitive visual impact on their students’ thinking.

For the teaching of calculus, a teacher must have experience to achieve “The transition from knowledge regarded
as a tool to be put to use, to knowledge as something to be taught and learnt, [...]” what Chevallard (1988, p.6)
has termed the didactic transposition of knowledge (see also, Chevallard, 1999, 2005).

Botana, & Kovéacs (2016) also argue that “classroom demonstrations and deeper investigations of dynamic
analytical geometry are ready to use on tablets or smartphones as well. [...] The covered school topics include
definition of a parabola and other conics in different situations like synthetic definitions or points and curves
associated with a triangle. Despite the fact that in most secondary schools, no other than quadratic curves are
discussed, simple generalization of some exercises, and also everyday problems, will smoothly introduce higher
order algebraic curves” (p. 1).
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Figure 2.33b. Creating a function on Geogebra Calculus, its definite integral and connecting their symbolic representations with
graphic representations

Definite integrals represent the exact area under a given curve, linking a graphic representation of a function with
its symbolic representation. Riemann sums are also used to approximate those areas. GeoGebra applets also are
embedded in HTMLS5 mode and sliders can help the visualization of important meanings (Figures 2.33 a, b, c,

2.34 a, b).
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Figures 2.34a, b, ¢: Experimenting with definite integrals (Tim Brzezinski, Web page [37])
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Figures 2,35a, b: Experimenting with definite integrals (Mark Willis, Web page [38])

Pre-calculus activities at a young age can help young learners to intuitively conceive concepts they will learn in
calculus courses later. The students’ improved understanding in pre-calculus topics will enhance the gradual
development of an understanding of concepts in calculus at any age.
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Sinclair (2018) in her study “Time, Immersion and Articulation: Digital Technology for Early Childhood
Mathematics” states that she has been involved in childhood research projects and
“three novel and significant themes have emerged in this work: the temporalizing of early childhood
mathematics (time); the exposure of young children to advanced mathematics (immersion); and, the
relations between digital technologies and paper-and-pencil technology (articulation)” (p. 205) .
The interactive Web Sketchpad (McGraw Hill, 2019) environment encourages students to experiment with open-
ended tasks, during the teaching and learning process, in class or out of class. Daniel Scher, Scott Steketee and
others have built web sketches that allow anyone to experiment (Webpage [18]). According to Daniel Scher
(personal e-mail communication on July, 23, 2019):

“Web Sketchpad is dynamic mathematics technology from the creators of The Geometer’s Sketchpad
software. It began as part of the NSF-funded DRK-12 funded Dynamic Number project and brings over 25
vears of Sketchpad development and innovation to the web and electronic textbooks, requiring only
HTMLS5 and JavaScript. Unlike its desktop counterpart, Web Sketchpad has no default set of mathematical
tools; instead the teacher or activity developer chooses tools to support each activity, providing the tools
needed for the activity at hand. Thus, a geometry activity might feature the familiar Point, Straightedge,
and Compass tools found in desktop Sketchpad’s toolbar while a calculus activity might put tools for
exploring Reimann sums front and center. This style of tool presentation enables less-prescriptive and
more open-ended student tasks, encouraging the student to be more self-reliant: instead of following step-
by-step worksheet directions she concentrates on how to use a small set of manageable tools to accomplish
a mathematical task. When a student taps a tool icon, the entire result of the tool appears onscreen.[...]”.

Using Web Sketchpad anyone can create Web-sketches that can be linked procedurally and conceptually.
Crucially, this permits the development of sequences of activities that can be saved and then shared with students
using Google Drive, email etc.
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Figure 2.36. Constructing an ellipse using WebSketchpad Tool Library - Changing the visibility of the objects

In my opinion, it is a very powerful tool for developing strong intuition with regard to mathematical concepts at
all levels (pre-school, Primary or Secondary Education). According to Fischbein (1999) “The intuitive kind of
knowledge has been a concept in which mainly philosophers have been interested. In the works of Descartes
(1967) and Spinoza (1967) intuition is presented as the genuine source of true knowledge. Kant (1980) describes
intuition as the faculty through which objects are directly known in distinction to understanding which leads to
indirect conceptual knowledge” (p.11)

Web Sketchpad dynamic tool has multiple components, including the Tool Library (from which you can select
the tools you need for your construction), the viewer, and the desktop Sketchpad (the web page where you can
construct your websketches). According to Scher “To provide a convenient starter set of tools that can be used
across a wide variety of activities, Web Sketchpad includes a “Tool Library” with over 60 tools that can be added
to a websketch. Accompanying the tool library is a viewer page, where one or more websketches can be uploaded
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simultaneously for review by the teacher or for class presentations” (personal e-mail communication on July, 23,
2019).

Widgets also provide several benefits to users (for example, a student can change the visibility (showing or
hidden) of any object, can drag sketch objects even when style or visibility widgets are active, etc.). Widgets also
give the advantage of being able to change the colours of the graphs, the grid or the shapes, which affects
students emotionally, encouraging them to “love” mathematics (Figures 2.36, 2,37a, b, ¢, d).
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Figures 2.37¢, d. Constructing tessellations, playing with colors and “loving” mathematics with Web
Sketchpad (from the first years in school)

The most important thing is that no one has to remember how to use the tools, which is something I love also
about Sketchpad. In the Figures 2.36 and 2.37a, b, ¢, d, I constructed graphs, reflection of points through
symmetry lines and their traces, regular polygons and tessellations. They are “easily” generated on screen. At the
following page (Wepage [19]) Daniel Scher (2019) writes:
“Constructing a square requires tools, and Web Sketchpad features a particularly innovative tool interface
[...] there’s no need for the student to remember or figure out what objects to click, in what order, to use
the tool successfully. This overview of the entire tool gives the student an opportunity to consider what
objects the tool is going to create and plan how to integrate these tool objects into the existing sketch.[...]
The Web Sketchpad tool interface was designed with student tasks in mind.[...]. Students can be
encouraged to be more self-reliant and self-directed, concentrating on the mathematics of the task rather
than following directions from a worksheet or from the teacher”.
Researchers have investigated the way that Web Sketchpad can be used in class:
Steketee & Scher (2018) in their study “Enacting Functions from Geometry to Algebra” argue that
"Web Sketchpad supports a constructionist approach to students’ activities of creating, manipulating, and
investigating mathematical objects, thus linking their sensorimotor activity to their conceptual
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understanding. The software provides a simple interface with no menus, based on dragging and on using a
small set of tools designed by the activity author “(p. 59).
Using Web —based Sketchpad (Webpage [20]) for her research Sinclair (2018) argues that:
“Web Sketchpad is multi-touch, which means that users can drag multiple objects at the same time (e.g.,
three children can each drag all the vertices of a triangle as they cooperate ..many children can interact
simultaneously , each potentially using more than one finger. Moulti-touch dynamic geometry thus offers
both mathematical and pedagogical opportunities that have only recently been pursued (Jackiw, 2013).
(Sinclair, 2018, p. 209)
What is very crucial for students of any age is to love mathematics, to enter their mathematics class without fear,
and to have in mind that mathematics can be touched on screen, can be colored, can be understood, and can be
built. This can be achieved if mathematics is presented to students in class through gaming in computer
environments from their first years at school (Patsiomitou, 2016c).
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ChapterI11.

3.1. Dynamic Geometry Software: An ‘Alive’ Microworld

Dynamic geometry systems (DGS) are microworlds designed to facilitate the teaching and learning of Euclidean
geometry, Algebra and Calculus. Microworlds have been described (Edwards, 1998, p. 74) “as ‘embodiments’ of
mathematical or scientific ideas” that, in the words of Sinclair, & Jackiw (2007) “are extensible (so that the tools
and objects of the environment can be built to create new ones), transparent (so that its inner workings are
visible) and rich in representations.” (p.1). Dynamic geometry software has been used broadly in research
regarding the teaching and learning process of geometry over the past several decades (see for example the
articles written in Educational Studies in Mathematics and International Journal of Computers for Mathematical
Learning) (Leung & Or, 2007, p. 177).

Such research with dynamic geometry has verified that the software is useful in provoking cognitive conflicts
(e.g, Hadas, Hershkowitz, & Schwarz, 2000; Giraldo, Belfort & Carvalho, 2004), developing students’ deductive
reasoning (e.g, Hollebrands & Smith, 2009; Hollebrands, Connor & Smith, 2010; Patsiomitou, 2008a, 2011,
2012a), and developing students’ geometrical thinking (e.g, Yousef, 1997; Sinclair, 2001; Patsiomitou, 2008a,
2012a,b, 2018b), according to the theory of van Hiele. A DGS microworld can play a fruitful and crucial role in
the process of creating and evaluating conjectures which promote student creativity, and in so doing greatly
contribute to developing mathematical reasoning. There are 2-dimensional DGS packages, such as the
Geometer’s Sketchpad (Jackiw, 1991/2001), Cabri II (Laborde, Baulac, & Bellemain, 1988), Geogebra
(Hohenwarter, 2001, 2002), Cinderella (Richter-Gebert & Kortenkamp, 1999) etc. as well as 3-dimensional DGS
packages, such as Cabri 3D (Laborde, 2004), etc.. El-Demerdash (2010, pp. 23-26) reports and clarifies many
purposes and functions of a DGS software which are briefly reported here: (a) as a construction tool provides “an
accurate constructor for creating geometric configurations and has the ability to automatically adjust and preserve
the variant and invariant properties of constructed geometric configurations under dragging in a visual, efficient,
and dynamic manner” (El-Demerdash, 2010, p. 23), (b) as a visualization tool (e.g., Straesser, 2002, 2003;
Christou et al., 2005), (c) as a modeling tool (Oldknow, 2003), (d) as a tool for experimentation, exploration and
discovery (e.g., Clements & Battista, 1992; Hollebrands, 2002, 2003; Kortenkamp, 2004), (e) as a tool for
problem solving and problem posing (e.g., Christou et al., 2005), (f) as a tool for teaching geometry with the
utilization of transformations and the construction of proof (e.g., Hollebrands, 2003, 2007; Haj-Yahya, &
Hershkowitz, 2013).

The diagrams that are provided to the students in a DGS environment are important spatiovisual representations
that facilitate understanding of the problem’s information as well as the conceptualization of the problem’s
structure. In other words the ‘dynamic’ diagrams support visual reasoning, which aids translation from visual to
verbal representations and the construction of meaning. Finzer and Jackiw (1998, cited in Scher, 2002) propose
three attributes related with dragging as characteristic features of any “dynamic geometry” software program
(Scher, 2002, p.72):

[a

/
L

Figures 3.1 a, b, c. Visualizing the effects of dragging and tracing.

1. Manipulation is direct. When users drag point A, they do not think to themselves that they are dragging
the mouse, which in turn moves point A. Rather, they sense that they are dragging point A itself.

2. Motion is continuous. As point A of moves (Figure 3.1a, b, ¢), it does so without any discernible jumps
or gaps in its movement. Motion flows like film animation.

3. The environment is immersive. The behavior of circles, squares, and other onscreen objects seems as
real as their physical counterparts” (Finzer & Jackiw, 1998, cited in Scher, 2002, p.72).

[72]



Ruthven (2003) in her study “Linking algebraic and geometric reasoning with dynamic geometry software:
Final report to the Qualifications and Curriculum Authority” reports the basic features of the DGS in detail,
giving examples for classical constructions, transformational constructions, coordinate constructions, function
graphing, measuration and calculation. She points out that “Dynamic geometry software is best known as a
means of constructing and manipulating dynamic representations of geometrical objects in the plane. It provides
tools supporting classical, transformational and coordinate methods of construction. Rather than creating a single
static example of a generic geometrical object, the software makes it possible to create a dynamic construction
which retains its defined characteristics but changes its visible form on the computer screen under manipulation”
(- 9).
“Hot-spots” is a dynamic notion introduced by Hegedus (2005) in his study “Dynamic representations: a new
perspective on instrumental genesis”. Hegedus with the notion of “hot-spots” denotes the dynamic “points” or
“dots”, namely the dynamic objects of a DGS environment which are “actually instantiated at an infrastructural
level and are a product of new, dynamic medium” (p.7), reporting also Kaput (2000). According to Hegedus
(2005):
“The “hot-spot” in our chosen software environments is not an artifact of the environment but an axiomatic
part of the system that allows “true” mathematical figures to be built. Dragging a “hot-spot” is not the same
as “using a hammer to try to hit a nail” — note the verb use. A hot-spot will always be used well for
dragging, a hammer will not always be used for hitting well. A hotspot will always be dragged and a
hammer is never hit but instead used to hit. Will they ever be the same? Well, the hammer is still as
effective as the hitter. The hitter hits a particular point. The action is directed by the actor. The local
environment does not help with the accuracy or efficiency of the tool use, it resides with the user and
practice. In addition, the action of dragging a hot-spot leads to the software environment reacting in some
way” (p.2-3)[...] “Here is the critical point: the hot spot is no longer directly owned by the user. It is an
infrastructural piece of the environment from which the user is now receiving feedback™ (p. 5).
Hegedus concludes that dynamic representations scaffold students thinking
“[...] grounded in the mathematical structure (axiom, definitions, rules) that are efficiently preserved when
the representations are executed. The student as user has the support of rigorous scaffolding deep in the
infrastructure that is extremely difficult to replicate in static, inert media. Mathematical constructions in
algebra and geometry become more dynamic, motion based events, with explorations, conjectures and
reasoning based around the aggregation of mathematical objects or co-actions of students and software
environment” (Hegedus, 2005, p.9).
Jackiw, & Sinclair (2009) in their study “Sounds and pictures: dynamism and dualism in Dynamic
Geometry”*‘examine and evaluate several new mathematical representations developed by “The Geometer’s
Sketchpad v5 (GSP5)” from the perspective of their dynamic mathematical and pedagogic utility or
expressibility”. Jackiw, & Sinclair claim the primary contributions of Dynamic Geometry’s principle of
dynamism to the emerging concept of ‘‘Dynamic Mathematics’’ to be twofold:
o first, the powerful, temporalized representation of continuity and continuous change (dynamism’s
mathematical aspect), and
e second, the sensory immediacy of direct interaction with mathematical representations (dynamism’s
pedagogic aspect)” (p. 413).
Jackiw, & Sinclair characterize the new ways in which simple pictures and sounds can play /take different roles
in the GSP5 environment by activating several new mathematical representations: “pictures as pure ornament,
pictures as integrated illustration, pictures as modeling scaffolds, pictures as geometric objects to construct with,
pictures as geometric objects to construct, sounds as special effects, sounds to inspire mathematical precocity,
sounds to build with and sounds as objects to build” (p.420-423). Jackiw, & Sinclair support that “sensory
interaction with [...] novel dynamic representations in GSP5 affect mathematical modeling opportunities, student
activity and engagement (p. 413). Ustiin & Ubuz (2004) also consider that “the Geometer’s Sketchpad is an
important vehicle of technological chance in geometry classroom. [...] The shapes are first created and then they
are explored, manipulated and transformed to ideal concept”. Olkun, Sinoplu & Deryakulu (2005) also argue that
“the Geometer’s Sketchpad is a suitable dynamic environment in which students can explore geometry according
to their van Hiele levels” (p.3).
In my study “An ‘alive’ DGS tool for students’ cognitive development.” (Patsiomitou, 2018b) I report the
following effects on students’ thinking in relation to DGS software.
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A. A first and very important effect on students’ thinking stems from the Sketchpad software allowing the
user to create sequential linking pages so that the whole Sketchpad file becomes an “alive book”
(Patsiomitou, 2005a, p. 63, in Greek; Patsiomitou, 2014). The “alive digital representations” (Patsiomitou,
2005a, p. 67) function, which makes the whole figural diagram “alive”, giving the students the potential to
focus their attention on simultaneous modifications (and transformations) of objects on the screen
(Patsiomitou, 2005a, p. 68), also yielded important results during my investigations. According to
Sketchpad Help system “Over time, you may want to add additional pages to a document. For example,
you may want to organize a series of sketches that develop an argument; you may want to present an
activity that has several parts; or you may want to explore a conjecture in more depth than would be
possible in a single sketch”.

B. A second important effect on students’ thinking stems from the dynamic transformations in a DGS
environment, a way of modifying an object on screen. We can change a figure’s orientation, a figure’s size
or we can reconfigure it from its parts (Duval, 1995b, 1999). Translations, rotations, and reflections are the
kind of transformations that preserve the size and shape of a figure. Any transformation (i.e. rotation,
translation, reflection) of an object on screen produces a similar or congruent object image on screen. If we
drag any point of the object the same transformation occurs to the image object that means that the image
object (or reversely) follows the dragging results that refer to the object (e.g., Patsiomitou, 2009).

C. A third important effect on students’ thinking occurs from dynamic constructions, that are the
constructions created in a DGS environment. Daniel Scher (2002) in his study describes the characteristics
of a traditional static construction in contradiction to a dynamic construction. The static constructions
possess two characteristics as Scher (2002, p. 1) states: “they are static and particular”. In Scher’s (2002)
words “the dynamic objects can be moved and reshaped interactively [...and] a single on screen image
represents a whole class of geometric objects” (p.2).

D. A fourth important effect on students’ thinking occurs from the construction of custom tools /scripts
(e.g., Patsiomitou, 2005, 2006 a, b, 2007, 2008d, 2012a, b, 2014). As Straesser (2001) supports:

“Apart from practical considerations (like exactness and ease), DGS-use can be structured according to
conceptual units by means of macro-constructions. DGS-constructions are not bound to follow the small
units of traditional drawing practice. Offering new tools that are unavailable in paper and pencil geometry,
DGS-use widens the range of accessible geometrical constructions and solutions. If these tools become
everyday instruments in the hands and minds of the user” (p.332).

During the construction of a custom tool a user determines the order the dynamic objects have to  be
created. This is in accordance with what Balachef & Kaput (1997) support:

“The order in which actions take place could become arbitrary in the eyes of users, which can have
significant consequences. [...] This demonstrates the impact of the orientation of the plan which is in
general forgotten in elementary geometry, but is recalled to the user as a result of the sequencing of actions
(Payan 1992)”. (p.13)

I shall further discuss the meaning of custom tools in the next section.

E. The fifth [and most] important effect on student’s thinking stems from the DGS software’s dragging
facilities. Sketchpad’s dragging behavior transforms an object on screen moving that object on the screen.
According to Laborde (1994, cited in Scher, 2000, p. 43)

“The idea of movement in geometry is not new—the Greek geometers devised various instruments to
describe mechanically defined curves—but the use of movement was nonetheless ‘prohibited in strict
geometric reasoning’ for reasons that were more metaphysical than scientific. The 17th century marked a
break with Greek tradition, and the use of movement to establish a geometric property or carry out a
geometric construction became explicit. One can find numerous examples starting then [...] This idea was
first expressed in school geometry by the replacement of the geometry of Euclid’s Elements by the
geometry of transformations (which continues to be the only kind of geometry taught in some countries)—
quite some time, one must point out, after the characterization of geometry as the study of the invariants of
transformation groups, and also quite some years after a daring proposition made in France by Meray
(Nouveaux éléments de géométrie, first edition 1874) [...] Meray’s idea was to teach geometry through
movement: translational movement allowed for the introduction of the notion of parallelism; rotational
movement led to perpendicularity. (pp. 61-62, French original, Scher, 2000, p. 43)

For example, if we create a triangle on screen it can be dragged and transformed into an infinite number of

figural-triangles that determine the concept of triangle in every change of orientation and shape. Holzl (1996)
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investigated how students used the heuristic of drag & link to manipulate a dynamic diagram and discover
properties. Arzarello, Olivero, Paola & Robutti (2002) in their study “A cognitive analysis of dragging practices
in dragging environments” introduced a hierarchy suitable for classifying the different functions of dragging in
Cabri in order to describe some of their cognitive features in learning processes (p.66), “developing Holzl’s
(1995, 1996) research” (p.67). They identified five different modalities which students use according to their
purposes during the solution process of open problems (Olivero, 2003):

o “Wandering dragging: moving the basic points on the screen randomly, without a plan, in order to
discover interesting configurations or regularities.

Bound dragging: moving a semi-dragable9 point, which is already linked to an object.

e Guided dragging: dragging the basic points of a figure in order to give it a particular shape.

Lieu muet dragging: moving a basic point so that the figure keeps a discovered property; that means you
are following a hidden path (lieu muet), even without being aware of this.

e Line dragging: drawing new points on the ones that keep the regularity of the figure.

e Linked dragging: linking a point to an object and moving it onto that object.

e Dragging test: moving dragable or semi-dragable points in order to see whether the figure keeps the
initial properties. If so, then the figure passes the test; if not, then the figure was not constructed
according to the geometric properties you wanted it to have” (p.66)

Students using dragging are led “fo understand how a geometric construction can be defined by a system of
dependencies” (Jackiw and Finzer, 1993). Dragging preserves the properties of geometrical objects constructed in
the DGS environment. According to Mariotti (2000, p.36)

“the dragging test, externally oriented at first, is aimed at testing perceptually the correctness of the

drawing; as soon as it becomes part of interpersonal activities [...] it changes its function and becomes a

sign referring to a meaning, the meaning of the theoretical correctness of the figure.”
Hollebrands (2007) also supports that the students in her study “used reactive or proactive strategies when
dragging, either in response to or in anticipation of the effects on dragging” (cited in Gonzalez and Herbst, 2009,
p-158-159). Building on the work of previous researchers regarding dragging, I introduced two main diacrises in
dragging utilizations with regard to students actions (Patsiomitou, 2011, p. 362): (a) the theoretical dragging in
which the student aims to transform a drawing into a figure on screen, meaning s/he intentionally transforms a
drawing to acquire additional properties and (b) the experimental dragging in which the student investigates
whether the figure (or drawing) has certain properties or whether the modification of the drawing in the picture
plane through dragging leads to the construction of another figure. Dragging an object in a DGS environment
leads to the transformation of the object.

e The object (e.g., a rectangle constructed in a theoretical way) remains unaltered in terms of its structural
characteristics, but the length of a side on screen is transformed due to the manner of its construction (a
‘visual way’ transformation, in the words of Duval). The object’s orientation also can be transformed in
what Duval (1995b) calls ‘a place way’ transformation.

e The object is messed up as a result of the non-theoretical way in which it has been constructed (its
construction depends on the student-user’s conceptual understanding).

e The object is restructured, remaining an invariant construction on screen, because it has been constructed
in a theoretical manner (a mereological way of shapes’ reconfiguration).

e The object is unaltered as it is dragged on screen from a point. It appears as a static object, but it remains
intrinsically dynamic due to the dependence of the aforementioned point’s parent objects. In my opinion,
it is a hybrid object (Patsiomitou, 2019a, b), which transforms the whole diagram to a hybrid-dynamic
representation.

The transformation of an object on screen using dragging can be combined with other techniques to cause a
combination of transformations on screen (e.g., Patsiomitou, 2008b, c, 2010, 2012a, b): (a) dragging and tracing
objects (b) dragging and measuring objects (c¢) dragging and animating objects (d) dragging a transformed object
or its image (by rotation, translation or reflection) or more complex such as (a) dragging, tracing and animation
and (b) dragging, measuring and rotating etc.

It is not within the scope of this section to discuss the dragging facilities in any more detail, but like to
Goldenberg & Cuoco (1996) I would argue that
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“Dynamic Geometry needs its own axiomatic foundation to define the objects and postulates of its
environment. (In particular, such a foundation would describe and, following Poncelet, properly
mathematize the dragging transformation)” (cited in Jackiw, & Sinclair, 2009, p.415).
Generally speaking, a computer learning environment such the Geometer’s Sketchpad scaffolds students’ co-
building of the meanings introduced in the teaching and learning activity. The design of activities in the learning
environment (the software) as a part of the instruction thus has a crucial role to play in the comprehension of
mathematical meanings. Jackiw, & Sinclair (2009) also argue that:
“[...] A Dynamic Geometry [object] is not an illustration, in other words— not an example of some more
abstract, general, or encompassing idea—it is that idea and fully manifests its extent. At the same time, the
dragged [object] implies a dragging intelligence. And this hidden actor, in whose hands the [object] comes
alive, is the other focus of research attention” (p.414).
Over the 14 years I have been using various software environments I have employed them for many different
purposes and functions, which I have published in papers, that have been uploaded onto my ResearchGate or
Academia profile, and which I shall briefly report here:
¢ For generating and investigating accurate constructions of 2D or 3D geometrical objects (e.g., Patsiomitou,
2005a,b, 2007b, d, 2008a, b, 2009 b, c, g);
¢ For interpreting Euclid’s “Elements” (e.g., Patsiomitou, 2006f, 2007e, 2008c, e, 2009a);
e For connecting History of Mathematics with technology (e.g., Patsiomitou, 2007c, 2008f);
e For generating and investigating spiral constructions (e.g., Patsiomitou, 2007b, 2008g);
e For generating a library of custom tools and their use in the research process (e.g., Patsiomitou, 2006d,
2006g, 2008d, 2009 b, c, 2018b);
o For constructing meanings in geometry, algebra or calculus, using Construction or Transform menu (and
using these menus in the research process) (e.g., Patsiomitou, 2005a, b, 2006g, 2007a, 2012a, c);
e For blending DGS with web and whiteboards as part of the teaching process (e.g., Patsiomitou, 2006b,
2012c, 2018a);
¢ For applying instructional design processes (e.g., Patsiomitou, 2006c, 2007a, 2007b, 2007¢c, 2007d, 2008a,
b, 20091, 2010, 2018a);
e For blending DGS with CAS in order to co-construct the concept of mathematical meanings (e.g.,
Patsiomitou, 2007d, 2015d);
¢ Blending several DGS software for the construction of definitions (e.g., Patsiomitou, 2006e, 2015d);
¢ For developing students’ abilities at conjecturing, arguing, proving, and constructing proofs in or out of
class (e.g., Patsiomitou, 1999; 2006e, 2008a, b, c, d, e, h, 2009¢, h, 2010, 2012a, b, 2014);
¢ For developing affective approaches which engender the love of mathematics (Patsiomitou, 2006e, 2007a,
b, d, 20094, h, 2010);
¢ For investigating, verifying and discovering relations (Patsiomitou, 2006g, 2007a, b, d, 2009d, h);
e As a modelling tool for the modelling process of real-world problems and using them in the research
process (Patsiomitou, 2008a, b, 2012a, b, d, 2013b);
e For the modelling process of algebraic identities, using algebra tiles as structural algebraic units and
implementing them in the research process (Patsiomitou, 2007e, 2008c, 2009a, 2010);
o For investigating the development of correlations between the dynamic tools use and the construction of
meanings (Patsiomitou, 2009b.,c, d, g, 2011a, b);
e For developing visual proofs and digital proofs (Patsiomitou, 2006e, d, 2009¢, 2010);
e For generating numbers (for example, (¢) fi, (m) pi) through the development of iteration processes
(Patsiomitou, 2006f, g, 2007¢, 2016a, b, 2018a);
o For problem solving and problem prosing (Patsiomitou, 2006c, e, f, 2008a,b, 2012a, 2019a, b);
e For introducing and developing the notion of “Linking Visual Active Representations” and investigating
the implementation of LVARs in the teaching process in multiple studies (Patsiomitou, 2008a, b,
2009b,c, 2010, 2011a,b, 2012a, b, d, 2015a, 20164, b, 2019a);
e For introducing and developing the notion of “instrumental decoding” and investigating through several
studies (Patsiomitou, 2011a, b, 2012a, b, 2015c¢);
¢ For developing dynamic propositions (Patsiomitou, 2011a, b, 2016a, b);
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¢ For developing the notion of dynamic hypothetical learning trajectories. progressions (Patsiomitou, 2006f,
2007b, c, d, e, 2008a, 2012a, b, 2018a);

¢ For developing the notion of Dynamic Teaching Cycle (2012a, b, 2014);

e For developing an empirical classification model for sequential instructional problems in geometry
(Patsiomitou, 2008a, 2019a);

e For introducing other notions (Patsiomitou, 2006e, 2008a, b, 2011a, b, 2019a, b);

e For enriching the mathematics curriculum by enhancing it with digital resources. (Patsiomitou, 2006b, c, d,
e, f,2007a, b, ¢, d, e, 2008a, b, ¢, d, e, f, 2012a, b).

Dynamic mathematical objects are a particular kind of mathematical objects, created in a dynamic geometry
software (DGS). Generally speaking, microworlds have been created to support abstract thinking through visual
representations on computer screen and their transformations. Laborde (2003) in her article “Technology used as
a tool for mediating knowledge in the teaching of mathematics: the case of Cabri-geometry” stated that:
“the idea of computer environments as reifying abstract objects and structures originates from the notion of
microworld in which it is possible to explore and experiment on representations of abstract objects as if
they were material objects” (p.6)
Dynamic geometry environments are defined by Balachef & Kaput (1997) as:
“(a) a set of primitive objects (point, line, segment, circle, etc.) created by the tools of the software and (b)
of elementary actions (for example, commands to draw a perpendicular or a parallel line given a point and
a line etc.). (p.8)
Firstly, speaking of a DGS environment, it is important to identify the meanings of geometrical objects in such an
environment. I introduce the following notions in my study “From Vecten's Theorem to Gamow's Problem:
Building an Empirical Classification Model for Sequential Instructional Problems in Geometry” (Patsiomitou,
2019a, p.15):

e A dynamic geometrical object (Patsiomitou, 2019a, p. 15) is every object that has been constructed in a
dynamic geometry software interface. This object could be a “drawing” or a “figure” which intrinsically
has dynamic properties. This definition is complementary to what Gonzalez and Herbst (2009) argue
regarding the dynamic diagram as “a diagram made with DGS and that has the potential to be changed in
some way by dragging one or more of its parts” (p.154).

e A dynamic diagram (Patsiomitou, 2019a, p. 15) is an external representation composed out of a set of
rationally related dynamic objects in a DGS environment. A dynamic diagram can be a simulation of a
problem modelled in the DGS environment, which includes many geometric objects and combinations of
interaction techniques implemented in these objects.

e A dynamic section (Patsiomitou, 2019a, p. 15) is a set of dynamic diagrams that are linked to each other
procedurally and conceptually, even if they may differ structurally. A dynamic section contains meanings
belonging to the same class that are united or joined into a whole, which in the concrete situation
symbolically means they exist in one [“alive” book] section or they are dynamically linked.

In the Geometer’s Sketchpad environment (or the Web Sketchpad) anyone can create a dynamic section by
linking pages in the same file. In this way, a solution to a problem can be separated into sequential componential
steps that help a student to create linking mental representations in his/her mind (Patsiomitou, 2008b, ¢, d, 2009
a, b, 2010, 2011, 2012a, b, 2013, 2014, 2018a, b, 2019a, b).

I support the following from the empirical results of my investigations (e.g., Patsiomitou, 2011, 2012a): The
construction of a dynamic diagram in a DGS environment is a result of a complex process on the student’s part.
The student has first to transform the verbal or written formulation (“construct a parallelogram” for example) into
a mental image, which is to say an internal representation recalling a prototype image (e.g., Hershkovitz, 1990,
Presmeg, 1992) that s/he has shaped from a textbook or other authority, before transforming it into an external
representation, namely an on-screen construction. This process requires the student to decode their actions using
software primitives, functions etc. In order to accomplish a construction in the software the student must acquire
the competence for instrumental decoding (Patsiomitou, 2011, p. 362) meaning the competence to transform
his/her mental images to actions in the software. Competence in the DGS environment depends on the
competence of the cognitive analysis which students bring to bear when decoding the utilization of software
tools, based on Duval’s (1995a, b) semiotic analysis of students’ apprehension of a geometric figure. As I
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mentioned before, Duval has distinguished three kinds of operations, one of which is the place way, meaning an
operation which changes a figure’s orientation. During the development of a construction, I think that the student
has to develop three kinds of apprehension when selecting software objects which accord with the types of
cognitive apprehension outlined by Duval (1995b, pp.145-147) namely perceptual, sequential, discursive, and
operative apprehension. In concrete terms, the competence of instrumental decoding in the software’s
constructions depends on: a) the sequential apprehension of the tools selection (i.e. s/he has to select point C and
segment AB and then the command (fig. 1) meaning that s/he has to follow a predetermined order); b) the verbal
apprehension of the tools selection which means the student has to verbalize this process, (i.e. s’he says “I am
going to select point C and the segment AB”) and c) a place way type of elements operation on the figure (i.e.
when s/he transforms the orientation of the elements to apply the command selecting point B and the opposite
side AC, for example in Figure 3.2d) due to his/her perceptual apprehension (Figure 3.2.b, c). Then s/he has
constructed the operative apprehension of the figure’s elements for the construction, meaning the competence to
operate the construction. The figures below ( ) illustrate the linking visual active
representations (e.g., Patsiomitou, 2008a) of the steps in the students’ construction of the parallelogram.

Sequential steps fro the construction of a parallelogram

In other words, the notion of instrumental decoding explains a student’s competence to transform his/her mental
images to actions in the software, using the software’s tools and commands.
The basic tools of a dynamic geometry environment are a) Circle (equivalent to Compass) b) Segment/Ray/Line
(equivalent to Unmarked Straight Edge) c) Point (which simply enables us to place one of the fundamental
'objects' of Euclidean geometry) d) Pointer (which crucially enables us to drag objects). (Lopez-Real, & Leung,
2004, p.5) When these tools are combined with the software’s options menu, they allow the user to produce
constructions which must conform with the principles of Euclidean geometry if they are to function and pass the
dragging test.
Hollebrands, Laborde and Straeser (2008, p.165) described the distinction between the three different kinds of
points in a DGS environment: (a) a free point “can be directly dragged anywhere in the plane (degree of freedom
2)”, (b) a point on an object “can be dragged only on this object (degree of freedom 1)” and (c) a constructed
point “cannot be grasped and dragged (degree of freedom 0) but moves only if an element of which it is
dependent is dragged”.
This means that the student has to know the theory of geometry if s/he is to generate a correct geometric
construction (or robust construction in the words of Laborde (2005)). And while we have explained that, in the
software, the constructions can contain the same mathematical logic as the constructions on paper, there are
substantial differences in the manner in which the tools are used. For example, we can construct a rectangle using
(Patsiomitou, 2006c, 2019b, p, 41):

e Segments (tools) and perpendicular or parallel lines (commands) from the Construct menu of the DGS

environment;

e Segments (tools) and transformational processes from the Transform menu;

e  Parameters to represent its sides and its angles from the Graph menu.
Moreover, we can construct a custom tool/script (or macros in Cabri) to repeat a construction of a rectangle,
which we have previously constructed. Straesser (2002, p.65) supports that “even if the DGS programs differ in
their conceptual and ergonomic design, they share [...] the ability to group a sequence of construction commands
into a new command (macro-constructions”. Kadunz (2002) in his study “Macros and Modules in Geometry”
also argues that “Literature from mathematics education research offers three characteristic features to make a
certain software for elementary Euclidean geometry a "DGS":

e '"dragmode" as dynamical modeling of traditional tools from Euclidean geometry,

e "macros" to condense a series of constructions steps into one software command,
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e "locus of points" to show the path of one or more points when dragging another point (cf. Graumann et
al. 1996, p. 197) (Kadunz, 2002, p. 73).

Kadunz (2002, p. 73) considers that among other characteristic features in a DGS environment are "macros".
According to Kadunz (2002):

“If users and/or developers condense a sequence of commands which is often used into one unit, one

command, they define a "macro". It will be labeled by a clear name (a signifier) and can be used by this

throughout the whole consecutive work. Internally and hidden from the user, a "macro-expander” will

substitute the signifier by the initial sequence of commands” (p. 73).
Researchers in cognitive psychology (e.g., Dorfler, 1991; Dubinsky, 1988; Frick, 1989) report that chunking
information facilitates memory and retrieval. In a chunk, knowledge is condensed “into a unit available to the
learner as a whole” (Kadunz, 2002, p.73). Weibell (2011) also states:

“One effective strategy that can be used to extend [or increase] the amount of information held in working

memory is chunking (Miller, 1956). Chunking is a process of recoding multiple bits of information into a

meaningful representation that contains the same amount of information, but takes up fewer slots in

memory” (p.110).
Chunking “supports and facilitates cognitive processes involved in encoding, extracting, remembering, and
understanding information” (Winn, 1993; Gobet et al., 2001 quoted in Sedig, & Sumner, 2006). According to
Straesser (2001, 2002, 2003) macros [/custom tools] “can help to structure a geometrical construction by
condensing a complicated sequence of construction steps into one single command”. This is in other words “a
chunk of knowledge”, as Simon (1980) points out: “A chunk is any perceptual configuration [...] familiar and
recognizable” (Simon, 1980, p. 83) that helps the students to reverse their thoughts (e.g., Patsiomitou, 2012a).
In my opinion, a custom tool is an encapsulation of a sequence of primitive objects and construction commands
into a new tool, combining information of the construction in a consequential mode.
The idea of scripting/constructing custom tools was to create “personal tools”, or tools that a student could use
for his her needs. According to Scher (2000, p.45) “Jackiw viewed the scripting feature of Sketchpad as a way for
students to start from the “atoms” and gradually build their own collection of reusable, multi-step constructions”.
Kadunz (2002) also states that “to the user, the macro function is a black box producing defined output from
defined input” (p. 74).
A script /custom tool combines in a concrete and sequential order the steps that have been used to accomplish the
construction. For example, if we construct a square, we can save the concrete construction in a custom tool which
can repeat the construction in the concrete way used by the creator of the custom tool, meaning that is processes
the objects in the same sequence. The dragging of the custom tool constructed on screen follows the rules that
refer to the primitives and commands incorporated into the custom tool (i.e. if we have measured angles or
segments, or calculated a ratio, during our construction of the tool, then the concrete measures and calculations
are repeated any time we implement the custom tool). If we drag the tool, the measures follow the increasing or
decreasing of the length of the segments and angles (e.g., Patsiomitou, 2005a, p.83).
By constructing a custom tool, we can help students to extend the capacity of their working memory, since the
knowledge the student must retain is reduced. Nonetheless, the basic underlying notion is that a student is able to
codify a construction and the concrete codification shape what the student can do when s/he will encounter a new
situation related to the concrete that has been abstracted and codified with the use of custom tool.
I shall provide an example to illustrate it: Suppose we need to construct the lines perpendicular to every side of a
triangle in order to prove that they all coincide at the same point --the circumcentre. Then we need to construct
the circumcenter of the triangles ABC and ADC (the triangles are formed when we draw the diagonal of the
quadrilateral ABCD). A simple way to do this is to construct the midpoints on each of the triangle’s sides and
then to construct the perpendiculars, repeating the process three times. Again, the same process will be repeated
to construct the circumcentre of the triangles ABC, ADC. Another way would be to construct and implement
sequential custom tools: (a) a custom tool for constructing a line perpendicular to a segment (“perpendicular line”
custom tool) (b) a custom tool for constructing the circumcentre of a triangle (“circumcentre” custom tool).
( ). The actions we need to accomplish the whole process are the following: (a)
constructing the custom tool “perpendicular line” (b) implementing the custom tool to the sides of the triangle (c)
constructing the custom tool “circumcentre”, encapsulating the previous construction (d) implementing the
“circumcentre” custom tool to the triangles in the quadrilateral.
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Figures 3.3 a, b, ¢, d, e, f. Construction and implementation of sequential conceptually-linked custom tools

This way of construction is in a more abstract level than the previous way, as the student is pushed through the
process fo a reification of sequential nested objects.

This action has a presupposition: the students to know in advance that a side of triangle is a segment or to
understand the double role of the objects (van Hiele level 3). Moreover, the orientation of the sides may generate
a cognitive obstacle, especially for students at van Hiele levels 1 or 2. This is because students very often fail to
recognize the modification of the orientation of tools due to a lack of place way apprehension during the
instrumental decoding process. The custom tools help them to simplify the construction process.
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Figures 3.4 a, b, ¢, d. Constructing Baravelle spirals using the iteration process (Patsiomitou, 2005a, b, 2006g,
2007b, e)

As a result of the construction and application of a custom tool the direct perception of the user is attained with
regards to the steps in the development of the construction pertaining to (see) (e.g., Patsiomitou, 2007a, 2014,
2018a, b, 2019a): 1) the repetitions in the measurements or calculations of the areas of initial shapes 2) the
developmental way of the construction of the figure and 3) its orientation towards the sequential steps of the
construction on the screen’s diagram or in successive pages of the same file. If we have constructed a custom tool
which incorporates the use of iteration processes, in the case of Geometer’s Sketchpad the application of the
custom tool will include the iteration at every new step during every new application of the custom tool (Figures
3.4 a, b, ¢, d and Figure 3.5a, b, ¢). Figures 3.5a, b present the sequential steps of a construction of a Baravelle
spiral which has been introduced by Chopin (1994). Mariotti (2000) declares that in a construction generated
using dynamic geometry software “[...] the elements of a figure are related in a hierarchy of properties, and this
hierarchy corresponds to a relationship of logic conditionality” (p.27). This is in accordance with what Jones
(2000, p.56) points out that “dynamic geometry systems (DGS) would seem to have the potential to provide
students with direct experience of geometrical theory, and thereby break down what can be an unfortunate
separation between geometrical construction and deduction”. The following statement is something I strongly
support as complementary to something I stated in a previous study (Patsiomitou, 2008d, Patsiomitou, 2018b,
p.51):
Custom tools are ‘alive’ encapsulated objects created in a DGS environment that operate as a referent
point for organizing, retrieving and reversing information, and thus facilitating the anticipation and
manipulation of the instrumented action schemes during an instrumental genesis process. A custom tool
can become a medium for students’ cognitive development and to develop their abstract thought.
In order to comprehend the advantages (and disadvantages) of the construction mode in the dynamic geometry
software, it is necessary to examine the differences between it and the mode of construction using static means.
This will allow us to compare the two modes. For instance, in using a straightedge with measurements, the mode
of constructing a figure in the software (e.g a square of side a) could be different from the mode students use to
construct it on paper.
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way not only for reasoning but also for visualization.”
constructing an equal segment, this methodological weakness can thus provoke a cognitive conflict in students,
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One such way would be to define side ‘a’ as an arbitrary segment on the screen and then use it as a radius of a
circle in the construction. This construction method induces a different mental perception in the students with
regard to construction in the software. In this way, the sides of the square cannot be modified from the vertices of
the shape using the dragging modality. Instead, they depend on the modification of the initially defined segment
a. The arbitrary segment ‘a’ could thus be confined as a non-collapsible compass to either the square or any shape
whose a side is equal to ‘a’. This construction procedure depends on the students’ level of conceptual knowledge
and cognitive abilities. As a consequence, the construction of the shapes depends either on segments a & b--both
of which are arbitrary defined --and the relationship among them, or on the students’ geometrical knowledge of
the relationships between and properties of shapes.

Another important point about this construction is that students can use it to verify and to construct arguments,
and in so doing overcome an epistemological obstacle which one frequently finds obscuring comprehension in
students’ tests using static means (e.g., they mistakenly write that (a+b)2 =az+b2) ( ).

During the process of learning mathematics, students face:

1. Obstacles whose nature is cognitive and relates to the Geometry itself as a subject. For example

o the student does not recognize the basic components of the figure, or does not know how the figure’s

elements are defined

¢ the student does not know what the sequence of actions is s/he has to follow to construct a figure

¢ the student cannot formulate the sequence of actions that s/he has to follow to construct a figure
In one way or another, the above relates to the student’s competence at translating between different kinds of
representation (verbal, graphic, symbolic, etc).

2. Obstacles whose nature relates to the technology used by the students. For example:

e The student has not constructed usage schemes for the tools, namely how to use the tools

e The student has memorized the way in which tools can be used, which leads him/her to take meaningless

actions in the sense that their actions have no connection to logical reasoning.
As Mesquita (1998) reports
“[...] the nature of the illustration is the main obstacle in the problem [...]. Even if children are accustomed
to other kinds of representations, at least the ones associated with perspectives, textbooks almost
exclusively use “objects” as external representations. In fact, the analysis of the pupils’ answers in our
study suggested that once the obstacle created by the nature of the external representation was overcome,
pupils made the necessary substitutions to solve the problem” [...] For this reason, the nature of the
external representation may become an obstacle to pupils understanding.” (p. 193-194).
Obstacles can be seen as an opportunity for students to reflect on their own learning rather than allow this to be a
barrier to achieve understanding of mathematical ideas. In my PME35 study “Theoretical dragging: a non-
linguistic warrant leading to “dynamic” propositions”, 1 introduced the notion of instrumental obstacle
(Patsiomitou, 2011, p. 365): “I distinguished a few types of instrumental obstacles due to student lack of
competence in instrumental decoding. I am going to describe two of them including snapshots of the research
process (Patsiomitou 2011, p. 365).

A. The students (mentioned in my study as M2, M3, M8, and M14) tried to construct a parallelogram using
the Geometer’s Sketchpad. Most students at van Hiele level 1 were unable to understand the sequential
apprehension of the tools selection, because they were unable to understand the logic of the sequence of actions
or unable to link this logic with the theory of geometry. For example M 14 (van Hiele level 1 at the pre-test) faced
an instrumental obstacle which depended on her sequential apprehension of the objects to be used for the
construction. She tried to construct a parallel line by selecting the line alone and then the menu command, which
is to say she followed an irrational sequence of actions. At this point, she faced an instrumental obstacle and
commended in an informal way on the non-activation of the software’s command (saying “[the command] is not
illuminated again”). Subsequently, her interaction with the software, led to a cognitive conflict which helped her
to apprehend the sequence of actions. Students of van Hiele level 2 developed the three kinds of apprehension
along with the other members of the group: verbal apprehension emerged as a result of the previous action in the
software, namely as a result of the interaction with the tools. For example, as a result of the previous action M2
(van Hiele level 2 at the pre-test) states: “this will be a line parallel to segment AB”.

B. The utilization of Euclidean definition of a segment presented level-2 students with instrumental
obstacles in the DG environment. Thus: the group prompted student M8 (van Hiele level 2 at the pre-test) to
select the segment in order to construct a perpendicular line. Among the definitions he knew was the definition of
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a segment mentioned above. He therefore followed the definition of the textbook, decoding the verbal expression
by selecting the segment and its endpoints. This action results in the command not being activated on screen, so
he was unable to continue the process. This is to say a cognitive conflict occurred between what the students
knew from the Euclidean geometry definitions they had learned and what they encountered in the DGS
environment. Exactly the same thing happened to student M2 when she tried to select a segment to construct its
midpoint. This action led the students to apply new rules inductively and to understand empirically something
that we could define by answering the question “what is a ‘dynamic’ segment?” The ‘dynamic’ segment is a
portion of a straight line which does not consist of points. Dynamic points can be placed independedly on the
dynamic segment and move free with one degree of freedom on the path to which they belong. This means that a
point placed on a segment has its two degrees of freedom transforming into one degree of freedom. In a second
example, student M3 tried to select a point on the straight perpendicular line intersecting with the segment AB in
order to construct the sides of an isosceles triangle. Trying to decode the verbal formulation “select a point on the
straight line” in the DGS environment they were unable to do it on the dynamic line (or the dynamic segment)
they had constructed. Student M3 thus faced a cognitive conflict which led him to understand that he had to select
an independed point and put it on the line. This is exactly the time in which student set a new rule something we
could define: the selection of a segment in a DGS environment occurs with the selection of its internal alone,
which represents the set of points in the Euclidean definition”. Tools in a DGS environment can be transformed
into psychological tools as Mariotti (2000) states:
“Tools have a twofold function, the former, externally oriented, is aimed at accomplishing an action; the
latter, internally oriented, is aimed at controlling the action” [...] The process of internalisation as
described by Vygotskij may transform tools into psychological tools: when internally oriented a
‘psychological tool’ will shape new meanings, thus functioning as semiotic mediator” (p. 35)

Every tool used in a DGS environment is a digital artefact. According to Cerulli (2004) “An artefact, for us, will
be an object which has been in some way produced by humans. As a consequence every artefact for us is an
object, but not all the objects are artefacts; for instance, a stone, in general, is an object but not an artifact” (p. 7).
According to Norman (1991) “A cognitive artefact is an artificial device designed to maintain, display, or operate
upon information in order to serve a representational function”. (p. 17). Kaptelinin (2003) states that cognitive
artifacts (a) emphasize the cognitive, rational, information processing functions served by technologies used by
human beings[...] (b) are intended for individual, rather than collective use [...] and (c) do not change
individuals’ capabilities [...] “ (p.831). Bartolini Bussi, Mariotti & Ferri (2003) in their article “Semiotic
mediation in the primary school” discuss the primary, secondary and tertiary artefacts introduced by Wartofsky
(1979).
“[...] Primary artifacts are those directly used in this production; secondary artifacts are those used in the
preservation and transmission of the acquired skills or modes of action or praxis by which this production
is carried out. Secondary artifacts are therefore representations of such modes of actions” (Wartofsky 1979,
cited in Bartolini Bussi et al, 2003, p. 78)”
Mariotti (2000) argues that “the functioning of an artefact in the development of meaning can be described taking
into account the process of semiotic mediation which develops at different levels:

e The pupil uses the artefact, according to certain utilisation schemes, in order to accomplish the goal
assigned by the task; in so doing the artefact may function as a semiotic mediator where meaning
emerges from the subject’s involvement in the activity.

¢ The teacher uses the artefact according to specific utilisation schemes related to the educational motive.
In this case, [...] the utilisation schemes may consist in particular communication strategies centred on
the artifact” (p. 36).

Vygotsky distinguishes between the function of mediation of fechnical tools and that of psychological tools
(or signs or tools of semiotic mediation) and offers a list of examples (Bartolini Bussi et al, 2003, p. 78):
“language, various systems for counting, mnemonic techniques, algebraic symbol systems, works of art, writing,
schemes, diagrams, maps, and mechanical drawings, all sorts of conventional signs and so on (Vygotsky, 1974,
p.227, cited in Bartolini Bussi et al, 2003, p. 78)

An ‘artefact’, or a tool with which the interaction takes place during the mathematical activity, is transformed
into an ‘instrument’, according to the theory of instrumental genesis (Verillon & Rabardel, 1995). Many
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researchers (Guin, & Trouche, 1999; L. Artigue, 2000, 2002; Trouche, 2003, 2004; Trouche, & Drijvers, 2014;
Drijvers, 1999, 2003; Drijvers, & Trouche, 2008; Drijvers, Godino, Font, and Trouche, 2013; Patsiomitou, 2008a,
2012a) have reported on the dual interactive process involved in instrumental genesis (Verillon & Rabardel,
1995), which is a theoretical framework appropriate to describing the interactions occurring from the integration
of technological tools into mathematics education. Firstly, it is essential to distinguish the notion of ‘artefact or
artifact” from the notion of “instrument” (Rabardel, 1995, 2002). According to Drijvers, Godino, Font, and
Trouche (2013):
“An artefact is an—often but not necessarily physical-object that is used to achieve a given task. It is a
product of human activity, incorporating both cultural and social experience. Think of a hammer, a piano, a
calculator, or a dynamic geometry system on your PC. What exactly is the artefact in a given situation is
not always clear: for example, in the case of dynamic geometry software, it is a matter of granularity if one
considers the software as one single artefact, or if one sees it as a collection of artefacts, such as the
construction artefact, the measurement artefact, the dragging artefact, and so on (Leung, 2008)[...]
Following Rabardel (2002), we speak of an instrument if a meaningful relationship exists between the
artefact and the user for a specific type of task. The in many cases ongoing, nontrivial and time-consuming
process of an artefact becoming part of an instrument in the hands of a user is called instrumental
genesis.”(p.26)
Instrumental genesis also takes place in a class of students who share the same objective. It is distinguished in
two distinct processes the ‘instrumentation process’ and the ‘instrumentalization process’. Concretely Artigue
(2000) in her study “Instrumentation issues and the integration of computer technologies into secondary
mathematics teaching” states that instrumental genesis is directed towards:
a) “the artefact, loading it progressively with potentialities, and eventually transforming it for specific uses”
(it is called the instrumentalization process of the artefact)

b) “the subject, and leads to the development or appropriation of schemes of instrumented action which
progressively constitute into techniques which allow us to solve given tasks efficiently” (it is called the
instrumentation process)” (p. 10)

This dynamic active functionality of the tool presupposes the student to act on the tool (external use of the
construction) thus the tool is shaped by the user during the instrumentalization process while the artefact
simultaneously acts upon the subject (internal use of the structure) and the tool affects and shapes the users’
thought during the instrumentation process (e.g., Guin, & Trouche, 1999; Artigue, 2000; Trouche, 2004; Drijvers
& Trouche, 2008; Patsiomitou, 2008a, b, c, d). Consequently, the student creates an accommodation of his older
scheme about a concept while s/he accommodates a tool to investigate the concept through the use of the tool
(Patsiomitou, 2008a, d). Rabardel (1995, 2002) calls the schemes “linked to the utilization of an artifact,
utilization schemes” (p. 82). The need to use a tool leads the student during the instrumental genesis process to
the development or appropriation of usage schemes and schemes of instrumented action. Rabardel defined two
levels of schemes within utilization schemes:

e “Usage schemes are “related to ‘secondary tasks’ [...] corresponding to the specific actions and activities

directly related to the artifact” (p.83)
o “Instrument-mediated action schemes (or schemes of instrumented action) are related to ‘primary tasks’
[...] aiming at operating transformations on the objects of activity” (p.83).

Moreover Rabardel reports the “instrument-mediated collective activity schemes, which “concern the
specification of the types of action or activity, of the types of acceptable results etc. when the group shares a same
instrument or works with a same class of instruments” (p.84).
Through the instrumented action schemes, mathematical knowledge and knowledge of the tool are combined. As
Trouche (2004, p. 286) notes: “A scheme has thus three main functions:

e a pragmatic function (it allows the agent to do something),

e a heuristic function (it allows the agent to anticipate and plan actions)

e and an epistemic function (it allows the agent to understand something).”
From Trouche’s point of view, “instrumental geneses are individual processes, developing inside and outside
classrooms, but including of course social aspects” ( ) (personal e-mail correspondence with Professor
Trouche on April 4, 2008).
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“Instrumental genesis” developing
through finalized actions

: z Artifacts and
Subject artifact

schemes

“Instrument™

Figlll‘c 3.7. The schema of instrumental approach (Trouche, & Patsiomitou, cited in Patsiomitou, 2008, p. 362)

In the Figure 3.7 a schema of instrumental approach is depicted which was constructed in cooperation with Prof.
Trouche (personal e-mail correspondence with Professor Trouche on April 2, 2008, based on Trouche’s (2006)
schema of instrumental approach) (Patsiomitou, 2008, p. 362). Trouche supports that “an artefact is transformed
thus through instrumental geneses, oriented by finalized actions, assisted by instrumental orchestrations, into an
instrument”. According to Artigue (2000),
“An instrument is thus seen as a mixed entity, constituted on the one hand of an artefact and, on the other
hand, of the schemes that make it an instrument for a specific person. These schemes result from personal
constructions but also from the appropriation of socially pre-existing schemes.”(p.10)
An instrument (Rabardel, 1995) combines both an artefactual, material structure (external result) and a
psychological schematic structure (internal result) directly linked to the use of the artifact (e.g., Artigue, 2000;
Trouche, 2003, 2004). This is in accordance with what Beguin & Rabardel (2000) state with regard to structures
an instrument is made:
“- psychological structures, which organize the activity;
- artifact structures, which [...] are the signs and symbols in the code used to think of and express
solutions, along with the paper, pencils, erasers, and so on, that serve to produce and modify the diagrams”
(p-179). (Figure 3.8).

Artifact (mate rial or digital sterure) +
scheme s (psychological structure )=
INSTRUMENT
concepts-in-action
heorems-in-action

Figure 3.8. The mediating instrument (Beguin & Rabardel, 2000, p. 179) (an adaptation for the current study).

During the learning process, students discuss their ideas and make inferences in relation to the diagrams’
dynamic transformations. The construction of schemes during the instrumental genesis process is what
researchers consider when studying long-term uses of technology. According to Trouche (2003, 2004) a scheme
of instrumented action constructed during the instrumental genesis process incorporates operational invariants
(namely theorems-in-action and concepts-in-action) (Vergnaud, 1998). The notions of scheme, theorem-in action
and concept-in-action are defined by Vergnaud (2009) as follows:

o “A scheme is the invariant organization of behavior for a certain class of situations.

o A theorem-in-action is a proposition which is held to be true;

e A concept-in-action is an object, a predicate, or a category which is held to be relevant (‘concepts

implicitly believed to be relevant’)” (p. 168).
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Rabardel (2005) mentions Vergnaud (1996, 1998, 2009) and his theory of conceptual fields. A scheme comprises
four different kinds of ingredients:
-“anticipations of the goal to be reached, expected effects and possible intermediary stages;
-rules of action along the lines of “if-then” which allow the sequencing of subjects’ actions to be
generated;
-inferences (reasoning) that allow the subject to calculate rules and anticipations based on information and
the operational invariants system he/she disposes of;
-operational invariants that pilot the subject’s recognition of elements pertinent to the situation and
information gathering on the situation to be dealt with” (Rabardel, 2005, p.79).

Docq and Daele (2001, p.200) point out, the two principles identified by Rabardel, which are linked to the

production by the subject of his/her own using schemes for a new tool:
e The ‘economy principle” where the subject tends to choose the most familiar or the most available tool
and to use it for as much actions as possible and
e The ‘search for efficiency’ where the subject tends either to choose another tool or to use the proposed
tool but in a way designers of the tool had not anticipated (informal use, or ‘catachreses’ according to
Rabardel).
This means that students many times use a tool in an economical mode or a catachresis mode. An economical
mode of the tool is determined when a student tends to use a tool that previously has been used for a first task “to
carry out a new task” (Rabardel, 1995, p.96). In other words s/he makes economy of the use of tools. The idea of
‘catacresis’ in the words of Beguin & Rabardel (2000)
“is employed in the field of instrumentation to refer to the use of one tool in place of another, or to using
tools to carry out tasks for which they were not designed” [...] catacresis [is]an indicator of the user’s
contribution to the development and use of an instrument. The existence of catacreses reveals that the
subject creates means more suited to the ends he or she is striving to achieve, and constructs instruments to
be incorporated into the activity in accordance with his or her goals” (p.180).

According to Martinez-Maldonado, Carvalho, and Goodyear (2018, p.5) “the theory of instrumental genesis
has been built on activity theory (e.g., Leontiev, 1978; Engestrom, 1987, 1990, 1999; Nardi, 1996) and the theory
of situated cognition (Brown, Collins and Duguid, 1989, cited in Martinez-Maldonado, Carvalho, and Goodyear,
2018, p. 5)”. Similarly, Kaptelinin (2003) states that instrumental genesis “is based on activity theory, which
deals with purposeful interactions of active subjects with the objective world (Leontiev, 1978). These
interactions, or activities, are understood as social, hierarchically organized, developing, and mediated by tools”
(p- 832).

Activity theory is a psychological theory that has been developed from the work of Soviet cognitive
psychologists (e.g., Vygotsky, 1978; Luria, 1928; Kuutti, 1978; Leontiev, 1978). Engestrom (1987, 1990, 1999)
developed a version composed of the following interacting components: mediating artefacts or tools, subject,
object, community, division of labour, and rules.

IHAcl:'vi-’il:y theory: Constructs from Activity Theory are used n a number of papers, largely as an analytical tool. For example,
community is a key element in Engestrém’s (e.g., 1999) third generation framework in Activity Theory. in which he presents his
“Expanded Mediational Triangle” deriving from first and second generation versions of Vygotsky's meditational triangle. Here
some subject achieves an object or goal through the mediation of an mstnument or artifact (or tool). As well as the mediation of
artefacts (in owr studies, such as text books, online systems or mathematical symbols), Engestrém suggests that Rules,
Community and Division of Labour are also important mediators in an activity system. Thus, in taking activity theory as a basis
for research mto mathematics teachers’ leaning through collaboration, the idea of the commumnty in which leaming occurs is
central to the concept of mediation. Several studies use an Activity Theory frame through which to address the situative aspects

of the study. The frame is in some cases Engestrém’s triangle; in others it is a three-layer framework attributed to Leont’ev
consisting of Activity related to Motive, Actions related to Goals, and Operations related to Conditions. According to Leont’ev,
Activity 15 always motivated, although the motive might not be explicit. Within motive we have actions which are always
explicitly goalrelated. Action and goals depend upon operations and conditions within activity "

(Robutti , Cusi, Clark- Wilson, Jawaorski, Chapman, Esteley, Goos, lsoda, Joubert, 2016, p. 671)

A short description of these components has been given by Jonassen et al. (1999, p.161, cited in FitzSimons,
2005, p.770):
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e “The subject of any activity is the individual or group of actors engaged in the activity.
The object of the activity is the physical or mental product that is transformed.

o Tools [or mediating artefacts] can be anything used in the transformation process. [...] The use of
culture-specific tools shapes the way people act and think. [...] Tools alter the activity and are, in turn
altered by the activity.

e The activity consists of the goal-directed actions that are used to accomplish the object—the tasks,
actions, and operations that transform the object” ( ).

Transformation

ediating Artefacts
or tools
processes
@ outcome

Engestrom's model (1987) of activity theory (cited in FitzSimons, 2005, p.770) (an adaptation for the current study)

Activity theory has been used in numerous papers as analytical tool. The theory focuses on how subjects
transform objects and the mediation processes (Robutti et al, 2016, p.671). According to Nardi (1996) in her
study “Activity Theory and Human-Computer Interaction™:
“Activity theory proposes that activity cannot be understood without understanding the role of artifacts in
everyday existence, especially the way artifacts are integrated into social practice (which thus contrasts
with Gibson's notion of affordances). Cognitive science has concentrated on information, its representation
and propagation; activity theory is concerned with practice, that is, doing and activity, which significantly
involve ““the mastery of ... external devices and tools of labor activity" (Zinchenko 1986)”.

A student can construct “dynamic” representations using the facilities offered by a DGS software. As I mentioned
before, this means that the student can use transformation tools like rotation or reflection in addition to the
Compass and Straightedge tool. Rotation, reflection, translation, dilation are isometries.
“The first component of the word isometry is from the Greek word isos (isos means “equal”). The second
is from the Greek work metron (metron means “a measure”) (Schwartzman, 1994, cited in (Webpage [21]).
An isometry is a mathematical transformation that retains certain measurements: most importantly, it
retains the distances between particular points. Any isometry f is a function 1-1 correspondence and, as
such has an inverse f™', which is also an isometry” (e.g., Coxeter, 1961; Yaglom, 1962 cited in Webpage
[21]).
The focus on transformations is in accordance to Coxford & Usiskin (1975), who report that, “the use of different
types of transformations in the curriculum simplifies the mathematical development (for example, the definitions
of congruence and similarity cover all figures). Therefore, the proofs of many theorems are simpler and more
accessible to all students” (Coxford & Usiskin, 1975, Preface, p.v). Furthermore, Coxford & Usiskin argue that
“transformations are used because
e They can be understood by students of widely varying abilities
e They give a unifying concept to the geometry course
e They provide assistance for future work in algebra and calculus™ (Preface, p.vi)
De Villiers (1997) in his study “The Future of Secondary School Geometry” discusses “Klein's famous Erlangen-
program (1872) which described geometry as the study of those geometric properties which remain invariant
(unchanged) under the various groups of transformations” (p. 3). According to De Villiers (1996) geometry could
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be classified according to this view as follows: “(a) isometries -[ transformations of plane figures which preserve
all distances and angles (congruency)] (b) similarities -[transformations of plane figures where shape (similarity)
is preserved] (c) affinities —[transformations of plane figures where parallelism is preserved] (d) projectivities —
[transformations of plane figures which preserve the collinearity of points and the concurrency of lines] and (e)
topologies —| transformations of plane figures which preserve closure and orientability] “ (p.3).

Whiteley (1999) in his study “The Decline and Rise of Geometry in 20th Century North America” argues that
“Transformations’ are the key concept of geometry. Reasoning with transformations should be a central theme of
our learning of geometry (Yaglom, 1968) [...] Transformations and change within geometry are central to
understanding geometry” (p.15)

Transformations used by the students in the DGS environment can be distinguished through the following
(Patsiomitou, 2014, p.30) (Figures 3.10a, b, c, d, e):

e Transformation generated from the reflection, dilation, rotation, or translation of the object. Dragging on
rotated (dilated, reflected, or translated) objects maintain the congruency and structural relationship
between the elements of the construction.

e Transformations generated from the utilization of the action buttons tools (for example, the hide/show
action button, the link button, the movement button, or animation).

e Transformations generated from the annotation of the dynamic diagram (for example, use of colours,
formulations, and the trace tool). Moreover, the combination of transformations (e.g., the trace tool and
dragging tool, the calculations and the dragging of the geometrical object’s points).

e Transformations generated from the application of the custom tools. The application of custom tools
reorganizes the external representation. The application of a custom tool (or the repetition of the
application of a custom tool) is accomplished in a sequence of steps directly perceived by the user.
Consequently, custom tools operate as a referent point for organizing, pursuing, and retrieving
information.

e Transformations generated from the synthesis of the dynamic diagram.

e Transformations generated from the reconfiguration of the dynamic representation.

e Combinations of transformations due to the synthesis of the software’s interaction techniques (Sedig &
Sumner, 2006).

e Complex transformations of the LVAR dynamic representations (Patsiomitou, 2008a, b).

The diagrams’ reconfiguration through the complex synthesis of combinations of transformations can lead to a
continuous interaction of discursive, visual and operational apprehension (e.g., Patsiomitou, 2008b, c, 2010,
2011a, b, 2012a, b, 2013, 2014, 2018b). In the words of Dina van Hiele (1984) the diagram goes through a
metamorphosis as a result of the manipulations of reconfigurations “followed by a phenomenological analysis
and an explicating of its properties: it becomes what we call a [dynamic] geometric symbol” (Dina van Hiele in
Fuys et al., 1984, p.221; Patsiomitou, 2018b). Transformations on prototype elements (e.g., points, line segments)
lead the students to (1) visualize the objects that are constructed in the first phase of the process and (2) perceive
a few properties of the figure’s symmetry initially at the visual level. It is observed that students connect, in their
minds, representations that help them to respond to the next level, according to the theory of van Hiele.
Therefore, dynamic geometric transformations are defined (Patsiomitou, 2014, p. 31):

as the modification of the diagram on screen that result in the modification in one or more incorporated
geometric objects. This could be an elicitation from the addition, cancelation of the diagram’s elements
that cause the rearrangement of the diagram, its anasynthesis, its metamorphosis or even the modification
of any object’s size or orientation.
Moreover, a metamorphosis could be seen as we apply one or more interaction techniques, or their combination,
on the diagram’s objects. The difficulty of students to imagine transformations on geometric figures during
problem solving situations is based in the nature of geometrical concepts which Fischbein (1993) defined as an
amalgam of: “abstract ideas on one hand and sensory representations reflecting some concrete operations on the
other” (p. 14). In this point we are limited to refer the effects of the construction through rotation in a DGS
environment.
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Figure 3.10a. Reflection of a segment for the

construction of an isosceles triangle (Patsiomitou, construction of a rhombus (Patsiomitou, 2009b, d, in Greek)

2009b, d, in Greek)
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Figure 3.10c. Synthesis of more complex figures through rotation aiming to introduce similarity theorems
(Patsiomitou, 2009b, d, g, in Greek)

-
J

A
‘\
i
/

a ® ; o
/Z S
’1’ B T //
//I

Figure 3.10d. Visual proof through reconfiguartion of the diagram (Patsiomitou, 2009b, e, in Greek)

Figure 3.10e. Transformation as a synthesis of action buttons in the animated tesselation- a metamorphosis
(Patsiomitou, 2009b, f, h, in Greek)
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We follow these next steps to create a rotation of an object in Sketchpad v4 (e.g., Patsiomitou, 2008a): to begin
with, we select the point which will act as the center for rotation and define it on the transform menu as ‘mark
center’. Then we select the object we would like to rotate based on an angle, choosing the specified/fixed angle
(for example 90°). When the command runs, a new object is created which is a rotated image of the original
object. The rotation of the object for 90 degrees in the software leads the students to conceptually grasp the
meaning of a) perpendicularity/a right angle; b) congruent shapes. This transformation has a significant impact:
during the instrumental approach, the student structures a utilization scheme of the tool, and consequently a
mental image of the functional/operational process of rotation, since any modification/ transformation of the
initial figure (input) results in the modification/transformation of the final figure (output).
As mentioned above, the transformation of an object on screen using dragging can be combined with other
techniques to cause a combination of transformations on screen (e.g., Patsiomitou, 2008b, c, 2010, 2012a, b): (a)
dragging and tracing objects (b) dragging and measuring objects (c) dragging and animating objects (d) dragging
a transformed object or its image (by rotation, translation or reflection) or more complex such as (a) dragging,
tracing and animation and (b) dragging, measuring and rotating etc. I will discuss the different kinds of
transformations and transformational results that ensue from implementing dragging on screen (Patsiomitou,
2019b, p. 43-44):
e Dragging and tracing of a geometric object (for example a point, segment or line)
Dragging a point on screen results in the transformation of its position and the simultaneous appearance of traces
on screen tracking the path the point has followed or the tracks that a line passes due to dragging transformations.
This action reveals in the determination of a basic property of the diagram that cannot be directly perceived from
the diagram in its hybrid form, or a property of the diagram that remain stable and unaltered.
e Dragging and measuring (or calculations) the geometric object.
Dragging a point on screen leads to a change in the measurements of the object, which we have chosen to display
and in its calculations. In this case, the measurements change, but the calculations may do one of two things: they
may remain unchanged, indicating a stability that demonstrates the validity of a theorem or general theoretical
approach (a proposal or a confirmed porisma--meaning a conclusion or an inference) or they may change,
allowing the user to observe and draw conclusions from empirical results.
¢ Dragging and animating, or dragging, animating and tracing objects
A point on an object is dragged--for example, the vertex point of a triangle to which a point on one side is
connected with motion. The animation of the diagram and the simultaneous dragging allow us to understand a
condition which is not defined during the diagram’s structuring process. For example, it may make us aware of a
theoretical limitation that has not been determined or established before, but which appears on the diagram when
it is dragged. This condition leads into an investigation of the validity of a theorem or proposal.
Transformations in geometry are mentioned by many researchers as ‘geometric functions’ (e.g., Hollebrands,
2003, p.57; Steketee & Scher, 2016, p.450; Patsiomitou, 2006¢, p.1072, 2019, p.16). Hollebrands (2003) defined
transformations as follows:
“Transformations are special functions because they are both one-to-one and onto. Understanding that a
transformation is one-to-one involves knowing that if you have two different elements in the domain (two
points A and B such that A = B) then the output for A under the transformation will be different from the
output of B under that same transformation (T(A) = T(B) where T represents a transformation).
Understanding that a transformation is onto involves knowing that every element in the range (every point
Q in the plane) has a corresponding element in the domain (a point P in the plane) such that T(P) = Q”. (p.
57)
Steketee & Scher (2016) also report dependent and independent variables, denoting the geometric
transformations of objects in a DGS as “geometric functions” and arguing that:
“Cognitive scientists tell us that students build abstract mathematical concepts by connecting those
concepts to the physical world through conceptual metaphors (Lakoff and Nufiez 2000; Radford 2012),
such as the metaphor that numbers are points on a line. Geometric functions are based on a similar
metaphor—that geometric variables are movable points. [...] This metaphor enables students to use
dynamic software to create a point (the independent variable), construct another point (the dependent
variable) that depends on the first, and drag to observe the resulting covariation and relative rate of change.
In other words, a geometric function relates the preimage point—the independent variable x—with its
image—the dependent variable that is a function of x.” (p. 450)
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The iteration facility in Geometer’s Sketchpad environment is a transformation process very crucial for the
construction of recursive processes. In many previous studies, I have reported ways of constructing fractals using
the iteration transformation. For example, for the needs of my study “DGS ‘custom tools/scripts’ as building
blocks for the formulation of theorems-in-action, leading to the proving process” (Patsiomitou, 2006d, in Greek)
I created two custom tools which combined “beauty” with iteration processes, using the Geometer’s Sketchpad
software. The result on screen was “beautiful” and “alive”.

The Ancient Greeks, particularly the Pythagoreans, believed in an affinity between mathematics and beauty, as
described by Aristotle “the mathematical sciences particularly exhibit order, symmetry, and limitation; and these
are the greatest forms of the beautiful” (Sinclair, 2004). According to Sinclair (2004, p.262) many
“mathematicians (e.g., Hadamard, 1945; Penrose, 1974; Poincaré, 1913), as well as mathematics educators (e.g.,
Brown, 1973; Higginson, 2000) have drawn attention to some more process-oriented, personal, psychological,
cognitive and even sociocultural roles that the aesthetic plays in the development of mathematical knowledge”.
Sinclair (ibid.) declares that “they associate the aesthetic with mathematical interest, pleasure, and insight, and
thus with important affective structures...”.

In my ATCM study “Custom tools and the iteration process as the referent point for the construction of
meanings in a DGS environment” (Patsiomitou, 2008d), I have done a detailed description of the design process
of the custom tools used for the construction of activities in the linked multiple pages facilitated by Geometer’s
Sketchpad v4 software. My aim was to increase my students’ aesthetic perception and sensibility, in parallel with
the construction of mathematical meanings. The resulting successive pages could be compared with an alive,
vivid, section of a textbook (Patsiomitou, 2005a, 2018b, 2019a, b). The first pupils which played with the spirals
and investigated their properties were my children.

c d

Figures 3.11a, b, ¢, d. Construction and implementation of the custom tools (Patsiomitou, 2006d,
e, ;2008d, p.182, 2009)

The rearrangement demonstration occurs on the right triangle whose vertical sides are proportional to the original
right triangles’ sides in a ratio of 2:1. Rearranging the construction, students could be helped as new information
is highlighted otherwise difficult to understand. Prior to constructing the tool, I also measured/calculated the
areas and lengths of the sides of the initial construction. Although the final result of the two methods for
constructing the initial right triangle including the rearrangement appear identical, they lead to ways of
constructing a custom tool whose application provides different results in both computational and constructional
(scheme) terms.
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For example applying the tools three times in succession produces the results in Figures 3.11 b, d. This means
that as we can see in the illustration, the areas of the shapes steadily decrease (Figure 3.11b) or increase
(Figure 3.11d). Concretely, applying the tool using the appropriate method for constructing it, we take different
constructional, representational results:

e In method A, the longer vertical side of the initial triangle becomes the hypotenuse of the next
right triangle in the sequence. Meaning the sequence of the measurements and calculations that
emerges is descending.

e In method B, the hypotenuse of the initial triangle becomes the longer vertical side of the next
right triangle in the sequence. Meaning the sequence of measurements and calculations that
emerges is ascending.

Figures 3.12a, b. The Al-Lu-The' spirél (Patsiomitou, 2006d, e, 2008d, p.182-185)

If we iterate the initial points of the construction of the tool we can take different results relating to the
construction the measurements and the calculations. As it is well known for someone who uses the Sketchpad
software the result of the process of iteration (Steketee, 2002, 2004; Jackiw, & Sinclair, 2004) can be
accompanied with the construction of the tables that repeat the process of initial measurements and calculations
in dynamic linking with the diagram, thus increasing (or decreasing) the level of the process of iteration while the
software adds (or removes) the next level of measurements (or even calculations), whereas in the first column of
the table, the sequence of the natural numbers is presented (e.g., Patsiomitou, 2005a, 2007a). In that way through
this operation, the environment of the software promotes the exploration of the sequences. The iteration process
by functioning thus has integrated or embodied the meaning of sequence while there is a direct connection
between the user’s perception and the abstract mathematical meaning. As a result of the construction and
application of the custom tool as much as the process of iteration the direct perception of the user is attained in
regard to the steps in the development of the construction pertaining to (Patsiomitou, 2007a):

o the repetitions in the measurements or calculations of the areas of initial shapes
o the developmental way of the construction of the shape and
o its orientation towards the sequential steps of the construction on the screen’s diagram or in

successive pages of the same file.

The process of animation can produce the changes in the tabulated measurements (calculations) that allow the
user to examine the dynamic process. Figures 3.12a, b illustrate the construction of the tables that repeat the
process of initial measurements and calculations of the ascending (or descending) sequence in dynamic
connection with the shape. In the software, via the process of iteration we have the potential of the constructions,
thus becoming more complex being in theory rendered inductively to infinity. This function of the software also
constitutes a certain crucial and essential particularity, while the construction with a compass and a straightedge
as static tools of geometry has a beginning and an end.

" “Al-Lu-The” is an abbreviation generated from the names of my children (Alexandros-Loukia-Theano)
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3.5. Hybrid-Dynamic Objects

Students face difficulties when they explore mathematical objects, no matter if they are in a static or dynamic
environment. They have to mentally operate on the abstract object, even if it is visually supported by a computing
environment. This is what Laborde (2003) investigates, interrogates or (probably) asks herself: “but if the thought
experiments on abstract objects are not available (as it is often the case for learners), a crucial question about
learning is whether such environments could favour an internalization process of the external actions in the
environment”. In my studies “From Vecten’s Theorem to Gamow’s Problem: Building an Empirical
Classification Model for Sequential Instructional Problems in Geometry” (Patsiomitou, 2019a) and “Hybrid-
dynamic objects: DGS environments and conceptual transformations” (Patsiomitou, 2019b) I present a new kind
of objects in DGS environments the “hybrid-dynamic objects™.

A. To explain my thoughts I presented a few examples form Algebra, Calculus and Geometry which
indicate how the term “hybrid” is reported in the international literature. Many researchers use the word “hybrid”
to denote something that does not obviously belong in a given class of objects, or a mixed entity composed of
different elements. Kaput (1991) for example revisits the problem that Gauss phased to sum the integers from 1
to 100, “exploiting a convention for expressing generality in mixed numerical and algebraic notation” (p.68).
Kaput mentions a “hybrid sum” (numeric and algebraic) which is illustrated using the powerful mode of another
“hybrid sum” (figurative and symbolic) (Figure 3.13a, b).

2 3 2ol n
noonloond 3 2 I
n+1
ntl ot ndl ntl oot ot
Figure 3.13a: A convention for expressing Figure 3.13b: A convention for expressing generality in a “hybrid sum” (a
generality in a “hybrid sum” (a mixed numerical and mixed figurative and symbolic notation with an array of rods) (Kaput, 1991, p.65)
algebraic notation) (Kaput, 1991, p.68)

Verillon & Andreucci (2006) in their study “Artefacts and cognitive development: how do psychogenetic
theories of intelligence help in understanding the influence of technical environments on the development of
thought?” report Rabardel (1995) who argued that during instrumental genesis “the resulted instruments are
actually hybrid entities, on the one part are psychological and on the other part artefactual” (p.12). Morgan et al.
also mention the representational hybrid nature of the Turtleworlds environment, because it behaves like a hybrid
between Logo and Dynamic Manipulation systems due to the ‘variation tool’ (Morgan et al.
https://www.itd.cnr.it/telma/docs/Rep_Del_Draft3.pdf, p.7). Cerulli (2004) also mention “a hybrid language to be
used to bridge the natural language with the mathematical one” (p.36). As Cerulli states “the evolution of
meanings is based on the idea of deriving, from a used instrument, hybrid signs which refer both to the practice
with the instrument and to the sphere of theory of mathematical knowledge” (p. 142).

B. Why did I term these objects “hybrid-dynamic™?

If we use a parameter “a” to define a function y=ax (or the function y=ax” etc.) and represent it in a Dynamic
Geometry System (DGS), the family of representations we take as we animate the parameter could result in the
perception of an empirical generalization of the concept of function. The traces of the object y=ax” as we animate
the parameter “a” provide the path through which the function is transformed (Figures 3.14 a, b, ¢, d). Then we
can transform the parameter, but the result of the parameter’s alterations affects the linked graphic
representations, providing a family of objects with the same properties, which can help students, achieve a deeper
understanding.
These traces are not a static mathematical object. They are not dynamics, as they cannot be dragged, but neither
are they static. So what kind of object are the lines the traces leave on screen? Traces play an important role in
helping students understand the transformations of parameters and their impact on the graphic representations. I
have denoted them as hybrid objects (Patsiomitou, 2019a, p. 15).

For this I introduced the meaning of
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e hybrid object (Patsiomitou, 2019a, p. 15) to denote an on-screen geometric object that is intrinsically
dynamic, but remains untransformed /unaltered on screen, even though dynamic dragging is applied or
implemented on it. This situation comes about because of the hybrid object’s dependence from its parent
objects. Briefly, a hybrid dynamic object is something that does not obviously belong to either the static or
dynamic world. It is an object created in a DGS by means of complex transformations (or on which
complex transformations can be performed); something between a static and a dynamic object; an object
that is intrinsically dynamic, signifying a static behavior which is rendered dynamic by to the users’

actions.
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Figure 3.14a. Creating a function, also its derivative Figure 3.14b. Tracing objects by animating
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Figures 3.14 ¢, d. Snapshots of families of functions using the animation of parameters (e.g., Patsiomitou, 2009b,
2019, p. 34)

In other words a hybrid object is the result of an effect on a dynamic object on screen. As a consequence it

is loaded with intensive interactive features.

o hybrid diagram (Patsiomitou, 2019a, p. 15) in the DGS environment to denote the untransformed on-

screen diagram, which has been created to stay hybrid and become dynamic if we implement a

transformation on its parents. The diagram is intrinsically dynamic, but a user could use it as an image or a

static diagram, if s/he does not know how to make it dynamic. It is important to point out at this point that:

the transformation of objects in a DGS environment is dependent on whether these objects have been

defined, as hybrid objects or not.

C. How did I conceive the notion?

I became aware of the notion of hybrid-dynamic objects since 2005, when I started experimenting with
parameters and parametrical constructions in Sketchpad. For the needs of my study “Transformations on
mathematical objects through animation and trace of their dynamic parameters” (Patsiomitou, 2006a, in Greek),
I instrumentally decoded Vecten’s theorem (Figures 3.18 a, b) using parameters (Patsiomitou, 2006a, in Greek,
pp- 1270-1273). I have considered Vecten’s theorem to be particularly interesting since 1985, when I investigated
(in paper-pencil environment) all the sub-problems (reported in “Jesuit Geometry” a translation in Greek, p.774,
published in Annales De Gergonne, 1816, vol.VIIL, p.322) with great interest.
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In my study “From Vecten’s Theorem to Gamow’s Problem: Building an Empirical Classification Model for
Sequential Instructional Problems in Geometry” 1 describe a few sub-problems of the Vecten’s theorem and their
solution (Patsiomitou, 2019a, b, p.12-14) which I also report in the current study.

Vecten’s Theorem: Construct a triangle ABC. Construct two squares ABDE, ACIT, externally on the sides AB,
AC of the triangle ABC respectively. Prove that

L

If M is the midpoint of the side BC then AM= ET/2 (Figure 3.15a)

II. AM is perpendicular to ET. (Figure 3.15a)

III. If O is the midpoint of ET then AO=BC/2. ( Figure 3.15b)

IV. AO is perpendicular to BC. (Figure 3.15b)

V. If S is the fourth vertex of the parallelogram EATS then the sides CD and BI are congruent and

perpendicular to BS and CS respectively. (Figure 3.15¢)

VL. If G is the midpoint of the segment DI, then the BGC triangle is a right and isosceles triangle. (Figure

3.15d)

E-—
Figure 3.15a. Sub-problem I, IT (Patsiomitou, Figure 3.15b.5ub-problemITI,
2019a,p.13) . IV(Patsiomitou, 291951, P.13).
Figure 3.15¢. Sub-problem V (Patsiomitou, 2019a, Figure 3.15d. Sub-problem VI
p-13). (Patsiomitou, 2019a, p. 13).
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Theorem 1. If the diagonals of a quadrilateral are dichotomized then i is a parallelogram
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1. ST=EA=AB

2. TA=AC
3= STA=<STE+=<g¢ triangle ABC =triangle STA | ~}»
<BAC=<BAM+< g —>
_..{csr.a.=<3u: )
<STE = <TEA

|
<TEA =< A" =<BAM (Pnpﬂﬂbl]d)
<@ =<
1.
SA“BC, 40~ B
> .
<prcd-sm — <Coca =90 b @B

v

1) DBE=AB

2) SA=BI'

3) < CBD=<SARB (their sides are] —# ACBD=ASAB = CD = SB

prependicular )

{ Propositionl.4 ]

<BCD=<A5B=90°-<A"BS =90° -<CB
—p-<BPC=00° —p CDLBS
<

BCP=90*-<CBP
VI
A ABA' =/ BDD' —» GG' is perpendicular to AC
= (BA"=DD" and AA'=D'B ) ‘
AAA'C= A CC _"‘( '= (DD +1C") /2= (BA' + A'C)/ 1=mzj —
A'C=C'l and AA’=CC’

Figure 3.16. A diagram for the Vecten’s sub-problems mentioned above (ABC is a right triangle) (Patsiomitou,
2019a, p. 14).
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If we drag the lines AB, AC until they become perpendicular (Figure 3.16) then a student has to prove that the
lines AE, AC belong to the same line, something that is omitted /or dismissed by the students. This part of the
proof is highlighted in Euclid “Elements” (e.g., Proposition 1.47) (see for example Fitzpatrick, 2007, p. 46).
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Proposition 47

In a right-angled triangle, the square on the side
subtending the right-angle is equal to the (sum of the)
squares on the sides surrounding the right-angle.

Let AL} be a right-angled triangle having the right-
angle ZAC. 1 say that the square on 3¢ is equal to the
(sum of the) squares on 3A and AC

For let the square HDEC have been described on
BC, and (the squares) B and JIC on Al3 and AC
(r( spectively) [Prop. 1.46]. And let AL have been
rawn through point A parallel to either of 1112 or C'L

31 ve been joined. And

nm lying on_the sa

(sum of the) adjacent angles equal to two
right-angles at the same point A on some straight-line
BA . Thus, C'A is siraight-on to ACG [Prop. 1.14]. So, for
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sinee angle DBC is equal to FBA, for (they are) both
right-angles, let ABC have been added to both. Thus,
the whole (angle) 12[iA is equal to the whole (angle)
FBC.

And since DB is equal o BC, and F'B o I3A,

Flgurc .17. Screenshot from the Proposition 1.47 (Fitzpatrick, 2007, p. 46)
In the Figures 3.18 a, b, I have constructed the sides AB=a, AC=b as well as the angle <BAC=f by using
parameters in order to investigate more deeply the properties of Vecten’s theorem (Patsiomitou, 2006, in Greek,
pp- 1270-1273; Patsiomitou, 2019 a, b). The animation of all parameters is a direct object manipulation which
transforms every part of the object. This leads to a kind of algebraic geometry, which takes the parametric sides
and angles as input and provides a continuous transformation of the diagram as output (Patsiomitou, 2006a,
pp-1270-1273, in Greek). According to Leron & Paz (2006) in their work “The slippery road from actions on
objects to functions and variables”
“to be specific, the metaphorical mapping would map action to function, object (or the state of the object)
to variable, and the initial and final state of the transformed object to the function’s input and output.”
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Figures 3.18 a, b: Screenshots of the sequential diagrams of Vecten’s theorem in Sketchpad produced by

animating the parameter of angle (Patsiomitou, 2006a, p. 1270-1273, in Greek; Patsiomitou, 2019a, p. 15-16)

A student’s action on parameters leads to a transformation of objects. The students can also investigate a concrete
situation of the hybrid-dynamic representations, choosing to assign concrete magnitudes to the parameters
(Figure 3.18 a, b). Moreover, the user can directly perceive infinite alterations of the same figure on screen
(Patsiomitou, 2006, p. 1273, in Greek) and conceive of an abstract mathematical object. This mode of
construction is completely different from the simple construction mode which uses dynamic tools, because the
student consciously perceives the modification of the dynamic objects on screen. We can thus speak about
functional geometry and through the conservation of figures’ properties about the concept of geometric function
(Patsiomitou, 2006, p. 1273, in Greek).

In the Figures 3.18 a, b the whole representation is a hybrid diagram, meaning it is completely determined by its
parameters and cannot be moved if we drag any point on it. The diagram has intrinsically dynamic properties, but
is different from a dynamic diagram created using the ‘Construct’ or ‘Transform’ menu in that. It can only be
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altered if we animate its parameters, supporting a visualization of infinite occasions of dynamic objects which
maintain the same structure but they are modified in a mereologic, optic and place way in the words of Duval
(1999).
D. Is segments’ addition a hybrid-dynamic object in DGS using parameters?
In my study “Hybrid-dynamic objects: DGS environments and conceptual transformations” (Patsiomitou, 2019b)
I explain through examples how the addition of segments in a DGS environment is a hybrid-dynamic object.
Concretely I report the following:
A segment (or a line) in the Euclidean geometry is a geometrical object. We can create segments in a DGS
environment, then measure their length and calculate their sum. We can also use the symbol “+” to represent the
process of segments’ addition, leading to the concept of segments’ sum in geometry, in a similar way that Davis
et al. (1997, p.134) report its pivotal role in algebra. Davis et al. mention that
“The symbol 4+2 occupies a pivotal role, as the process of addition (by a variety of procedures) and as the
concept of sum. Soon the cognitive structure grows to encompass the fact that 4+2, 2+4, 3+3, 2 times 3,
are all essentially the same mental object” (Davis et al., 1997, p.134).
In a previous study I defined the meaning of dynamic segment as follows (Patsiomitou, 2011):
“The ‘dynamic’ segment is a portion of a straight line which does not consist of points. Dynamic points
can be placed independently on the dynamic segment and move free with one degree of freedom on the
path to which they belong. This means that a point placed on a segment that intrinsically is designed with
two degrees of freedom is transformed to a segment object with one degree of freedom” (p. 365).
All geometrical or algebraic objects in the Geometer’s Sketchpad environment operate in “a dependency diagram,
a directed acyclic graph” (Jackiw & Finzer, 1993, p.295): The ‘given’ objects in a construction are the ‘parents’
and they are free to move on the screen, in contradiction to dependent objects which are the ‘children’ of the
objects on which they depend in some fashion, that are constrained. According to Sketchpad Help System:
“The objects you can create in Sketchpad fit into several general categories. Some of the objects are purely
geometric entities—points, lines, rays, segments, circles, arcs, interiors, loci, and some iterations. Other
objects are either numeric or algebraic entities—measurements, parameters, coordinate systems,
calculations, and functions. And finally, some objects in Sketchpad—captions and action buttons—are
primarily used in descriptions, explanations, and presentations”.
One way to analyzing students’ formulations during their interaction with dynamic geometry transformations on
dynamic or dynamic-hybrid objects is to consider those formulations through the Action-Process-Object-Schema
(APOS) theory lenses, a theory developed from Dubinsky and his colleagues (e.g., Dubinsky, 1988, 1991a,b;
Dubinsky & McDonald, 2001), based on the theory of reflective abstraction (Piaget, 1970). Concretely, according
to APOS theory (Cottrill et al., 1996; Dubinsky & McDonald, 2001) when a student constructs mental Actions,
Processes and Objects, then s/he organizes them to mental Schemas to understand a mathematical concept and
solve the problems (APOS theory). According to APOS theory, in order to understand a mathematical concept a
student must manipulate physically or mentally a transformation on mental or physical objects, in other words an
“Action” on objects, as a reaction to stimuli perceived from the external environment, focusing on the way that a
procedure thus could be used as an input to another procedure; actions on objects then can be interiorized to
become a Process, which accordingly can be encapsulated to become Objects and then can be organized to
become Schemas. According to Cottrill et al. (1996):
“An action is any physical or mental transformation of objects to obtain other objects. It occurs as a
reaction to stimuli which the individual perceives as external. It may be a single step response, such as a
physical reflex, or an act of recalling some fact from memory. It may also be a multi-step response, by then
it has the characteristic that at each step, the next step is triggered by what has come before. When the
individual reflects upon an action, he or she may begin to establish conscious control over it. We would
then say that the action is interiorized, and it becomes a process” (Cottrill, et al, 1996, p. 171, in Davis, Tall
and Thomas, 1997, p. 133). [authors italics...]
Making a review on the briefly reported studies it is obvious that many researchers have mentioned the meanings
of Action-Object-Process-Schema, to describe the phenomena observed in the area of Algebra and Calculus. Can
these meanings be implemented in the mathematical area of Euclidean or Dynamic geometry? What is their
impact in the reification process? Hollebrands (2003) investigated the nature of students’ understandings of
geometric transformations in the context of “The Geometer’s Sketchpad” environment and she analyzed students’
conceptions of transformations as functions, using APOS theory. Hollebrands (2007) also addressed the way
students interpret objects created with the use of the dynamic program when they are learning about geometric
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transformations. As Hollebrands argued “the nature of the abstractions that students made as they worked with
technology seemed to be related to their understanding of transformations and the tool” (2007, p. 190).
Generally speaking, when we solve a problem in geometry, we construct a figure in a few steps and in such a way
that a procedure can be used as an input to the next--and almost always sequential--procedure. Students construct
mental actions, as they engage in problem solving, performing transformations on objects either explicitly or
from memory. The student or the teacher can perform an operation mentally and execute it on the computer
screen. This process creates objects which “is based in a reification of mathematical objects and relations that
students can use to act more directly on these objects [...] a new experiential mathematical realism” (Balacheff &
Kaput, 1997, p. 469-470).

As I write in my study “Hybrid-dynamic objects: DGS environments and conceptual transformations.”
(Patsiomitou, 2019b) “The case of the addition of two segments in geometry represented by two separate objects
identified by two letters, one for each edge of each segment (for example segments AB, CD) is more complex,
because it includes both a figural and an algebraic entity. The figure of the segment which represents a concrete
real “thing” is the figural part; the number which is the measure of the segments’ length (or the distance of the
endpoints of the segment) represents the algebraic part. In addition, the students have to represent the addition
of segments with a concrete segment and then represent this action by means of a symbolic representation--
namely, the way these segments are defined by letters (AB, CD etc.). The symbol “AB+CD” possesses a central
role as the process of segment’s addition and as the concept of segments’ sum. The cognitive structure encloses
the same mental objects (e.g. CD+AB= FG+EF if FG=CD and EF=AB). As a result, the construction,
measurement and calculation of segments in a DGS environment differ from the same process in a static
environment. Then, we can define an elementary geometrical procept (Figure 3.19a, b, c).

It is thus clear that the sum of the segments as an object derived from calculations in a DGS environment is an
algebraic, geometric and “dynamic” entity. I shall break down the process of adding two segments in the DGS
environment into three phases:

Phase A. If we create two segments in the Geometer’s Sketchpad and then measure and calculate their
sum, the actions on mathematical entities at one level become mathematical objects in their own right at another
level (Piaget, 1972a, b).
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Figure 3.19a. The addition of two segments in a DGS (Patsiomitou, 2019b, p. 38)

The calculation of segments is a process becoming reified as an object, which includes a few procedures, in
the words of Gray & Tall (1991, 1994) who distinguished between “the specific procedure as an explicit
sequence of steps and the input-output process where different procedures can have the same input-output”.
Selecting the calculation command displays the calculator with which we can sum the segments by selecting the
measurements of each, as illustrated in Figure 8a below.
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Figures 3.19b, c. The concept of sum of two segments in a DGS. (Patsiomitou, 2019b, p. 39)
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To construct objects in a DGS environment, we can use first-order parental objects, second-order child
geometrical objects, and auxiliary objects. I shall try to list in the table below all the actions and symbols
involved in the process of adding the segments, the sequence of actions and objects involved. I shall also report
the theoretical construct and try to anticipate how students will understand and conceive of the process and the
answers they will produce. Generally speaking, if we construct a segment using the tools provided by the DGS
software, this concrete segment is the parent object and the measurement the child object. In the previous
example, points F, G cannot be altered by dragging due to their dependence on their parent objects. Dragging
points A, B affects the position of point F (just as dragging points C, D affects the position of point G). Students
can understand that “if we modify segment AB, segment EF will be modified also”.

In the I have done a description with regard to the objects and the actions. The anticipated answers of
students during the interaction with the process lead to the following result: The transformation of all the objects
mentioned above, leads the students to conceive the unaltered properties of the mixed entity. They can express a
concept-in-action or theorem-in-action, through the reification of mathematical objects and the interiorization of
the process of dynamic movement, counting and dragging the segments: this is a procept-in-action, meaning a
process which leads to a concept-in-action or theorem-in-action.

Actions and symbols involved in the process of adding the segments
(Patsiomitou, 2019b, p. 39)

Actions Objects A An anticipation of a
theoretica student’s answer in
1 view in | interaction with the dynamic
Euclidean diagram
Geometry

Construction  of  the | Inputting  two P1 -The segments can become

segments (a procedure | segments of P2 almost equal if we drag them.

which  produces  the | unequal (or -We can change segment’s
figural part of the | equal) length. orientation on screen.

objects).

Definition of segments | Symbols used to P3 -The distance between the

using letters (for example | define the P4 endpoints of a segment is

AB, CD) objects (an P5 affected if we drag them.
elementary
procept to the
concept of equal
or unequal
segments)

Construction of a line Ex | An auxiliary P6 -We  can  change  the
geometrical P7 orientation of the line and we
object (an can place multiple points on it
elementary which can be dragged in two
procept) directions.

Construction of  two | efirst order P8 -If we drag the endpoints of

sequential segments EF, | parental P9 the segment AB, then segment

FG on the line Ex, by | geometrical P10 EF will also be transformed.

constructing circles (E, | objects (A, B, P11 -If we drag the endpoints of

AB) and (F, CD) with | C, D, AB, CD) the segment CD, then segment

centers E, F and radius | eauxiliary FG will also be transformed.

AB, CD, respectively. geometrical -If we try to drag the point F

objects (line Ex
and the circles)

esecond order
child
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geometrical
objects (EF,
FG, EG)
(Figure 8b)
Measuring the segments | Realizing the P12 -We can measure the lengths
AB, CD, EF, FG, EG. measurements of the segments
are algebraic - If we drag the segment AB,
objects linked to the measurement of the
the  geometric segment AB  will  be
objects transformed as well as the
mentioned measurement of the segment
above. EF.
-The measurements of the
segments AB, EF are
congruent.
Calculating the sum of | A complex P13 -We can calculate the sum of
the segments EF, FG. dynamic object the segments using a
calculator which results to an
accurate calculation.
A symbolic expression of | A mixed entity: P14: -As we modify the parental
the segments’ sum a hybrid object | Betweenn | objects, the segments’ length,
(for example with  numeric, ess measurements, and dependent
EG=EF+FG=AB+CD=10 | algebraic, theorem | calculations are modified, too,
,27 or 11,85) geometric, P15: while the calculated result of
figurative, (Addition | the segments’ addition
symbolic and | theorem) | changes accordingly.
dynamic
characteristics.

The theoretical answers of Euclidean Geometry mentioned in the Table 1 are the following (Coxford &

Usiskin, 1975):

P1: If two distinct points are in a plane, the line determined by these points is a subset of the plane. (p. 20)

P2: Two points determine a line. (p. 21)

P3: To each pair of points there corresponds a unique real number called the distance between the points. (p. 22)

P4: Suppose A and B are points, then: (a) AB>0, (b) AB=0 if and only if A=B and (c) AB is also the distance
between B and A, that is AB=BA. (p. 24)

P5: The segment with endpoints A and B is denoted by AB and is the set whose elements are distinct points A, B
and all points between A and B. (p.26)

P6: A line is an infinite set of points (p. 22)

P7: A line is a set of points and contains at least two distinct points. (p. 18)

P8: A circle is the set of all points in a plane at a fixed distance (the radius) from a fixed point (the center).
(p.180)

P9: Two radiuses of the same circle are congruent segments.

P10: Congruent radiuses determine congruent circles.

Pll: Points E, E, G are collinear since they are all on line Ex. (p.19)

P12: The midpoint of a segment AB is the point M in AB with AM=MB (p. 30)

P13: The length of a segment is the distance between its endpoints. (p.26)

Pl4: (Betweenness theorem). If a point B is between A and C, then AB+BC=AC. (p.26)

P15: (Addition theorem) If B is on AC, then AC=AB+BC (p.375)
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Figure 3.20a, b. The addition of two segments in a DGS, using parameters (Patsiomitou, 2019b, p. 40)
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Figure 3.20c. Visualizing the concept of the sum of two segments in a DGS, using parameters (Patsiomitou,
2019b, p. 40)

Phase B. If we create the segments’ addition, by defining the segments AB, CD using the parameters a, b
(meaning, by setting a corresponding parameter to each segment, the parameter “a” for the segment AB and the
parameter “b” for the segment CD) then we have created concrete invariant objects in a DGS environment. In
order to create the parameters we can use the “create a new parameter” command from the Menu, Graph (Figures
3.20a). According to Sketchpad Help system “Parameters are simple given numeric values. Unlike
measurements and calculations, they do not depend on other objects for their value. A parameter is defined by a
single number and an optional unit”. We can choose to construct a segment for example with length equal to
2cm, or with such a length as we wish. These parametrical segments can be transformed dynamically by
transforming (e.g., by using animation) the parameters with which they have been created, meaning the parental
objects in a continuous/or not process (Figure 3.20b, c).

Firstly, the animation on parameters turns the dynamic diagram to a more detailed and complex representation
than the one we have created using the tools (e.g. segments, lines and circles). Points B, D have only one degree
of freedom and can be dragged only on the path they belong. The figures can become larger or narrower, but it is
not easy to change their orientation (for example, if the circle-path to which they belong becomes hidden). We
can change the value of the parameter or define the domain values between which the parameter takes on values,
meaning that the geometrical object depends on the values given to an algebraic object. The parameter is allowed
to range over whatever domain I choose to define, and the mixed entity has been transformed into a symbolic
parametrical and dynamic one (we can see the “animate parameters” label on screen, which allows parameters to
be altered with this action affecting the figural part of the object). Secondly, the concept of parameters belongs to
algebra. On the other hand, when we create a figure in a static environment, we never use a parameter to create
the figure, just as we never define a segment as a parameter for use in our construction. Moreover, animating the
parameters transforms the synthesis of the diagram into an “infinite” number of snapshots, which the user would
probably not consider manipulating by her/himself. For the segments’ addition I can summarize the following:

In general, a concrete parameter defines the particular member of a function family. As the parameter changes
the transformations of segments, as well as the transformations of the diagram’s synthesis appear on screen.

In the examples mentioned above the segments AB=a, CD=b under the transformation T of the dynamic
parameters will become the corresponding elements T (a), T (b). The dynamic objects created using parameters
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play a pivotal role in fostering/scaffolding understanding. Are these objects dynamic, or have we created “static”
objects in a DGS environment? What is their “static” role in a DGS environment? What are the transformations
the concrete dynamic diagram and the objects created in this representation perform? Moreover, can we make a
“construct” that appears invariant, even if we drag its visible points on screen? Does this diagram have the same
properties? In this case, we have created a “different” hybrid diagram.
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Figure 3.21a. Creating a golden rectangle using a custom tool (Patsiomitou, 2006g, p. 61, in Greek; Patsiomitou,
20190, p. 43)
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Figure 3.21b. Dynamic linking of the tabulated measurements with the plotted points (Patsiomitou, 2019b, p. 43)

Phase C. In the Figures 3.21a, b, I have constructed a golden rectangle using two important procedures
(Patsiomitou, 2006g, p. 61): “creating a custom tool that repeats the ratio 1, 61803 (=number @), and the iteration
process that repeats the whole procedure and the measurements and calculations displayed in the table”. In this
construction, we can view algebraic objects, diagrammatic objects and tabular representations, along with
parametrical objects used operationally and structurally, and dynamic or hybrid objects. In the tabular
representation, we can view the results of measurements and calculations repeated thanks to the iteration process,
which generates final for initial objects on a one-to-one basis. According to Patsiomitou (2005a, 2006a, g, 2007a,
2008d, 2014, 2018a, b): Through the application of the custom tool the possibility is given to the user to acquire
an inductive way of thinking for the finite steps of the construction but the generalisation with regard to the
constructional result can be achieved from the process of iteration which inductively renders the construction
theoretically to infinity. This function of the software also constitutes a certain crucial and essential particularity,
while the construction with a compass and a ruler as formal tools of static geometry has a beginning and an end.
In the software, via the process of iteration we have the potential of the constructions thus becoming more
complex being in theory rendered inductively to infinity. The result of the process of iteration is the construction
of the tables that repeat the process of initial measurements and calculations in dynamic connection with the
shape, thus increasing (or decreasing) the level of the process of iteration while the software adds (or removes)
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the next level of measurements (or even calculations), whereas in the first column of the table the sequence of the
natural numbers is presented. In that way through this operation, the environment of the software promotes the
investigation of the sequences. The iteration process by functioning thus has integrated or embodied the meaning
of sequence while there is a direct connection between the user’s perception and the abstract mathematical
meaning. The process of animation can produce the changes in the tabulated measurements (calculations) that
allow the user to examine the dynamic process. These changes come as result of the fluctuations in the size of an
artefact-fractal which have the possibility of increasing (decreasing) and altering orientation”.

Transformations of
dynamic objects

Action Instrumental genesis

)
\ Dynamic
Representation
bstract P

hamatical obj

T E Concept-in- action

Theorem-in-action

@ Stavroula Patsiomitou

A procept-in-action during instrumental genesis (Patsiomitou, 2019b, p. 44) (modified)

The dynamic linking of the tabulated measurements from the first two columns results in the plotted points
illustrated in . The plotted points are dynamically linked to both the figural object and the tabular
representation, but cannot be moved or dragged, and are left unaffected if we drag point G (a DGS object with
two degrees of freedom), even if the measurements in the tabular representation are affected. The plotted points
are dynamic-hybrid objects. In other words, it is a geometric function which repeats one-to-one transformations
on algebraic, geometric and dynamic objects. The concepts-in-action (and theorems-in-action) which occur
during the procedure are the results of dynamic elementary procepts-in-action. They are intrinsically dynamic
and their impact on students’ understanding of the meaning of sequence is crucial (Patsiomitou, 2005a, in Greek).
For example, as [ mentioned in previous works (e.g., Patsiomitou, 2005a, 2007a, 2019b) “The surprise was made
by a female-student who, while passively watching and not participating in the duration of the process she
comprehended that “as N increases (natural numbers), E (the area) is continuously reduced” a fact which she
expressed verbally and repeated it in writing. From this, we may conclude that she momentarily overcame her
fear of mathematics, after she had a verbal interaction with the remaining members of the team and was led
towards the comprehension of the meaning of limit only by the representations and the reaction towards the
computer software”.

Building on the above, I think there is a continuous process ongoing in students’ mind as they create a concept.
The meaning of ‘procept’ is thus dynamic in a DGS environment; adapting its meaning to a ‘procept-in-action’
( ) for the DGS environment could thus support the appearance of operational invariants (Vergnaud,
1998, 2009) during the problem-solving situation and the students’ actions on a dynamic object or a dynamic
representation/diagram.
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Chapter1V.

4.1. How do Students Learn in a Constructivist Framework?

Students’ cognitive growth is a major aim of mathematics education. Researchers have interpreted it in different
ways, such as that cognitive growth can occur between others, through developmental stages (e.g., Piaget,
1937/1971; van Hiele, 1986), as development of proof schemes (e.g., Balacheff, 1987, 1988, 1991, 1998, 1999,
2008, 2010; Harel & Sowder, 1996, 1998, 2007, 2009; Harel, 2001, 2008) or as dynamical development of
students’ mental representations (e.g., Cifarelli, 1998) when students confront problem-solving situations. Pegg
& Tall (2005) identify two main categories of theories to explain and predict students’ cognitive development, (or
cognitive growth or conceptual deveopment):

e “global theories of long-term growth of the individual, such as the stage theory of Piaget (e.g., Piaget &
Garcia, 1983), or the van Hiele theory (e.g., van Hiele, 1986; Fuys et al., 1984);

e Jocal theories of conceptual growth such as the action-process-object-schema theory of Dubinsky
(Czarnocha et al., 1999; Dubinsky, & McDonald, 2001) or the unistructural multistructural-relational-
extended abstract sequence of SOLO Model (Structure of Observed Learning Outcomes, Biggs & Collis,
1982, 1991; Pegg, 2003)” (p.188).

The difficulties which arise when a student studies geometry begin with the way s/he perceives a shape. The
perceptual competence of a student to ‘see’ a figure’s properties depends on his/her development of cognitive
structures and ability to think abstractly. The development of a student’s cognitive structures makes him/her able
to perform the “hypothetical representation of his/her internalized organization of the concepts in long-term
memory” (McDonald, 1989, p.426). Skemp’s view of the abstraction process is that “a concept is the end product
of [...] an activity by which we become aware of similarities [...] among our experiences” (Skemp, 1986, p.21 in
White & Mitchelmore, 2010, p.206). Moreover, Schwartz, Herschkowitz & Dreyfus (2001) argue that

“[...] Abstraction is not an objective, universal process but depends strongly on context, on the history of the

participants in the activity of abstraction and on artifacts available to the participants. Artifacts are outcomes

of human activity that can be used in further activities. They include material objects and tools, such as
computerized ones, as well as mental ones including language and procedures; in particular, they can be ideas

or other outcomes of previous actions” (p.82).

Stein et al. (2000) proposed a cognitive demand frame, which separates tasks into low-level and high level
depending on the cognitive demands they place on the student. Tchoshanov, Lesser and Salazar (2008) presented
a modified version of this cognitive demand model which includes three levels: (1) facts and procedures; (2)
concepts and connections; and (3) models and generalizations (Tchoshanov, 2013, p. 67).

e At the first level Tchoshanov et al. refer to level descriptors including a student’s competence at
“recalling facts, recognizing basic terminology, stating definitions, naming properties and rules,
conducting measurements, solving routine problems”, etc.

e At the second level, Tchoshanov et al. refer to level descriptors including a student’s competence at
“selecting and wusing appropriate representations, translating between multiple representations,
transforming within the same representation, explaining and justifying solutions to the problems, solving
non-routine problems”, etc.

e At the third level Tchoshanov et al. refer to level descriptors including a student’s competence at
“generalizing patterns, generating mathematical statements, deriving mathematical formulas, proving
statements and theorems”, etc.

A constructivist view of learning considers the student as an active participant and learning as an active process.
Immanuel Kant (1965), John Dewey (e.g., 1938/1988), Jean Piaget (e.g., 1937/1971, 1970), von Glasersfeld (e.g.,
1991, 1995), Vygotsky (e.g., 1934/1962, 1978), Skemp (e.g., 1987) were important philosophers and theorists
who gradually changed the traditional “route by memorization”, the behaviourists’ view of learning mathematics,
to a sociocultural-constructivist view of learning mathematics. From an epistemological point of view,
constructivism emphasizes the construction of meanings in collaboration between the instructor (or /teacher-
action researcher) and the student (e.g., Hayes & Oppenheim, 1997). According to O’Toole and Plummer (2004)
“Taking the view that mathematics is not static but rather humanistic field that is continually growing and
reforming, and that children construct their own knowledge (Hersch, 1997), then teaching can no longer be
a matter of viewing students’ minds as ‘empty vessels’ ready to adopt internalise and reproduce correct
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mathematical knowledge and applications. Rather, we have come to learn that teaching which includes
instructional contexts where students are supported to move from their own intuitive mathematical
understandings to those of conventional mathematics, produces more profound levels of mathematical
understandings (Skemp, 1971)” (p. 3).
Piaget (1937/1971) considered that students’ thinking becomes more sophisticated with biological maturity.
Students build on their own intellectual structures as they grow up. Piaget introduced the development of
student’s thinking in stages, based on the process of equilibration. Von Glasersfeld (1995, p.68) describes
equilibration as the process “when a scheme, instead of producing the expected result, leads to a perturbation,
and perturbation, in turn, to an accommodation that maintains or re-establishes equilibrium”. Consequently,
disequilibration (Piaget, 1937) situations force students to reorganize their cognitive structures, when a
conceptual structure does not act in line with their expectations. The reorganization of the individual’s schemata
involves the subprocesses or the mechanisms of accommodation or assimilation (Piaget, ibid.) which correspond
to modifying the pre-existing schemata and building new schemata in the student’s mind or interpreting the new
information according to pre-existing schemata. Many times students face misconceptions (e.g, Nesher, 1987;
Swedosh, & Clark, 1998) and cognitive conflicts (e.g., Moritz, 1998; Watson & Moritz, 2001). According to
Nesher (1987) “Misconceptions are usually an outgrowth of an already acquired system of concepts and beliefs
wrongly applied to an extended domain. They should not be treated as terrible things to be uprooted since this
may confuse the learner and shake his confidence in his previous knowledge. Instead, the new knowledge should
be connected to the student’s previous conceptual framework and put in the right perspective” (p. 38-39).
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Look Mommy, iAo 6 Then Lily sees

doggies.” s \ an elephant. . .

Cognitive ‘ Equilibration , Cognitive
Disequilibrium Equilibrium

‘But it has udders and\ / Lily propertly

2 gives milk and dogs Aoraiacn o 5 identifies
aren't that large.” dogs and cows.

Change ‘dog scheme”: Dogs are
smaller and don't give milk.

(7]

Add new “cow scheme” Cows
are larger and give milk.

Figure 4.1. The cycle of equilibration (Littlefield-Cook, & Cook, 2005, Chapter 5, p.8)

In the last chapter of his work “The Construction of Reality in the Child” translated by M. Cook, Piaget
(1937/1971) stated that:
“[...] In their initial directions, assimilation and accommodation are obviously opposed to one another,
since assimilation is conservative and tends to subordinate the environment to the organism as it is,
whereas accommodation is the source of changes and bends the organism to the successive constraints of
the environment [...] Assimilation and accommodation are therefore the two poles of an interaction
between the organism and the environment, which is the condition for all biological and intellectual
operation, and such an interaction presupposes from the point of departure an equilibrium between the two
tendencies of opposite poles.”(pp.2-3)
In other words, Piaget supports that students construct new concepts, ‘assimilating’ in a conservative way or
‘accommodating’ in a modifying way their prior knowledge conceptions. In a constructivist approach the
reference to schemes is essential. Littlefield-Cook, & Cook (2005) support that
“For Piaget, the essential building block for cognition is the scheme. A scheme is an organized pattern of
action or thought. It is a broad concept and can refer to organized patterns of physical action (such as an
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infant reaching to grasp an object), or mental action (such as a high school student thinking about how to

solve an algebra problem). As children interact with the environment, individual schemes become

modified, combined, and reorganized to form more complex cognitive structures” (p.6, in Chapter 5).
Let us look at the way students understand negative numbers and construct the scheme of the “sum of two
numbers”. Figure 4.2 may be thought of as a spiral of equilibration, trying to illustrate how pupils understand
and integrate the ways to subtract numbers in several different phases of their learning life, taking into account
the “cycle of equilibration” mentioned in Figure 4.1. In my opinion this process moves like a spiral, starting in
the first years of a child’s life and continually reiterating the process of assimilation and accommodation for
every new concept that is learnt at increasingly abstract levels. The class in the first year of secondary education
when teachers are obliged to introduce negative numbers to students is one of the more “difficult” parts of their
teaching lives. Students understand how to add and subtract positive numbers and that the signs (+ -) are found
between numbers, not in front of them. This is the first point in which “there is an imbalance between the new
experience and the old scheme. Piaget described this imbalance as a state of cognitive disequilibrium. To resolve
the disequilibrium, we accommodate, or adjust, our schemes to provide a better fit for the new experience. If we
are successful, we achieve cognitive equilibrium. Equilibration therefore is the dynamic process of moving
between states of cognitive disequilibrium and equilibrium as we assimilate new experiences and accommodate
schemes” (Littlefield-Cook, & Cook, 2005, p.8, in Chapter 5).

The integration ofthe new
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Figure 4.2. My proposal for the “spiral of equilibration” students understand the subtraction of numbers, taking into account the “cycle
of equilibration” mentioned in Figure 4.1.

A very useful method for helping students understand subtraction is the use of coloured manipulatives (Figure

4.3). The students learn how to represent integers using color counters. The next step is to experiment with
integer subtraction. This is an excellent tool which helps students overcome their cognitive obstacles.
Sommerville (2005) in her Master thesis describes the difference in learning between a calculator and an abacus.
The second is used by Japanese students. According to Sommerville (2005) “[...] in the absence of a real soroban,
Japanese students can perform complex arithmentic by creating a mental image of a soroban (i.e., abacus) and
imagining the changes in the pattern of the beads in order to complete the task” (p.6)
Since tools exert an influence over the technical and social way in which students conduct an activity, they are
considered essential to their cognitive development (see for example, Figure 4.3). According to Vygotsky
(1978), tools can be considered as external signs and they can become tools of semiotic mediation. He developed
the zone of proximal development (ZPD) and defined it as “the distance between the actual development level as
determined by independent problem solving and the level of potential development as determined through
problem solving under adult guidance, or in collaboration with more capable peers” (p.86).
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In Vygotsky’s theory, it is taken for granted that less advanced students can learn from their peers who have more
competence to solve problems and can interpret a meaning between representational systems.
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Figure 4.4. An expanded Zone of Proximal Development (Leo van Lier, 2004, chapter 6, p.158) (adapted)

Vygotsky also argues that “if learning can be influenced by social mediation, then conditions can be created in
schools than can help students learn” (Vygotsky, 1978 p. 86). Vygotsky’s theory in educational research led to
studies of how children learned through collaborative interaction with adults, and it became common to use the
term ““scaffolding” to describe the interaction between adult and child (e.g., Rogoff & Wertsch, 1984). Leo van
Lier (2004) expanded the notion of ZPD as a multidimensional activity space within which learners learn also
when they themselves act as ‘experts’ or ‘teachers’ to each other. According to Leo van Lier (2004)
“In the next quadrant of the diagram (Figure 4.4), I suggest that learners learn also when they themselves
act as ‘experts’ or ‘teachers’ to each other. By explaining or illustrating difficulties or skills to a less
accomplished peer, students clarify and hone their own abilities in the process. Such peer teaching is a
special case of what Swain has called pushed output (Swain, 2000). In creating a joint ZPD, both the
instructing learner and the instructed learner make their ideas clearer, sometimes by trial and error, always
by orienting towards mutual comprehension, and by pushing towards clarity of expression. [...] In all then,
it seems eminently justifiable to see the ZPD in an expanded sense, not just as an unequal encounter
between expert and novice, but also as a multidimensional activity space within which a variety of
proximal processes can emerge.” (p. 157-158)
The language development is a central idea in the theory of Vygotsky, something that is also common to the
theory of van Hiele (Fuys et al., 1984, 1988). Moreover, the mathematical social discourses developed in a small
group mediated by cognitive tools enhance the social interactions in class and support the development of
students’ mathematical communication and understanding of mathematical concepts. As Littlefield-Cook, &
Cook (2005) support “it is the language that carries the concepts and cognitive structures to the child, and these
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concepts become the “psychological tools” that the child will use (Vygotsky, 1962)” (p. 26). This is in
accordance with the view that learning is an ongoing and evolving importance for students’ language
development, as well as their development of mathematical terminology and conceptual understanding.
Moreover, in the words of Sfard (2001) “[...] we can define learning as the process of changing one’s discursive
ways in a certain well-defined manner.” (p. 3) (see also Sfard, Neshler, Streefland, Cobb, & Mason, 1998;
Sinclair & Yurita, 2008; Sinclair, & Crespo, 2006).

Steffe & Tzur (1994) in their article “Interaction and Children’s mathematics” argued that learning “occurs as a
product of interaction [and] the teacher’s interventions is essential in children's learning. But in this, we speak in
terms of perturbations as well as in terms of provocations, because it is the children who must experience the
perturbations” (p. 44). Simon (1995) has developed a view of the teacher’s role that includes both the
psychological and the social aspects. He supports that “a teacher is directed by his conceptual goals for his
students, goals that are constantly being modified” (p.135).

Many teachers try to apply a learning theory’s principles to their instruction (though they do not usually achieve
the expected results). Others try a combination of theories: drill and practice (a behaviourist view of learning),
enquiry and constructivist learning using ICT — in other words, a multiple-theories approach whose results
depend on the teacher’s different types of knowledge [based on Schulman (1987) and Mishra and Koehler’s
(2006) framework of Technology, Pedagogy, and Content Knowledge (TPACK)], the students’ backgrounds,
external resources in the school environment, etc. Critics of the multiple-theories approach to teaching argue that
moving back and forth between theories of learning reduces (or eliminates) the coherence, insights and results
provided by a single theory, even if this interplay is between theories with complementary perspectives, such as
constructivist and sociocultural theories (e.g., Confrey, 1995; Lerman, 1996).

Bransford, Brown & Cocking (2000, p. 22) created an image (Figure 4.5) in which they present “how people
learn, which teachers can choose more purposefully among techniques to accomplish specific goals”. Bransford,
Brown & Cocking argue that “With knowledge of how people learn, teachers can choose more purposefully
among techniques to accomplish specific goals” (p. 22). I think that learning can occur through interaction, which
can be encouraged using a range of techniques. For this, I added arrows, to connect the “lecture based” technique
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Figure 4.5. “Knowledge of how people learn” (Bransford, Brown & Cocking, 2000, p.22) (an adaptation for the current study)
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In my opinion, student learning does not work as a machine into which data, information and the principles of a
learning theory are entered and the expected results come out. On the other hand, is the merging of constructivist
and sociocultural perspectives a theory we can apply to instructional processes and the everyday teaching of
mathematics? Can we construct learning paths to apply the principles of constructivism to student’s learning? As
Fosnot (2003) states
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“Although educators now commonly talk about a “constructivist-based” practice as if there is such a thing,
in reality constructivism is not a theory of teaching; it is a theory about learning. In fact, as we shift our
teaching towards trying to support cognitive construction, the field of education has been left without well-
articulated theories of teaching. [...] Major questions loom around what should be taught, how we should
teach, and how best to educate teachers for this paradigmatic shift. The problem is that all of these
pedagogical strategies can be used without the desired learning resulting. This is because constructivism is
a theory of learning, not a theory of teaching, and many educators who attempt to use such pedagogical
strategies confuse discovery learning and “hands-on” approaches with constructivism”.
Bruner (1966) developed an instructional theory. Bruner emphasized the teacher’s proper use of language when
they introduce a meaning to children. Discovery learning was also advocated by Bruner (1961, 1966). He pointed
out that discovery learning “increases the interest of students, creates exciting classroom atmosphere, encourages
and increases participation, provokes enthusiasm and inquiry, and helps students learn new content” (Bayram,
2004, p.40). Within the theory developed by Bruner (1966) cognitive conflict “occurs when there is a mismatch
between information encoded in two of the representational systems, between [...] what one sees and how one
says it [...]” (Bruner, Olver, & Greenfield, 1966, p. 11). According to El Rouadi & Al Husni (2014, p. 130)
“Bruner focused on the spiral curriculum which can be explained as follows: learners acquire the basic ideas
initially by using their intuition; and after words, the learner builds on them by revisiting these basic ideas as
frequent as required until the meaningful understanding is fully achieved”.

Figure 4.6.
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Figure 4.6 may be thought/ considered as a spiral curriculum for the learning of numbers, taking into account the
aforementioned notions of Piaget and Bruner; how the learning of numbers occurs during the school years from
primary to secondary and tertiary education.

Bransford, Brown & Cocking (2000) support that “constructivists assume that all knowledge is constructed from
previous knowledge, irrespective of how one is taught (e.g., Cobb, 1994)—even listening to a lecture involves
active attempts to construct new knowledge” (p. 11). They point out that “Like ‘Fish is Fish’ everything the
children hear [is] incorporated into [their] pre-existing view”. ‘Fish is Fish’ (Lionni, 1970, cited in Bransford et
al., 2000) is a tale in which a fish tries to understand how people and cows appear/exist in the external world
from the descriptions of a frog that has gone outside to view everything.

Image: The Eric Carle Museum (Webpdve [24])

“The book shows pictures of the fish’s representations of each of these descriptions: each is a fish-like
form that is slightly adapted to accommodate the frog’s descriptions. [...] This tale illustrates both the
creative opportunities and dangers inherent in the fact that people construct new knowledge based on their
current knowledge.” (Bransford et al., 2000, p. 11).
In a constructivist frame, cognitive conflict is a basic component in the learning process (Karmiloff-Smith &
Inhelder, 1974) and very important for the development of students’ geometrical thinking. If the student
overcomes this contradiction s/he is able to mental growth. Van Hiele also developed a theoretical model for
thought development that can be applied to students’ instruction. I shall present their model in the next section.
Experiential Learning or learning through experience is a theory developed by David A. Kolb (1984). According
to Kolb & Kolb (2013) “The theory, described in detail in Experiential Learning: Experience as the Source of
Learning and Development (Kolb, 1984), is built on six propositions that are shared by these scholars:
1. Learning is best conceived as a process, not in terms of outcomes.[...]
2. All learning is re-learning./...]
3. Learning requires the resolution of conflicts between dialectically opposed modes of adaptation to the
world.[...]
4. Learning is a holistic process of adaptation to the world. [...]
5. Learning results from synergetic transactions between the person and the environment. [...]
6. Learning is the process of creating knowledge. (p.6-7)
According to Kolb & Kolb (2013)
“The ELT model portrays two dialectically related modes of grasping experience—Concrete Experience
(CE) and Abstract Conceptualization (AC)—and two dialectically related modes of transforming
experience—Reflective Observation (RO) and Active Experimentation (AE). Learning arises from the
resolution of creative tension among these four learning modes. This process is portrayed as an idealized
learning cycle or spiral where the learner “touches all the bases”—experiencing (CE), reflecting (RO),
thinking (AC), and acting (AE)—in a recursive process that is sensitive to the learning situation and what
is being learned. Immediate or concrete experiences are the basis for observations and reflections. These
reflections are assimilated and distilled into abstract concepts from which new implications for action can
be drawn” (p. 7-8) (Figure 4.7a).
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Figures 4.7h, c. The spiraling learning process applied by the New Zealand Ministry of Education (2004) (Website [25])

In the Figures 4.7b, ¢, Kolb & Kolb (2013) depict an amazing idea in a spiral that illustrates the spiraling
learning process. As they state “The New Zeland Ministry of Education (2004) has used this spiraling learning
process as the framework for the design of middle school curricula. Figures [4.7b, c] describe how teachers use
the learning spiral to promote higher level learning and to transfer knowledge to other contexts” (Kolb & Kolb,
2013, p.37). The spiraling learning "begins with activity, moves through reflection, then to generalizing and
abstracting and finally to transfer" (Henton, 1996, page 39, cited in website [25]).

According to The New Zeland Ministry of Education (2004) (website [25]):

The experiential learning cycle process encourages learners to think more deeply, develap critical-thinking skills, and transfer
their learning into action through successive phases of the cycle. The learning cycle may develop into a spiral. The phases are
revisited, and students’ conceptual understandings and strategies for change are developed further each time. They discover
more about both the practical limits and the wider applications of their new knowledge as they begin to take what they learned in
one situation and use it in another, demonstrating what they have learned.

This approach has the following advantages:

* Students develop their critical-thinking skills as they move through and repeat the phases (rather than being expected to
have and use these skills at an advanced level in the first few activities).

» It allows teachers time to develop the generalising and abstracting phase, and the transfer phase, as well as encouraging
students to reflect on what they have done.

+ Building on experience in this way can lead students to a greater understanding of the socio-ecological and health promotion
concepts. Both teachers and students ask increasingly sophisticated questions, and their understanding becomes deeper as
they gain expertise.

Through this cycle, then, teachers can encourage their students to develop their critical-thinking skills (for example, analysing,
synthesising, and evaluating). When they repeat the cycle of experiential learning, students can increasingly engage in higher

level thinking and take action based on such thinking.
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Summarizing (Patsiomitou, 2014, p. 4-5): Cognitive constructivism is connected with the work of Piaget’s
(1937/1971) and his views as ‘constructivist’. According to Piaget (1937/1971), students’ cognitive development
depends on their biological maturity. That students’ cognitive development depends on the teaching process was
argued by Dina van Hiele-Geldof and Pierre van Hiele in their dissertations in 1957 (Fuys, Geddes & Tischler,
1988). Van Hiele theory has its roots in constructivist theories. Bruner’s (1961, 1966) proposal of discovery
learning [as ‘constructionist”] is based on prior knowledge and the understanding of a concept, which [through
discovery] grows and deepens. The sociocultural approach has its roots in Vygotsky (1987) who focuses on the
acquisition of mathematical understanding as a product of social interactions. Von Glasersfeld (1995) a radical
constructivist is differentiated from the work of Piaget as he argues that ‘“knowledge [does not represent an
independent world, instead] represents something that [...] we can do in our experiental world” (p.6). Building on
the concepts mentioned above, the concept of social constructivism is a complex process, while being interactive,
constructivist and sociocultural (e.g., Yackel, Cobb, Wood, Wheatley & Merkel 1990; Cobb, Yackel & Wood,
1989, 1992; Yackel, Rasmussen & King 2001; Yackel & Rasmussen 2002; Jaworski, 2003). According to
sociocultural and interactive approaches, learning is a part of the culture (Steffe & Gale, 1995) in which the
students construct knowledge through their participation in social practices (e.g social class environment) (Cobb
& Bauersfeld, 1995, p.4). “A social-constructivist perspective sees discussion, negotiation and argumentation in
inquiry and investigation practices to underpin knowledge growth in mathematics, in teaching mathematics and
in mathematics teacher education” (e.g., Cobb & Bowers, 1999; Lampert, 1998; Wood, 1999 cited in Jaworski,
2003, p. 17).

Besides, learning is an individual constructive process while knowledge is actively constructed by the student; it
depends on the individual’s personal work and negotiation of mathematical ideas (e.g., Jaworski, 2003). From the
perspective of constructivist theories the process of mathematical knowledge and understanding arises as students
try to solve math problems during the classroom (Cobb, Yackel, & Wood, 1992; Simon & Shifter, 1991) and is
instigated when students confront problematic situations. Knowing therefore is not taken passively by students
but in an active way. Learning thus is characterized in Bauersfeld’s interactionism view “by the subjective
reconstruction of societal means and models through negotiation of meaning in social intervention” (Bauersfeld,
1992, p.39; Bauersfeld, 1995). Vygotsky (1987) argues that "the child begins to perceive the world not only
through his eyes [visually] but also through speech” (p. 32). According to Vygotsky (1987), learning is a complex
interplay between scientific and spontaneous use of language. For this, learning is an internalization of social
relations and understanding is a result of common negotiation of concepts created by students while interacting
with other students in the class (or group) during the mathematical discussions developed (Bartolini Bussi, 1996).
“Language is important for cognitive development and learning; without it, an individual lacks [an] efficient
system for storing certain types of information that are needed for thinking, reasoning, and concept development”
(Westwood, 2004, p.141).

Stfard also defines “learning as the process of changing one’s discursive ways in a certain well-defined manner”
(Sfard, 2001, p.3). According to Sfard (2001) “thinking is a special case of the activity of communicating” [...]
“A person who thinks can be seen as communicating with himself/herself, [...] whether the thinking is in words,
in images or other form of symbols, [..] as our thinking is [an interactive] dialogical endeavour [through which]
we argue...” (p.3); with his/her participation the student in a mathematical discussion s/he “learns to think
mathematically” (Sfard, ibid., p. 4). Under this approach, the development of thought occurs through dialogue
that develops the subject within himself/herself internally (intrapersonally) or in a group in which s/he
participates. Moreover, learning is expanding the capacity for dialectical skills and solving problems that could
not previously be solved. Furthermore “putting communication in the heart of mathematics education is likely to
change not only the way we teach but also the way we think about learning and about what is being learned”
(Sfard, 2001, p.1). Consequently, learning is first and foremost the modification / transformation of the ways we
think and how we exchange this thought. Moreover, learning is the capacity of dialectical skills and of problem-
solving that could not be solved before.

Goos and her colleagues carried out a series of studies --based on sociocultural perspective-- to investigate the
teacher’s role, the students’ discussion in small groups and the use of technology as a tool that mediates teaching
and learning interactions (e.g. Goos, 2004, Goos et al, 2002, 2003). If we take the role of teacher seriously as
concerns the realisation and planning of activities then, every activity should be based on geometry exactly as
Goldenberg (1999) purports it to be —a fundamental principle. Tools like DGS present geometric structures in an
environment that emphasizes the continuous nature of Euclidean space, and thus serve as an excellent bridge
between geometry and [the other field of mathematics, as well as] analysis. This is very important for the
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teaching practice because the construction of the meaning can not only be depended or is located in the tool per
se, nor uniquely pinpointed in the interaction of student and tool, but it lies in the schemes of use (e.g., Trouche,
2004) of the tool itself.

4.2. The van Hiele Model

4.2.1. Introduction to the Problem
In past decades researchers concluded that high school students fail at Geometry, as it is presented in class
through instruction (e.g., Hoffer, 1981; Usiskin, 1982; Van Hiele, 1986; Burger & Shaughnessy, 1986; Crowley,
1987; Fuys, Geddes & Tischler, 1988; Gutierrez, & Jaime, 1987, 1998; Gutierrez, Jaime & Fortuny, 1991;
Mason, 1997; Patsiomitou, 2008a, b, 2011a, b, 2012a, b, 2013a, 2018b). They found that students had difficulty
developing and structuring the content incorporated in the Geometry Curriculum, as presented in class through
instruction, due to an inability to recall linguistic symbols and symbolic representations already known to them,
to release their thinking from a concrete framework (White & Mitchelmore, 2010, p. 206), and to develop the
requisite deductive reasoning (Peirce, 1998/1903) and abstract processes (Skemp, 1986; White & Mitchelmore,
2010).
Pierre van Hiele and his wife Dina van Hiele—Geldof developed a theoretical model of thought development in
geometry. The van Hieles distinguished five different levels of thought and how the students progress through
levels, during the instruction. Dina van Hiele-Geldof (1957/1984) in her didactic experiments investigated “the
improvement of learning performance by a change in the learning method’ (p.16). She investigated whether it
was possible to use instruction as a way of presenting material to participated students, so that the holistic visual
thinking of a child can be transformed into concrete abstract thinking in a continuous process, something that is
prerequisite for the development of deductive reasoning in geometry.
“After observing secondary school' students having great difficulty learning geometry in their classes,
Dutch educators Pierre van Hiele and his wife, Dina van Hiele-Geldof developed a theoretical model
involving five levels of thought development in geometry. Their work, which focuses' on the role of
instruction in teaching geometry and the role of instruction in helping students move from one level to the
next, was first reported in companion dissertations at the University of Utrecht in 1957.” (Fuys et al.,
1984, p.6).
Burger & Shaughnessy (1986, p.31) report the descriptions of the five levels that have been identified by Dina
van Hiele (1957), as modified by Hoffer (1981):

e “Level 0O (visualization): the student reasons about basic geometric concepts, such as simple shapes,
primarily by means of visual considerations of the concept as a whole without explicit regard to
properties of its components.

o Level 1 (analysis): the student reasons about geometric concepts by means of informal analysis of
component parts and attributes. Necessary properties of the concept are established.

e Level 2 (abstraction): the student logically orders the properties of concepts, forms abstract definitions
and can distinguish between the necessity and sufficiency of a set of properties in determining a concept.

e Level 3 (deduction): the student reasons formally within the context of a mathematical system, complete
with undefined terms, axioms, an underlying logical system, definitions and theorems.

e Level 4 (rigor): the student can compare systems based on different axioms and can study various
geometries in the absence of concrete models™.

A large amount of scholars have been investigated the implications of the theory for the learning of geometry as
well as the validation of van Hiele model (e.g., Usiskin, 1982; Mayberry, 1983; Senk, 1985, 1989; Burger &
Shaughnessy, 1986; Fuys, Geddes, & Tischler, 1988; Gutierrez, Jaime, & Fortuny, 1991; Clements & Battista,
1992; Patsiomitou, 2008a, b, 2012a,b, 2011a, b, 2013a, b, 2018b). Research has been conducted, which has set
out:

e to check the validity of the van Hiele theory and its hypothesis; also to show that the van Hiele level 5
does not appear among high school students [or to show that the incidence of van Hiele level 5 is (close
to) zero among high school students] (e.g., Wirszup, 1976; Hoffer, 1981; Mayberry, 1983; Usiskin, 1982;
Burger & Shaughnessy, 1986);

e to identify the key features of every van Hiele level during the process of recognizing and defining a
figure, reporting its basic properties and constructing proof (e.g., Hoffer, 1981; Burger & Shaughnessy,
1986; Gutierrez, Jaime, & Fortuny, 1991);
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e to design instruction based on the van Hiele model, in order to help students become more effective and
acquire competence in the proving process (e.g., Fuys, Geddes, & Tischler, 1988);

e to examine if the model can be of use in describing students’ thinking during the problem-solving process
and their understanding of geometrical or mathematical meanings (e.g., Burger & Shaughnessy, 1986;
Clements & Battista, 1992; Fuys, Geddes & Tischler, 1988);

e to examine if the van Hiele model can serve as an instrument for predicting the competence of students at
geometrical proof (e.g., Usiskin, 1982; Senk, 1989; Usiskin & Senk, 1990).

Many researchers agree that the main reason why students fail at geometry is that they are the recipients of
instruction that is at a higher level than they can understand (e.g., Hoffer, 1981; Usiskin, 1982; Burger &
Shaughnessy, 1986; Van Hiele, 1986; Crowley, 1987; Fuys, Geddes & Tischler, 1988; Mason, 1997). However,
the organization of the instruction, its content and supplementary ‘manipulatable’ materials [e.g. Dienes cubes
(Dienes, 1960), [digital] building blocks (Clements & Sarama, 2002), DGS material as custom tools
(Patsiomitou, 2006g, 2012a, 2018b)] have a positive effect on students’ cognitive development (e.g., (van Hiele,
1986; Fuys, Geddes & Tischler, 1984; Crowley, 1987; Gutierrez, Jaime & Fortuny, 1991; Clements & Battista,
1992; Patsiomitou, 2012a).

Clements & Battista (1992) argue that the constructivist approach forms the basis of the theory underpinning the
use of such a digital environment in the teaching and learning of geometry. Researchers also consider van Hiele’s
theory to comprise one of the best frameworks within which to study, teach and learn geometrical processes
(Atebe, 2008, p.3). Moreover, van Hiele’s theory provides a framework for validating the design of instructional
sequences in school geometry, as was recognized in the NCTM's Curriculum and Evaluation Standards for
School Mathematics (Jaime & Gutierrez, 1995, p. 592). Many teachers, educators and researchers have developed
and applied activities in DGS software environments, in order to incorporate new technologies into the teaching
of geometry in class, just as Cabri (Laborde, J, M., Baulac, Y., & Bellemain, F., 1988), or The Geometer’s
Sketchpad (Jackiw, 1991) (e.g., Holzl, 1996, 2001; Laborde, 1998; Hoyles & Healy, 1999; Clement & Battista,
1992; De Villiers 1998; Yerushalmy & Chasan 1993; Oldknow, 1995, 2003; Sanchez & Sacristan, 2003;
Hollebrands, 2003, 2004, 2006, 2007; Christou, Mousoulides, Pittalis and Pitta, 2004a,b, 2005; Patsiomitou,
2008a, b, 2012a, b).

The five levels of thinking reflect on students’ progress and increasing development in the way in which they
are able to reason about geometrical objects and their relationships, and focus “on the role of instruction in
teaching geometry and the role of instruction in helping students move from one level to the next” (Fuys et al,
1984, p.6). Freudenthal (1973) argues that

“good geometry instruction can mean much — learning to organize a subject matter and learning what is
organizing, learning to conceptualize and what is conceptualizing, learning to define and what is a
definition. It means leading pupils to understand why some organization, some concept, some definition is
better than another. Traditional instruction is different... All concepts, definitions and deductions are
preconceived by the teacher “(Freudenthal, 1973, p.418).

Dina van Hiele-Geldof (Fuys et al., 1984) also stressed the necessity to arrive to a totally different approach at
geometry instruction whereby the students “more adequately experience the build —up of theory” (p.17). The
students in the gaps between levels are presented with disequilibration situations that force them to re-organize
their schemes and cognitive structures. The notion of cognitive equilibration is borrowed from Piaget
(1937/1954), who used it to refer to an individual re-organizing his/her schemata when his/her experience does
not fit within a conceptual structure or does not act in line with his/her expectations. Piaget supports that, to
equilibrate, the individual has to modify his/her conceptual structures or schemes in order to better organize
his/her experiences. Pierre van Hiele finally, characterized his model in terms of three rather than five levels of
thought: visual (level 1), descriptive (level 2) and theoretical (level 3) (van Hiele, 1986 cited in Teppo, 1991, p.
210).

o Visual (level 1): Students recognize shapes globally. ("[...] There is no why, one just sees it" (p. 83, cited
in Teppo, 1991, p. 210).

e Descriptive (level 2): Students distinguish shapes on the basis of their properties. (Teppo, 1991, p. 211)

e Theoretical (level 3): Students are able to devise a formal geometric proof and to understand the process
employed (p. 86, cited in Teppo, 1991, p. 211):

The language of the theoretical level has a much more abstract character than that of the descriptive level
because it is engaged with causal, logical, and other relations of a structure, which at the second level is not
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visual. Reasoning about logical relations between theorems in geometry takes place with the language of the
third level” (van Hiele, 1986, cited in Teppo, 1991, p.210).

Many researchers have argued that sequencing instruction that uses consequential activities has positive
effects on students’ success (e.g., Burger & Shaughnessy, 1986; Battista, 1998; Patsiomitou, 2012a). Battista
(1998) developed a sequence of activities with the Shape Maker microworld aiming to encourage students to pass
through the first three van Hiele levels. Burger & Shaughnessy (1986) claim that if initial activities are not
interesting or are too easy, they might not attract or motivate students to focus on the topic and might not bring
with it a sense of success. Fuys et al. (1988), Pierre van Hiele (1959/1984) and others report that progress from
one level to the next involves five phases: information, guided orientation, explicitation, free orientation, and
integration (Fuys et al, 1988, p. 7).

4.2.2.

“Information is the phase through which the student is informed about the objects of investigation,
“examining examples and counter-examples”.

Guided orientation is the phase through which the student is guided to transform the orientation of
his/her thinking “doing tasks that involve different relations of the network that is to be formed (e.g.,
folding, measuring, looking for symmetry)”

Explicitation is the phase through which the student tries to give explanations using his own language.
“S/he becomes conscious of the relations, tries to express them in words, and technical language which
accompanies the subject matter (e.g., expresses ideas about properties of figures”

Free orientation is the phase through which the student releases his thought “by doing more complex
tasks, to find his/her own way in the network of relations (e.g., knowing properties of one kind of shape,
investigates these properties for a new shape, such as kites)”.

Integration is the phase through which the student integrates his knowledge. “S/he summarizes all that
he/she has learned about the subject, then reflects on his/her actions and obtains an overview of the newly
formed network of relations now available (e.g., properties of a figure are summarized”.

The Characteristics/Indicators of the van Hiele levels

Table 4.1 Burger & Shaugnessy’s (1986) van Hiele levels’ indicators

Burger & Shaughnessy (1986) in their study provided fhe following van Hiele level indicators and descriptions as response to clinical mnterview tasks concerning triangles
and quadrilaterals (p.43-45):

Level 0: Level 1
1. Use of imprecise properties (qualities) to compare drawing and to identify. 1. Comparing shapes explicitly by means of properties of their components.
characterize, and sort shapes. 2. Prohibiting class inclusions among general types of shapes, such as

References to visual protonypes to characterize shapes.

Inclusion of irrelevant attributes when identifying and describing shapes, such
as orientation of the figure on the page.

Inability to conceive of an infinite variety of types of shapes.

Inconsistent sorting: that is, sorting by properties not shared by the sorted
shapes.

Inability to use properties as necessary conditions to determine a shape [...]

quadrilaterals.

3. Sorting by single attributes, such as properties of sides. while neglecting
angles, symmetry. and so forth.

4. Application of a litany of necessary properties instead of determining
sufficient properties when identifying shapes. explaining identifications,
and deciding on a mystery shape.

5. Descriptions ot types of shapes by explicit use of their properties, rather
than by type names, even if known. [...]

6. Explicit rejection of textbook definitions of shapes in favour of personal
characterizations.

7. Treating geometry as physics when testing the validity of a proposition

[.]
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=

Level 2

Formation of complete definitions of types of shapes.

Ability to modify definitions and immediately accept and use definitions of
NEW concepts.

Explicit references to definitions.

Ability to accept equivalent forms of definitions.

Ability to sot shapes according to a variete of mathematical precise attributes.
Acceptance of logical partial ordering among types of shapes. including class
inclusions.

Explicit use of “if-then” statements.

Ability to form correct informal deductive arguments. implicitly using such
logical forms as the chain rule (if o implies q and q implies r. then p implies r)
and the law of detachment (modus ponens).

Confusion between the roles of axiom and theorem.

Level 3

1. Clarification of ambiguous questions and rephrasing of problem tasks
into precise language.

2. Frequent conjecturing and attempts to verify conjectures deductively.

3. Reliance on proof at the final authority in deciding the truth of a
mathematical proposition.

4. Understanding of the roles of the components in a mathematical
discourse. such as axioms. definitions, theorems, proof.

5. Implicit acceptance of the postulates of Euclidean geometry.
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Table 4.2. Mason’s (1998) van Hiele levels’ indicators

Mason (1998) also describes the levels of geometry understanding as follows (p.4):

Level 1 (Visualization): Level 2 (Analysis):
1. Students recognize figures by appearance alone. often by comparing them to a 1. Students sce figures as collections of properties.
known prototype. 2. They can recognize and name properties of geometric figures, but they
2. The properties of a figure are not perceived. do not see relationships between these properties.
3. Students make decisions based on perception. not reasoning. 3. When describing an object, a student operating at this level might list all

the properties the student knows, but not discern which properties are
necessary and which are sufficient to describe the abject.

Level 3 (Abstraction) Level 4 (Deduction):
1. Students perceive relationships between properties and between figures. 1. Students can construct proofs, understand the role of axioms and
2. Students can create meaningful definitions and give informal arguments to definitions, and know the meaning of necessary and sufficient
justify their reasoning. conditions.
3. Logical implications and class inclusions, such as squares being a type of 2. Students should be able to construct proofs such as those typically found
rectangle. are understood. in a high school geometry class.
4. The role and significance of formal deduction. however. is not understood. Level 5 (Rigor): Students at this level understand the formal aspects of

deduction. such as establishing and comparing mathematical systems. Students
at this level can understand the use of indirect proof and proof by contrapositive.
and can understand non-Euclidean systems [...].

Many researchers elaborated on van Hiele levels and described the characteristics of every level (e.g., Burger &
Shaugnessy, 1986; Pierre van Hiele, 1986; Crowley, 1987; Mason, 1998; Battista, 2007; 2008, 2011;
Patsiomitou, 2012a). They applied the van Hiele model to their investigations, determining the levels of thought
and their characteristics and modifying the prototype version introduced by Van Hieles. Fuys et al. (1988)
consider language to be a crucial factor in moving students through the hierarchy of van Hiele levels. They
conclude that each van Hiele level defines its own language (symbols) with their own network of relations. Only
when students have realized the interrelations and connections between the structures can they progress up the
levels. Mason (1998) mentions also Clements and Battista (1992) who proposed the Level 0 (pre-recognition)
(p-5). According to them:

“Students at this level notice only a subset of the visual characteristics of a shape, resulting in an inability

to distinguish between figures. For example, they may distinguish between triangles and quadrilaterals,

but may not be able to distinguish between a rhombus and a parallelogram” (cited in Mason, 1998, p.5).
According to Battista (2011) “Some studies indicate that people exhibit behaviors indicative of different van
Hiele levels on different subtopics of geometry, or even on different kinds of tasks (Clements & Battista, 2001)”.
Battista (2007) “has elaborated the original van Hiele levels to carefully trace students’ progress in moving from
informal intuitive conceptualizations of 2D geometric shapes to the formal property-based conceptual system
used by mathematicians” (p.851). This is a “totally different approach to assessing van Hiele levels” (Battista,
2011, p. 523). Battista’s (2007) first three levels which are the most usual to high school students are described
below.

TABLE 4.3. Battista’s (2007) first three van Hiele levels’ indicators

Level 1 (Visual-Holistic Reasoning): “Students 1dentity, describe, and reason about shapes and other geometric configurations according to their appearance as
visual wholes. They may refer to visual prototypes, [...].Orientation on figures may strongly affect Level 1 students’ shape identifications,[...]" (p.851).

Level 2 (Analytic-Componential 2.1. Visual-informal componential reasoning: Students describe parts and properties of shapes informally and
Reasoning): “Students [acquire through imprecisely [and] students’ informal language ranges greatly in precision and coherence [...].

instruction] a) an increasing ability and
inclination to account for the spatial structure
of shapes by analyzing their parts and how 2.2. Informal and insufficient-formal componential reasoning: Students begin to acquire formal
their parts are related and b) an increasing conceptualizations [but] their reasoning 1s still visvally based, and most of their descriptions and
ability to understand and apply formal conceptualizations still seem to occur extemporancously as they are inspecting shapes[...].

geometric concepts in analyzing relationships
between parts of shapes”. (pp.851-852).

Battista (2007) identified three sublevels 2.3. Sufficient formal property-based reasoning.  Students explicitly and exclusively use formal geometric
between levels 2 and 3: concepts and language to describe and conceptualize shapes [but] their definitions are not minimal [...]

Level 3 (Relational —Inferentinl Property- 3.1. Empirical relations. Students use empirical evidence to conclude that if a shape has one property, it has
Based Reasoning): Students  explicitly another [...]

interrelate  and make inferences about
geometric  properties of shapes.[...] The
verbally-stated properties themselves are
interiorized so that they can be meaningfully
decomposed, analyzed. and applied to 3.3. Logical inference. Students make logical inferences about properties: they mentally operate on property
various shapes”. This level incorporates statements [...]

“empirical relations, componential analysis,
logical  inference,  hierarchical  shape,
classification based on logical inference” 3.4. Hierarchical shape, classification based on logical inference. Students use logical inference to reorganize
(pp-852-853). Battista (2007) identified four their classification of shapes into a logical hierarchy. [...]

sublevels between levels 3 and 4:

3.2. Componential analysis. By analyzing how types of shapes can be built one-component-at-a-time, students
conclude that when one property occurs, another property must occur,[...]

[118]



Battista expands significantly on the van Hiele levels in two places: in the development of thinking based on
properties, and in the development of inferences about those properties.
In my opinion, van Hiele’s description of level 2 corresponds to Battista’s description of level 2.1; Battista’s
description of level 2.3 relates to Mason’s level 3 and both relate to the development of students’ ability to define
geometric objects. Moreover, there is no stability in the process, but this depends on the geometry activities the
student participates in, and on the teacher’s instructions that lead to the evolution of each individual student’s
level. According to Fuys et al. (1988, p.8) “the major characteristics of the van Hiele "levels" are the following:

“(a) The levels are sequential.

(b) Each level has its own language, set of symbols, and network of relations.

(c) What is implicit at one level becomes explicit at the next level.

(d) Material taught to students above their level is subject to reduction of level.

(e) Progress from one level to the next is more dependent on instructional experience than on age or

maturation.

f) One goes through various "phases" in proceeding from one level to the next”.

4.2.3. The Symbol and Signal Character in the van Hiele Model
The meanings of symbol and signal are very important in the van Hiele model. Skemp (1987) defines a symbol as
“a sound, or something visible, mentally connected to an idea” (p. 47). Piaget (1952/1977) in his work “The
origins of intelligence in children” (translated by Cook, M.) also, states:
“The "symbol" and the "sign" are the signifiers of abstract meanings, such as those which involve
representation. A "symbol” is an image evoked mentally or a material object intentionally chosen to
designate a class of actions or objects. So it is the mental image of a tree that symbolizes in the mind trees
in general, a particular tree which the individual remembers, or a certain action pertaining to trees, etc.
Hence the symbol presupposes representation [...]. Symbol and sign are only the two poles, individual and
social, of the same elaboration of meanings” (p.191).
Dina van Hiele also supports that (Fuys et al, 1984, p.215)
“The word 'symbol' should here be interpreted as meaning ‘a mental substitute for a complex of
undifferentiated relations that is subsequently elaborated in the pupil's mind.’ The rhomb, for instance, is a
symbol of the following characteristics: it has four equal sides, equal opposite angles, diagonals that bisect
the angles and are perpendicular to each other”.
What is important is the students’ competence when it occurs to identifying a figure’s properties (symbol
character) and to gradually identifying a concrete figure from a set of properties (signal character): for example,
when a student observes an equilateral triangle in his textbook, being able to identify the figure’s congruent sides
and angles. The equal sides and angles are the main characteristic of a triangle; this is a symbol for the equilateral
triangle. Then s/he can identify additional properties (for example, “every angle of an equilateral triangle is equal
to 60 degrees”). All these properties are interrelated and can become a concept for the concrete mathematical
object (i.e. the equilateral triangle mentioned above). Subsequently, the student can use a combination of
properties to construct the equilateral triangle. In other words, the student now possesses the concept of the
triangle: an abstract idea conceived in her/his mind. This is a signal for the concrete figural concept.
Generally, in my opinion, a symbol is a mental image of a class of objects with concrete characteristics and
properties. A sign is the social aspect of the symbol which was previously created in an individual’s mind.
Van Hieles described periods between levels. In these periods the students have characteristics of both levels. For
example, during the first period (between the first and the second levels) the students’ perceptual competence in
relation to a geometrical object gradually transforms from a global perception of the object to the perception of an
object with concrete characteristics and properties. During the second period students focus less on the symbol,
and the figure is replaced by a list of properties which identify the symbol. The figure now gets the signal
character. The next period connects the second and third level. This is the period in which students identify the
common properties of a class of figures and categorize the figures as inclusions of other figures in accordance
with their additional properties. Pierre van Hiele writes (1986, p. 168)
“when after some time, the concepts are sufficiently clear, pupils can begin to describe them. With this the
properties possessed by the geometric figures that have been dealt with are successively mentioned and so
become explicit. The figure becomes the representative of all these properties: It gets what we call the
“symbol character”. In this stage the comprehension of the figure means the knowledge of all these
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properties as a unity.[...]. When the symbol character of many geometric figures have become sufficiently
clear to the pupils, the possibility is born that they also get a signal character”. This means that the
symbols can be anticipated.[...]. When this orientation has been sufficiently developed, when the figures
sufficiently act as signals, then, for the fisrt time geometry can be practiced as a logical topic”

Building on van Hiele’s ideas Choi-Koh (1999) supports that:

Many symbols begin with an image onto which observed properties and relationships are temporarily
projected. After those properties and relationships are explained by analysis or discussion, however, the
symbol loses the characteristic of an image acquires verbal content and thus becomes more useful for
operations of thought. That is symbols have properties that a geometric figure has and symbols are
compared and recognized by those properties. [...]When symbols influence orientation of thought they act
as signals.[...] If the symbol and signal properties of a figure are sufficiently developed, then the implicit
meaning of the figure is understood. After students have learned that it is possible to give relationships an
imlicitatory character, they deduce that it is possible for that character to sometimes exist in only one
direction” (p.302).

Cannizzaro & Menghini (2003, p.2) have also clarified the meanings of symbol and signal, supporting that

“Van Hiele's symbol (1958, 1974) represents a first level of perception at which pupils condense the
properties of a known geometrical figure.

Van Hiele's signal represents a second level of description or analysis at which perceptions are translated
into descriptions, though without specific linguistic properties—of which the significant signal is most
significant in the description.

At the third level--definition--the student starts to observe relations logically, assigning significance to
implication, and therefore definition, in terms of geometrical relations. This, according to van Hiele, is
the essence of geometry”.

( Ievel 3 ) Students expliatly interrelaie mud muake inferences about
geometric properties of shapes

Phases of Learning

- integration
Learnin free orientation
iod 29 explicitation
peno directed orientation
information

Students facquire through instmiction] an

(Ievel 2) increa sing ability to understand and apply formal
geometric concepts in analysing relationships

between parts of shapes
Phases of Learning
= integration
free orientation

Lea!'nlng explicitation
period 1 directed orientation
information
(Ievel 1 ) Students refer to visual prototypes to dhamcterize
shapes.

Figure 4.8. An adaptation on Teppo’s diagram (1991, p.210) taking into account Battista’s (2007)
elaboration of the van Hiele levels (Patsiomitou, 2012a)
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Teppo (1991) also supports that “students progress from one level to the next as the result of purposeful
instruction organized into five phases of sequenced activities that emphasize exploration, discussion, and
integration” (p. 212). Teppo has constructed a diagram, in which she explains the learning periods through which
students are able to progress, given appropriate instruction, to the next van Hiele level. According to Teppo
(1991) the first period connects the first level with the second and the second period connects the second and
third levels. The aim of this first period is to transform the way students perceive geometric objects (for example
Teppo, 1991; Pusey, 2003; Genz, 2006). This means transforming the visual image (Mariotti, 1997) or drawing
(Parsysz, 1988) they perceive, into a figure with concrete properties. The figure then becomes a symbol or
acquires the symbol character. 1 created an adaptation to the diagram constructed by Teppo during the writing of
my PhD thesis, to cover the results of my study (e.g., Patsiomitou, 2012a). In Figure 4.8, I have incorporated into
the diagram the period at which students acquire an increasing ability to construct proofs.
The diagram takes into account Battista’s elaboration aforementioned in this section. The diagram also
incorporates the diacrises in the meanings of drawing and figure, which are referred to by many researchers.
Classroom studies have shown that a van Hiele’s level one (or two) student “often fails in the construction of a
geometric configuration which is essential for the solution of the underlying geometric problem” (Schumann &
Green, 1994, p.204). This happens because at the lower levels students are able to perceive the diagrams
holistically, “they [also] recognize shapes in objects” (Gawlick, 2005, p.370). In Level 2, students are also
becoming able to (or acquire an increasing ability to) “construct figures” (Gawlick, 2005, p. 370). Students’
conceptual understanding has to do with their understanding of abstract ideas (Rittle-Johnson and Schneider,
2014). Pieron (1957, cited in Fischbein, 1993, p. 139) defines concepts as “symbolic representations (almost
always verbal) used in the process of abstract thinking [...]”. As a student’s mind moves forward to van Hiele
levels, s/he is able to interlink concepts to produce a meaning. As Fischbein (1993) points out:
“What characterizes a concept is the fact that it expresses an idea, a general, ideal representation of a class
of objects, based on their common features. (p. 139) [...] When you draw a certain triangle ABC on a sheet
of paper in order to check some of its’ properties [...] you do not refer to the respective particular drawing
but to a certain shape which may be the shape of an infinite class of objects (p. 141) [...] all the
geometrical figures represent mental constructs which possess, simultaneously, conceptual and figural
properties” (p.142).

symbol character signal character

= W = W

e pl'esence .
of a hidden equality of the
symbol alternate-interior

angles

"N' or'Z'

. 7 Q. T

signal character symbol character

+
- - *e
* s o
+ + + /
+ - -
" - .
- - L
-
+ *. /
- -
- - / T
., ., -
+
-
+ *

*.

©@Stavroula Patsiomitou

Figure 4.9. An example of a diagrammatic illustration of students’ interplay between symbol and signal character (Patsiomitou, 2018b,
p- 39) (modified)

Dina van Hiele (Fuys et al. 1984) explains the meanings symbol-signal with the following example: “the
parallelism of the lines implies (according to their signal character) the presence of a saw, and therefore
(according to their symbolic character) equality of the alternate-interior angles” (p.218).

Alternatively, the acquisition of students’ signal character can be seen as their competency to reverse reasoning
in their thinking (Patsiomitou, 2012 a, b). My students, for example, identify the letter “Z” or “N” (a hidden
symbol) when they try to prove the equality of the alternate—interior angles (Figure 4.9). If the students have the
competency to reverse their reasoning, then they have also acquired the competency to form a proof, as they have
the competency to order logically their utterances (Patsiomitou, 2012a, b).
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According to Vygotsky (1987), learning is a complex interplay between scientific and spontaneous use of
language. Vygotsky (1987) argues that "the child begins to perceive the world not only through his eyes
[visually] but also through speech” (p. 32). As it is mentioned by many scholars, the students during the process
change the way they define the objects. For this, learning is an internalization of social relations and
understanding is a result of common negotiation of concepts created by students while interacting with other
students in the class (or group) during the mathematical discussions developed (Bartolini Bussi, 1996).
Subsequently, a definition that a student formulates is an indication of his/her van Hiele level. According to Dina
van Hiele (Fuys et al., 1984)

“On reaching this third level of thinking, which we call insight into the theory of geometry, we can start

studying a deductive system of propositions [...]. Definitions and propositions now come within the pupils'

intellectual horizon” (p.219).
Gutierrez and Jaime (1998) in their study “On the assessment of the van Hiele levels of reasoning” summarize
“the main characteristics of the processes used to distinguish among students at the different van Hiele levels”
(p-31) in the following Figure 4.10.

TABLE 1 ‘?
Distinctive Attributes of the Processes of Reasoning
in each van Hiele Level
Level 1 Level 2 Level 3 Level 4
Recognition | Physical Mathematical | -------es | —meeeeeen
attributes properties
Use of St Only Any definition | Accept
definitions definitions several
with simple equivalent
structure definitions
Formulation |Listof List of Set of Can prove the
of definitions | physical mathematical | necessary and | equivalence
properties properties sufficient of definitions
properties
Classification | Exclusive, Exclusive, Can move | =====mmmn
based on based on among
physical mathematical | inclusive and
attributes attributes exclusive
Proof e Verification Informal Formal
with examples | logical proofs | mathematical
proofs

Figure 4.10. The main characteristics of students belonging at different van Hiele levels (Gutierrez and Jaime, 1998, p.31) (adapted)

In terms of geometrical figures “students can be thought of as having their own concept images and their personal
concept definitions of [these] figures” (Fujita & Jones, 2007, p. 6).
Tall and Vinner (1981, p. 152) defined a concept definition as “a form of words used to specify that concept” and
concept image as ‘“‘the total cognitive structure that is associated with the concept, which includes all the mental
pictures and associated properties and process” (cited in, Fujita & Jones, 2007, p. 6).
Govender & De Villiers (2003) argue that “definitions do not exist independently of human experience in some
“ideal” Platonistic world, so that all we can do is to “discover” them. The fact that definitions are not discoveries,
but human “inventions” for the main purpose of accurate mathematical communication is therefore not
addressed” (p.42).
Govender & De Villiers (e.g., 2003, p. 46) clarified students’ definitions as follows:
e “Arbitrary definition: a different, alternative but correct definition for the same concept.
o Necessary and Sufficient definition: It contains enough information [...] and only those elements of the
set we want to define.
o Correct definitions: A description (definition) which contains conditions (properties) that are sufficient is
said to be correct.[...]
e [Incorrect definitions: A definition is incorrect if it contains an incorrect property or if it contains
insufficient properties.
e Incomplete definitions: It contains insufficient and incorrect properties
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e Economical definitions (and uneconomical definitions): It has only necessary and sufficient properties.
For the use of my study I defined two more kinds of definitions students use (Patsiomitou, 2012a, 2013a, p.802):

e Arbitrary and economical definition: is a definition which is a synthesis of arbitrary (a different,
alternative but correct definition for the same concept) and simultaneously it has only necessary and
sufficient properties.

e Dynamic perceptual definition: refers to the term by which the student informally ‘defines’ a geometrical
object by using the tools of the software. The use of computer software can effectively support the
student’s progression through van Hiele levels.

The introduction of DGS and computers generally into the teaching and learning of geometry has led researchers,

educators and psychologists to incorporate these tools into their investigations in order to examine how they can

support reasoning and raise a student’s van Hiele level.

Olive (2000) emphasizes the need to use DGS in the teaching of secondary mathematics:
“At the secondary level dynamic geometry environments can (and should) completely transform the
teaching and learning of mathematics. Dynamic geometry turns mathematics into a laboratory science
rather than the game of mental gymnastics, dominated by computation and symbolic manipulation, that it
has become in many of our secondary schools. As a laboratory science, mathematics becomes an
investigation of interesting phenomena, and the role of the mathematics student becomes that of the
scientist: observing, recording, manipulating, predicting, conjecturing and testing, and developing theory
as explanations for the phenomena.” (p. 17)

Gawlick (2005) similarly, argues that “there is a need to further develop these levels — and to utilize DGS for

this.” (p. 361). Gawlick (2005) has conducted investigations using DGS. He introduced through his experiments a

correspondence among the use of the DGS tools and the development of students’ van Hiele level. According to

Gawlick (2005):

1. “The drag mode is a key tool to advance from level 1 to level 2”.

2. “Macros and loci suit to support the step from level 2 to level 3”.

3. “Families of loci can be used to progress from level 3 to level 4. (p. 365).

According to Gawlick (2005) the characteristics of the five van Hiele levels are the following (p. 362):

r

0. Visual: Recognize objects a5 geomedic shapes. f’ ® I Analyze families of figures
1. Analysis: Distinguish shapes by therr geometric prapertias. ? @\ Compose family of figures
2 Arqumentation: Argue by relations befween properfies. ? l Conatruct figure from properties
3. Deduction: Systematize arguments to form deductive proofs. o -
4. Rigor Analyse deductive sysems ?@ ’ Disnguist properties of shapes
@l Recognize shapes in objects

Figure 4.11a. The characteristics of the five van Figure 4.11b. Gawlick’s interpretation of van Hiele levels
Hiele levels (Gawlick, 2005, p.362) (2005, p.370)

Gawlick depicted his reinterpretation of van Hiele levels, in which a student who receives scaffolding instruction
moves to the next step up. He argues that “dynamic manipulations help students to transit from the first to the
second van Hiele level” (p.361). Gawlick adopted Freudenthal’s (1973) view of geometry who “viewed
progressive mathematization as the main goal of school mathematics. For this ongoing task, he provided a
framework by recursively defined levels: The activity of the lower level, that is the organizing activity by the
means of this level, becomes an object of analysis on the higher level” (p. 362). As Gawlick supports
“Progression through these levels will not occur all by itself, but needs to be triggered by giving the
students suitable tasks that really afford the building of new concepts” (p. 362).
Gawlick (2005, p.370) argues that a dynamic approach is better suited to developing thinking at an advanced
level on two counts: Firstly, tasks prepared for lower levels can be continued at higher levels, which helps
familiarize students to the habit of ‘discovery’. Secondly, it provides a solid basis for the van Hiele phases of
learning to come, since it allows students to explore the topic in a directed orientation phase and then use their
existing knowledge to build the new concepts for themselves. Level 3 (deduction) is identified “as the level at
which the students construct proofs, understand the role of axioms and definitions, and know the meaning of
necessary and sufficient conditions” (Gawlick, 2005, p.370).
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The reversion of thinking is developed and facilitated from the use of DGS tools (Patsiomitou, 2012a, b; 2018b).
In order to emphasize my argument, I shall incorporate in the paragraphs that follow, an experiment that is
described at length in my study “An ‘alive’ DGS tool for students’ cognitive development” (Patsiomitou, 2018b).
The excerpt relates to an episode midway through the second phase, at which time students were working on
tasks involving symmetry and transformations. What is described here lasted almost 30 minutes. I have reported
the importance of the use of the custom tools in many previous studies (e.g., Patsiomitou, 2005a, 2006d, e, g (in
Greek), 2007a, b, 2008a, d, 2012a, b, 2014). For my study, I used a custom tool I had previously created to help
students visualize the meaning of central symmetry in correlation with the meaning of a segment’s midpoint. This
was very crucial for the evolution of the construction of a parallelogram through its diagonals.
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Figure 4.12a. Implementing the custom tool “symmetry” Figure 4.12b. The “X” utilization scheme of the
(Patsiomitou, 2018b, p.44) custom tool (Patsiomitou, 2018b, p.45)
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Figure 4.12c. Analysis of the use of the custom tool “symmetry” (Patsiomitou, 2014, p. 20)

The construction of the tool is very simple (Figure 4.12a), and has crucial effect on the development of the
students’ thinking (Patsiomitou, 2012a, b). The idea of creating the concrete custom tool occurred after creating a
similar tool to construct the “golden ratio” (Patsiomitou, 2006g, p.61, in Greek). The problem I posed the
students was this: Can you construct a rectangle using the properties of its diagonals?
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(meaning of symmetry by center or rotational symmetry)
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Figure 4.13. A dual role: midpoint and/or symmetry by center (Patsiomitou, 2012a, b, 2018b)

If my students implemented it on screen, they could view a segment with its midpoint. This tool helped them
connect the meaning of symmetry by center with the meaning of a segment’s midpoint. If they applied it twice on
a point F, they visualized an “X” symbol which students view when constructing the diagonals of a
parallelogram. Figure 4.12a illustrates an implementation of the custom tool once on screen. In Figure 4.12b, 1
implemented the tool twice on point F. Figure 4.13c illustrates an analysis of the use of the custom tool
“symmetry” for the construction of meanings.

The modification of the angle between the segments (e.g., AA” and BB") as well as the lengths of the segments
determines the kind of parallelogram which is produced/ generated (e.g., Patsiomitou, 2012a, b, p.72) (Figure
4.14).
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Figure 4.14: Structure of parallelogram’s diagonals (modified from Patsiomitou, 2012 a, b, p. 72)

Firstly, a student-user assimilates the meaning incorporated in the use of the tool into his preexisting knowledge
(for example s/he connects the meaning of the symmetry by center with the meaning of the segment’s midpoint).
S/he may then face an obstacle (an instrumental obstacle) (Patsiomitou, 2011a, p. 362) with regard to the use of
the tools, due to student lack of competence in instrumental decoding. For example, the tool cannot be applied on
a segment to find its midpoint. This occurs because I created the tool with concrete properties (Figure 4.12¢) to
incorporate the meaning of rotating a point by 180 degrees. This assumption generates a cognitive conflict in the
student. On the other hand the student discovers new ways to use the tool according to his/her thought
development. This in accordance with what Steffe & Olive (1996), Olive (1999), Olive & Steffe (2002), Olive et
al. (2010) state: the mathematical knowledge which children build up during their engagement in a mathematical
activity, is distinguished among others to

[125]



‘children’s mathematics — the mathematics that children [...] construct for themselves and is available to
them as they engage in mathematical activity’;

‘mathematics for children — the mathematical activities that curriculum developers/writers and teachers
design to engage students in meaningful mathematical activity’ (Olive & Makar, 2010, p.136)

4.2.4 Are Custom Tools a Means for the Development of Students’ Thinking?

In my study “An ‘alive’ DGS tool for students’ cognitive development” (Patsiomitou, 2018b), I present the impact
of the custom tool on students' thinking, as well as the development of their abstract thinking, the recognition of
instrumented action schemes through the emergence of theorems and concepts-in-action and the verbalizing of
concepts during the process. In the field notes mentioned below the investigation process is described
(Patsiomitou, 2018b, p.45-48).

Fieldnote 1: The students [M15 is a male student (van Hiele level: 2) and M16 is a female student (van Hiele
level: 1)] constructed a parallelogram using the scaffolding effect provided by the tool. This point in the research
is quite similar to other situations I faced in my previous studies with different pairs of students. The students
faced a cognitive conflict because they could not use the terminology accurately. Most of them confused the
meaning of angle bisector (‘dichotomos’ in Greek) with the meaning of ‘diagonal’. This confusion did not help
them when they had to solve a problem, because, while the diagonals do also dichotomize the angles of the
vertexes in a few quadrilaterals (i.e. rhombus, square), this is not the case in other quadrilaterals (i.e.
parallelogram, rectangle, and trapezium). This confusion grew during the construction of a figure -parallelogram.
Moreover, the students have to differentiate the angle bisector of an angle from an angle bisector of a triangle (to
an angle bisector of a parallelogram). M15 can recognize and name properties of the parallelogram, but he still
does not see relationships between these properties (Mason, 1998, level 2). In the concrete case M15 defines the
object with a dynamic and economical definition. This is a sign that the student is moving to the van Hiele level
3. M16 makes decision based on perception. She recalls the structure of a parallelogram’s diagonals. M16
recognizes a property of the parallelogram from the ‘alive’ [active] representation on screen. M16’s pretest level
was 1; this is clear from her answers, as she makes decisions based on perception.

[1]M16: A parallelogram .What kind of parallelogram? M16 constructed two intersected segments using the custom
tool. Then we shall join these. [sides] ...but,... it is not a parallelogram!

[2] Researcher: What are the prerequisites for a quadrilateral to be a parallelogram?

[3] M15: The opposite sides must be congruent; the diagonals must be dichotomized.....

[4] Researcher: What can you view in the current situation? Do these segments dichotomize each other?

[5] M15: Yes!

[6] M16: They are congruent! (She moves the figure using dragging.)

[7]1 M16: They are congruent! It is a parallelogram! (She meant the half segments of a parallelogram’s diagonal).
[8] Researcher: ok...it is a parallelogram ...Can you construct a rectangle?

[9O1 M15: Well, ...an angle bisector ... (pointing to a diagonal)

[10] Researcher: Diagonal, you mean!

[11] M15: Yes ...they must be dichotomized and.... they must be congruent.

[12] Researcher: Correct both! Can you construct it?

[13] M15 constructed a segment with the custom tool trying to visualize as a ¢ B
diagonal of a rectangle ...He stopped and looked at it on screen.

[14] M15: I shall construct it as we constructed the parallelogram.

[15] Researcher: What should the rectangle’s diagonals be?

[16] M15: Congruent ...I shall construct a segment with the tool...

[17] Researcher: So, how can you construct a diagonal equal to this one?
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[18] M15: I shall rotate it. " N
[19] M16: Construct a point ...not on the segment! .... Choose it and rotate the [ .
segment...
[20] M16: We should have 90 degrees...
[21] M15: Yes! I got it! %
[22] M16: Let’s draw a straight line. '
[23] M15: We can construct a straight line ...we shall construct its midpoint (it looks
like he wants to apply the custom tool to find the midpoint of the segment). ‘
24] M15 selects the segment and its endpoints and tries to construct the midpoint from a
the menu.
[25] M16: Why are you doing this? The tool (meaning the custom tool) can construct
the midpoint.
[26] M15: Eureka! I shall construct parallels from these points
[27IM15: I shall join these two points. 3 :
[28] M15: Then I shall construct the symmetrical triangle by 180 degrees ( Figure
4.13a, b, ¢)
[29] M15 selected the midpoint and constructed a rotational symmetry of the triangle.
[30] M15: Ok! It is readyyyy! &7
[31]1 M16: Is it a rectangle? Drag this point.
[32] M16: Choose a vertex to drag!
[33] M16: It is a very nice parallelogram! (laughing) ...but you went to Trikala and
back when you were constructing it (a Greek expression for when a person follows a ‘
less than easy and obvious path when carrying out a task).
.
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Figure 4.15. Analysis of students’ thought through the use of the tools, in a pseudo-Toulmin diagram (Patsiomitou, 2018b, p.46)

Fieldnote 2: M15 started with the construction of a segment using the custom tool. Then he constructed a
segment AC and joined the point C with the point A’. He tried CA" to seem vertical to CA. Then he rotated the
triangle CAA” by 180 degrees. His construction of the parallelogram is complex (Figure 4.15). M15 knows the
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properties of the figure “rectangle”, but cannot implement them to construct it. He cannot “instrumentally decode
his words to a figure on screen” (Patsiomitou, 2011a, b, 2012a, b). He had to bring a perpendicular line down to
the segment CA. He was familiar with the procedure for constructing a perpendicular line to a point on a
segment, but he did not use it. On the other hand, he constructs a “parallelogram” figure using a reconfiguration
of a triangle. The rotation of the triangle by 180 degrees could be the definition of a parallelogram when we use
rotational transformation. M15 uses a combination of informal and formal descriptions of shapes (Level 2.2.
according to Battista’s classification). He knows that the rotated segments are congruent [point of the dialogue
18]. M15 is beginning to acquire formal conceptualizations that can be used to “see” and describe spatial
relationships between parts of shapes. M 16 is trying to use the tool in a catachresis mode, as she has extended the
properties of the tool in her mind. The [alive] tool has affected her thoughts, as she has constructed an
instrumented action scheme [point of the dialogue 25] (although she is trying to use the tool with catachresis of
its use).

[34] M16: Giiive me the mouse (laughing)...we shall construct a line ...we shall rotate this point by 180 degrees.

[35] M15: This is a parallelogram again.

[36] M16: But ...its diagonals are congruent!

[37] M15: Why? ...you can measure them ...drag them now...

[38] Researcher: How can you construct a segment congruent to this one?

[39] Both: we can rotate it ...or reflect it ... They will be symmetrical.

[40] M16: Eureka! We can do it!

[41] M16: We shall select this point (means the midpoint) ...we shall select this endpoint and we shall rotate it by 90
degrees.

Figures 4.16a, b. Students’ gestures during the research process (capturing images from the video)
(Patsiomitou, 2018b, p.46)

Fieldnote 3: M16 rotates point A through 90 degrees. She then uses the custom tool, applying it to points A" and
O. She insisted that the diagonals are congruent (point [45]), but as M15 was not convinced by the dragging
facility, she measured the segments and dragged them again using a combination of transformations. She ended
up constructing a square when trying to construct a rectangle, as during the instrumental decoding she
constructed a point A" in a concrete position (A'O = OA and A’O is perpendicular to AO). The most important
conceptual event occurs ([49]) when she expresses a logical hierarchy regarding the inclusion of the rectangle and
the square (Figures 4.16, a, b).

[42] M16: Now I shall do it with the ease way ...

[43] M16 selects the custom tool and applies it to the point and to the midpoint.

[44] M15: Againnnn, it is a parallelogram!

[45] M16: Why? Its diagonals are congruent!

[46] They select them and measure them.

[47]1 M16: It is a rectangle!

[48] Researcher: What is it? Drag all the vertexes!

[49] M16: ...may be it is a square ... but the square is also a rectangle...so it is ok! I constructed it!

[50] M15: The square is a rectangle??? What does she say?

[51] I did not explain or mention why the square is also a rectangle, but posed one more question.

[52] Researcher: Can you construct a rectangle? Not a square.

[53] M15: I can do it!

[54] M15 constructs a segment AB. [55] M15: Now we shall construct a perpendicular to this point (point A).

[56] M15 then constructs the midpoint of the segment. ...I shall rotate only the half segment by 90 degrees... Oh, eureka!!
M15 rotates the whole segment AB about center B by 90 degrees.
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[57]1 M16: You have constructed a square again!

[58] M15: No!

[59] M16: Yesss! This segment is congruent to this segment!

[60] M15: Ok! We shall construct a parallel line from this point (A’). This will be a rectangle...

[61] M16: This is a square as all its sides are congruent and perpendicular (she means to one another) (Figures 4.17a, b, c,
d, 4.18)
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Figures 4.17a, b, ¢, d. Sequential steps of the construction
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Figure 4.18. An illustration of the use of the tools in a pseudo-Toulmin diagram (Patsiomitou, 2018b, p.48)

Fieldnote 4: M15 tried to construct a rectangle. He has recalled a prototype image of a rectangle with its axis of
symmetry which we constructed in a previous session. He ultimately constructed a rectangle whose side is half
the length of the side of the square ABA'C (Figure 4.18). He is in transition to Level 3, but still lacks the
competency to instrumentally decode a figure. M16 did not delete all the lines. She had something in mind while
M15 constructs his specialized kind of rectangle. She was not sure about the next step, but no one could take the
mouse from her hand. She implied that BC’ is a perpendicular line, as she constructed point C” by rotating point
C, and she implied that CC"" is perpendicular to CA. She did not prove the sequential steps using deductive
reasoning, but the construction steps she follows is an indicative of the development of abstract thinking. M16
developed what Simon (1996) calls transformational reasoning. What is transformational reasoning? In the
words of Simon (1996):
“Transformational reasoning is the mental or physical enactment of an operation or set of operations on
an object or set of objects that allows one to envision the transformations that these objects undergo and
the set of results of these operations. Central to transformational reasoning is the ability to consider, not a
static state, but a dynamic process by which a new state or a continuum of states are generate” (p. 201)
Fieldnote 5: M16’s conception of the meaning of the rectangle [62-67 of the dialogue] and the rectangle’s
instrumental decoding was the most incredible I have ever seen a student display when using the concrete tool
(Figure 4.19). While a concept is an idea shared and accepted by the mathematical community, a student’s
conception refers to a student’s explanation of a concrete concept. In other words, it relates to with the way the
student shapes the idea in his/her mind. M16 made many transformations in her mind in order to construct the
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rectangle. She constructed an arbitrary point C and she rotated it by 180 degrees. She implied the congruence of
the triangles CAM, MBC’, and subsequently the congruency of the segments C'B, CA. In order to construct a
segment equal to the segment C'B, she used the tool. In other words, she constructed a conceptual object in her
mind in which she encapsulated the properties of the tool. The implementation of the tool once again to construct
the diagonal C"'C""’is a strong indication that she was absolutely sure the diagonals of the rectangle would be
congruent. She used the tool appropriately and efficiently (not with economy or catachrese). Moreover, she
displays sequential place-way and verbal competency when using the tools. All these are strong indications that
she has developed abstract thinking.

[62]M16: We shall construct a rectangle ...we shall delete all these e}

lines.

[63] M16: We shall construct a point here (point C)... We shall ¢l

select this point (the midpoint), double click on it, and we shall rotate A "

point C through 180 degrees ...
(She stopped for a moment) ....then we shall join these points ...oh!

3 i Rotate
No! ...it 1s not a rectangle! A M B = .‘z..,,,

deqrees

About Center M

Help Cancel Flatate.

Lo

[64] M16 selects the custom tool and implements it efficiently at the

points C” and B. c
[65] M16 selects the custom tool again and implements it at points

C"" and M... I

[66] Researcher: You constructed a rectangle! A M g
[67] M16: Yeahhh! 4 L g | Ve 1
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Figure 4.19. M16°s analysis of the construction in in a pseudo-Toulmin diagram (Patsiomitou, 2018b, p.48)

Regarding my interaction with the students, I think it was the necessary for the students to move on during the
process. As Burkhardt (1988) notes,
“[...] the teachers must perceive the implications of the students' different approaches, whether they may
be fruitful and, if not, what might make them so. pedagogically [also] the teacher must decide when to
intervene, and what suggestions will help the students while leaving the solution essentially in their hands,
and carry this through for each student, or group of students, in the class” (Burkhardt, 1988, p. 18).
When analyzing the students’ dialogues, I used the meanings I introduced in my description of the theoretical
underpinning. Duval’s (1999) theory views students’ perceptual apprehension as complementary to Vergnaud’s
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(1998) theory of operational invariants in the context of a process of instrumental genesis. This is in accordance
with what Fou-Lai Lin & Kai-Lin Yang (2002) support:
“While Duval’s cognitive architecture, an organization of several systems, put emphasis on multifunctional
registers, Vergnaud’s cognitive theory of practice put emphasis on the mechanism of conceptual field.
Their perspectives on cognition seemed complementary for analyzing how subjects developed definitions
and propositions of geometrical figures. Duval supported us a framework of perceptual categories to
describe conversion and coordination between different registers, and Vergnaud supported us a framework
of mental organization to explain cognitive mechanisms” (p. 20).
During the research process, students applied the tools and constructed what Rabardel (1995) calls utilization
schemes of the tool/artefact. This process led to the development of schemes of instrumented action. The students
assimilate the figures properties and are in the stage to perceive and accommodate the interrelationships between
the properties of the figures. The next step is to use deductive processes and understand class inclusions. This
result will occur when the students have transformed the figures’ symbol character into figures’ signal
character—a transformation that corresponds to the third level of geometric reasoning. Moreover, the students
used the tools efficiently or in an economical (/ catachresis) mode. They constructed schemes of instrumented
action as a result of the efficiently use of the custom tool or its use in an economical mode. They extended its use
in a catachresis mode to construct the midpoint of a segment. This served for the construction of meaningful
mental schemes to solve the problem. Consequently, the ‘instrumented action’ scheme, which is based on the
construction and use of the custom tool, led students to construct mental objects. In the sequence of mental
activities the students followed, mathematical knowledge and knowledge of the tool were combined. They
constructed a first order instrumented action scheme and shaped the meaning “symmetry of point by 180
degrees”, then a second order instrumented action scheme and shaped the meaning “the diagonals of
parallelogram are dichotomized”. According to Drijvers & Trouche (2008)
The difference between elementary usage schemes and higher—order instrumented action schemes is not
always obvious. Sometimes, it is merely a matter of the level of the user and the level of observation: what
at first may seem an instrumented action scheme for a particular user, may later act as a building block in
the genesis of a higher-order scheme. [...] a utilization scheme involves an interplay between acting and
thinking, and that it integrates machine techniques and mental concepts [...] the conceptual part of
utilization schemes, includes both mathematical objects and insight into the ‘mathematics of the
machine’(p. 372)

The use of a combination of transformations using dragging (and measuring or the rotating and/or
implementing custom tools) helped them to shape the figural concept first of “the parallelogram”, then of “the
square”, and finally of “the rectangle”. The implementation of the custom tool helped students to shape a
schematic entity in terms of their perceptions, and then led them through various stages to more abstract levels of
cognitive perception. This also agrees with Edelman’s viewpoint (1989/1992): “in forming concepts,...the brain
areas responsible for concept formation contain structures that categorize, discriminate, and recombine the
various brain activities occurring in different kinds of global mappings” (quoted in Davis & Tall, 2002).

This means that custom tools can serve as structural units of knowledge, as conceptual objects and hence as
‘schemes’, too, including the structure and function of the encapsulated objects (e.g., Patsiomitou, 2008d). In my
study “An ‘alive’ DGS tool for students’ cognitive development” (Patsiomitou, 2018b), I conclude that the
participated students M 15, M 16 developed efficient strategies to use the DGS tools. M15°s actions are the reverse
of the actions he used to construct the axis of symmetry of a rectangle. He then constructed the symbol character
of the rectangle. He did not make a rectangle with arbitrary sides, but rather a concrete rectangle. This is an
indication that he is in transition to level 3, as he had not constructed the signal character of the rectangle. M16
has developed the competency to reverse her thoughts through the competency to make complex use of the tools
to instrumentally decode the properties of the figures. The symbol character of the figures reflects in her thought.
She has constructed the interrelationship between the meanings of the “parallel line in the middle of the distance
of two parallel lines” with the meaning of axis symmetry and the meaning of the congruency of the diagonals of a
rectangle. She does not express her thoughts in words, but she has been sufficiently developed the rectangle’s and
square’s signal character. In the current study, the participating students constructed: (a) the utilization scheme of
the symmetry by center in correspondence with the midpoint of a segment; (b) the “X” utilization scheme of the
custom tool, which was very important for the construction of a broader scheme, namely the instrumented action
scheme of “the diagonals of a parallelogram”. In Gawlick’s opinion (2005) in a dynamic approach “the students
can explore the topic in a directed orientation phase and then build the new concepts for themselves, drawing on
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their previous knowledge[...] “so students get accustomed to the tools as well as to a “discoverer’s” habit of
mind”(p.370). As Pierre van Hiele writes (1986, p. 168) a figure gets the “symbol character” when it becomes the
representative of its properties as a unity. In my opinion, when the student is able to reverse his/her thoughts and
to anticipate the symbol of the figure, then the figure has received its signal character. The student can now list
the similarities and differences between figures. S/he can also explain why a characteristic is not included in
figures’ characteristics

Many researchers (for example Goos, Galbraith & Renshaw, 2002; Dekker & Elshout-Mohr, 2004) recognise the
“potential of working in small groups” (Dekker & Elshout-Mohr, 2004, p. 39). Moreover, the mathematical
discourses developed in a small group mediated by cognitive tools such as the Geometer’s Sketchpad enhance the
social interactions and students’ mathematical communication. According to Sfard (2001) “most of our learning
is nothing else than a special kind of social interaction aimed at modification of other social interactions. |[...]
Thus, whatever the topic of learning, the teacher’s task is to modify and exchange the existing discourse rather
than to create a new one form scratch. If so, we can define learning as the process of changing one’s discursive
ways in a certain well-defined manner.” (p.3)

Sang Sook Choi-Koh (1999) investigated the development of students’ thinking, using The Geometer’s
Sketchpad software. In his PhD thesis he identified four learning stages in terms of symbol, signal and
“implicatory” properties. He also used “‘active visualization”, meaning ‘“the process of forming and interpreting
geometric, dynamic representations within a computer environment” (1999, p. 302). Figure 4.20 depicts Choi-
Koh’s van Hiele visual model of instruction.

Properties Relations Implications

Implicatory
Signal

Intrinsic Implicatory,

Symbol
Level I Level II Level 111 Level IV
] T 1 1
| Learning Period 1 I l Learning Period 2 I | Learning Period 3 |
I 1
Information Information Information
Directed orientation Directed orientation Directed orientation
Explication Explication Explication .
Free orientation Free orientation Free orientation
Integration Integration Integration

Figure 4.20. Choi-Koh’s (1999, p.302) van Hiele visual model of instruction

Figure 4.21 illustrates an adaptation of the van Hiele model, which I created in relation to Choi-Koh’s (2001) and
Battista’s (2007) levels of thinking, through the use of “active, alive tools” (Patsiomitou, 2018b). To clarify,
when a student interacts with figural materials (for example a digital figure in a DGS environment), s/he interacts
with the figure’s characteristics: the equality of a square’s sides and angles, the perpendicularity of a kite’s
diagonals, etc. Now s/he has in his/her mind which of these characteristics determine the concrete figure. During
the second period of instruction s/he acquires a gradual competency to construct figures and during the third
period of instruction the students are able to gradually construct proofs. In other words, this will be a change in a
student’s informal discursive way to express his or her thoughts in formal language.

In such a discursive process the students play the role of the ‘actor’ in the activity of the mathematical discussion
and the teacher the role of the participated ‘observer”, who frequently intervenes with crucial questions designed
to prompt mathematical discussion. Freudenthal (1991) “criticized the constructivist epistemology from an
observer’s point of view” [and] “saw mathematics from an actor’s point of view” (Gravemeijer & Terwel, 2000,
p-785). Which is to say, constructing meaningful activities for the students by imagining how the students might
interact with the instructional materials, what obstacles they had to overcome, the possible (or multiple) solutions
they could find, how their thinking could be raised due to the evolution of mathematical discussions they
participate in. This is in accordance with what Freudenthal argues that “doing mathematics is more important
than mathematics as a ready-made product” (Gravemeijer & Terwel, 2000, p.780) Building on a theoretical
perspective of learning, Bowers & Stephens (2011) support that
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first, if learning is viewed as a socially situated practice, then (a) teaching can be seen as the practice of
orchestrating mathematical discourses and (b) learning can be seen as the ways in which students engage
in these discourses. In short, the role of any teacher (or teacher educator) can be seen as negotiating the
emergence of conceptual discourse that involves the use of appropriate tools [...] The role of the student
is also intricately related to his or her participation in the discourse with a focus on the ways in which
tools mediate the discussions and acceptable ways of proffering and debating mathematical ideas. (p.
287)
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Figure 4.21. An adaptation of the van Hiele model (Patsiomitou, 2018b, p.50) (modified)

Building on the ideas mentioned above I think that dynamic reinvention of knowledge is the kind of
knowledge the students could reinvent by interacting with the artefacts made in a DGS environment, “knowledge
for which they themselves are responsible” (Gravemeijer & Terwel, ibid.)

4.3. The Development of Student’s Mathematical Competencies

Another point of view suggests that the development of student’s geometrical thinking results from the
development of their skills (Hoffer, 1981) or competencies in mathematical thinking and reasoning,
argumentation, modeling e.g., (Niss, 1999) etc. Hoffer (1981) proposed the following types of skills, reported by
Morris (1986, p. 162-163) and Abdefatah (2010, p.46). (Figures 4.22, 4.23)
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. “Visual skills, including the ability to: recognize various plane and space figures; observe parts of a given figure
and their interrelations; identify centres, axes, and planes of symmetry of a given figure; classify given figures by their
observable characteristics; deduce further information from wvisual observations; and wvisualize the geometric
representations (models), or counter-examples, which are implied by given data in a given deductive mathematical
system.

. Verbal skills, including the ability to: identify various figures by name; visualize figures from verbal descriptions of
them; describe given figures and their properties; formulate proper definitions of the words used; describe relationships
among given figures; recognize the logical structure of verbal problems; and formuilate statements of generalizations and
of abstractions; correct use of terminology and accurate communication in describing spatial concepts and relationships.
. Drawing skills, including the ability to: sketch given figures and label specified points; sketch figures from their
verbal descriptions; draw or construct figures with given properties; construct figures having a specitied relation to
given figures; sketch plane sections and intersections of given figures; add useful auxiliary elements to a figure;
recognize the role (and limitations) of sketches and constructed figures; and sketch or construct geometric models or
counter-examples; communicating through drawing, ability to represent geometric shapes in 2-d and 3-d, to make scale
diagrams, sketch isometric figures.

. Logical skills, including the ability to: recognize differences and similarities among given figures; recognize that
figures can be classified by their properties; determine whether or not a given figure belongs to a specified class;
understand and apply the desirable properties of definitions; identify the logical consequences of given data; develop
logical proofs; and recognize the role and limitations of deductive methods; classification, recognition of essential
properties as criteria, discerning patterns, formulating and testing hypotheses, making inferences, using counter-
examples.

. Applied skills, including the ability to: recognize physical models of geometric figures; sketch or construct
geometric models of physical objects; 11se properties of geometric models to conjecture properties of physical objects or
sets of physical objects; recognize the usefulness of geometric models for physical objects or situations; develop
geometric models for natural phenomena, sets of elements in the physical sciences and sets of elements in the social

sciences; and use geometric models in problem solving; real-life applications using geometric results learnt and real uses

of geometry e.g. for designing packages etc”. (Hoffer, 1981 dted in Robert Moriis, 1986, p. 162-163)

Figure 4.22. Hoffer’s (1981) types of skills (Morris, 1986, p. 162-163) (adapted)

Hoffer's (1981) matrix of geometric thinking levels and geometric skills
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Figure 4.23. Hoffer’s (1981, p.15) matrix of geometric thinking levels and geometric skills (cited in Abdefatah, 2010, p.46)(adapted)

Therefore, if the teaching process of students is aimed to develop these skills then it leads to the development of
their geometrical thinking. Niss (1999) and his colleagues proposed the following competencies that can be
described as an individual student’s ability to (e.g., Niss, 1999, 2003; Neubrand et al. 2001):

Mathematical thinking and reasoning:[...] mastering mathematical modes of thought; posing questions
characteristic of mathematics; knowing the kind of answers that mathematics offers, distinguishing among
different kinds of statements; understanding and handling the extent and limits of mathematical concepts;
generalizing results to larger classes of objects.

Mathematical reasoning and argumentation: |[...]Jknowing what proofs are; knowing how proofs differ from
other forms of mathematical reasoning; following and assessing chains of arguments; having a feel for

[134]



heuristics; creating and expressing mathematical arguments; devising formal and informal mathematical
arguments, and transforming heuristic arguments to valid proofs, i.e. proving statements.

Mathematical communication: [...] being able to communicate, in, with, and about mathematics; expressing
oneself in a variety of ways in oral, written, and other visual form; understanding someone else’s work.

Modelling competency: [...] being able to analyse and build mathematical models concerning other subjects or
practice areas; structuring the field to be modeled; translating reality into mathematical structures;
interpreting mathematical models in terms of context or reality; working with models; validating models;
reflecting, analyzing, and offering critiques of models or solutions; reflecting on the modeling process;
communicating about the model and its results; monitoring and controlling the entire modeling process.

Problem posing and handling competency: [...] problem identifying, posing, specifying; solving different kinds
of mathematical problems.

Representation competency: [...] being able to handle different representations of mathematical entities;
decoding, encoding, translating, distinguishing between, and interpreting different forms of representations
of mathematical objects and situations as well as understanding the relationship among different
representations; choosing and switching between representations.

Symbol and formalism competency: |...] decoding and interpreting symbolic and formal mathematical language,
and understanding its relations to natural language; understanding the nature and rules of formal
mathematical systems (both syntax and semantics); translating from natural language to formal/symbolic
language; handling and manipulating statements and expressions containing symbols and formulae.

Communicating in, with, and about mathematics competency: [...] understanding others’ written, visual or oral
‘texts’, in a variety of linguistic registers, about matters having a mathematical content; expressing oneself,
at different levels of theoretical and technical precision, in oral, visual or written form, about such matters.

Aids and tools competency: [...] being able to make use of and relate to the aids and tools of mathematics,
including technology when appropriate.

The visualization competency and the competency of students to develop recursive processes conceptually and
structurally (e.g., for the construction of fractal objects in a DGS) is also very important for the solution of
problems with fractal constructions (Patsiomitou, 2005a, 2014).

Competence in the DGS environment depends on the competence of the cognitive analysis which students bring
to bear when decoding the utilization of software tools, namely the instrumental decoding competence
(Patsiomitou, 2011a, b), based on Duval’s (1995a,b) semiotic analysis of students’ apprehension of a geometric
figure.

4.4. Proof and Proving, Argumentation and Deductive Reasoning

The tenet of proof has been analyzed from a range of pedagogical, historical, and cognitive viewpoints. Olivero
(2003, pp.10-11) in her remarkable PhD thesis reports the frameworks in which proof has been discussed:
e “Historical and epistemological studies concern the evolution of the notion of proof over time (see e.g.
Barbin, 1988; Arsac, 1999b)
o The status of mathematical objects, properties and relations involved in the teaching and learning of
proof (see e.g. Balacheff, 1987; Thurston, 1995; Hanna, 1996; Lolli, 1999; Rav, 1999)
e Students’ cognitive processes when constructing or understanding proofs (see e.g. Duval, 1991; Harel &
Sowder, 1996; Sowder & Harel, 1998; Garuti, Boero, & Lemut, 1998; Bartolini Bussi, 2000; Healy,
2000a; 2000b; Maher & Kiczek, 2000; Simon, 2000; Kiichemann & Hoyles, 2001)
e The role of proof in the mathematics curriculum (see e.g. Hanna, 2000; Knuth, 2000)
e Possible ways of working with proof in the teaching and learning context (see e.g. Hoyles, 1998;
Sekigushi, 2000)” (cited in Olivero, 2003, p. 10-11).
De Villiers (1999b) argues that one of the biggest problems identified by researchers is how to teach geometrical
proof to students, which is an indispensable ingredient in their cognitive development.
In recent decades, issues regarding formal proofs, argumentation, conjecturing and reasoning has been thoroughly
investigated by the mathematical community with regard to mathematics instruction (e.g. Hanna, 1983a, b,
1989a, b, 1995, 1996, 1998, 2000a, b, 2001; Duval, 1991, 1996; De Villiers, 1990; Mason & Pimm, 1984;
Semadeni, 1984; Markman, 1991; Boero et al, 1995; Chazan, 1993; Pedemonte, 2001, 2002, 2007; Furinghetti et
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al., 2001; Mariotti, Bartolini Bussi, Boero, Ferri & Garuti, 1997; Arzarello, Micheletti, Olivero, Paola & Robutti,
1998; Balacheff, 1999; Rav, 1999; Rodd, 2000; Hanna &Janke, 1993, 1996, 1999, 2002; Forman et al, 1998a, b;
Harel & Sowder, 1998, 2007, 2009; Harel & Tall, 1991; Hoyles & Kuchemann, 2002; Sacristin, & Sanchez,
2002; Chi Ming, 2005; Yang, & Lin, 2008; Patsiomitou, 2012a, b). A few researchers have also suggested
changes to the way in which geometry it taught and to the geometry curriculum (e.g., McDonald, 1989, p.425).
Others, such as Harell (2008) argue that a Geometry curriculum is neither appropriate nor convenient if its main
aim is not to encourage students’ competence in deductive reasoning. Harell argues that instruction must lead to
students developing ways of understanding and thinking (Harell, 2008, p. 487). Similarly, Healy & Hoyles
(1998), state that proof lies at the heart of mathematical thinking and that it is the deductive reasoning that
supports the process of presenting proofs, which distinguishes mathematics from the empirical sciences.
“Proof is the heart of mathematical thinking, and deductive reasoning, which underpins the process of
proving, exemplifies the distinction between mathematics and the empirical sciences” (Healy and
Hoyles, 1998 p.1).
In Greek secondary-level schools, students are taught Euclidean Geometry. Jones (2002) in his study “Issues in
the teaching and learning of geometry” states:
“Around 300 BCE much of the accumulated knowledge of geometry was codified in a text that became
known as Euclid's Elements. In the 13 books that comprise the Elements, and on the basis of 10 axioms
and postulates, several hundred theorems were proved by deductive logic. The Elements came to epitomise
the axiomaticdeductive method for many centuries. It is likely that no other works, except perhaps the
Christian Bible and the Muslim Koran, have been more widely used, edited, or studied, and probably no
other work has exercised a greater influence on scientific thinking. While some parchments do exist from
the 9th century, it is said that over a thousand editions of Euclid's Elements have appeared since the first
printed edition in 1482, and for more than two millennia this work dominated all aspects of geometry,
including its teaching” (p.123).
Secondary-level students in Greece face many difficulties trying to learn the definitions and theorems in the
geometry textbook and applying them to their geometrical constructions. For example, in the early years of Greek
secondary school, the students are taught what kinds of quadrilateral there are; the focus is firstly on the main
properties of quadrilaterals, with regard to its sides and angles, which they memorize. As a result, students do not
remember them in subsequent years. They only remember very basic notions regarding perpendicularity and
parallelism of the sides of quadrilaterals. Furthermore, construction of parallel and perpendicular lines is taught in
the first year of secondary school and is performed by the students with a ruler and a compass; nevertheless, with
the use of static means, the students are usually satisfied with producing ‘soft constructions’ which fulfill visual
criteria. In the first year of secondary-level school, the meanings related to quadrilaterals are introduced in class
in a strict form, with emphasis on the relations of inclusion and categorization, which the students do not
comprehend when these meanings are introduced in a static environment. This becomes obvious when the
students are asked to list common and non-common properties of quadrilaterals, (e.g. the square and the
rectangle). The notion of symmetry and relative constructions are included in the Mathematics' textbook used by
first-year secondary-school students. However, insufficient time is devoted to understanding them, as the
Geometry textbook includes a large number of geometrical notions which have to be taught. Jones (2002) self
responding to his question “why include geometry in the school mathematics curriculum” gives the following
answer:
“The study of geometry contributes to helping students develop the skills of visualization, critical thinking,
intuition, perspective, problem-solving, conjecturing, deductive reasoning, logical argument and proof.
Geometric representations can be used to help students make sense of other areas of mathematics: fractions
and multiplication in arithmetic, the relationships between the graphs of functions (of both two and three
variables), and graphical representations of data in statistics. Spatial reasoning is important in other
curriculum areas as well as mathematics: science, geography, art, design and technology” (p. 125).
Usiskin, 1982, Senk, 1989 and other scholars have conducted studies using van Hiele levels as a possible
predictor of success in proof writing. According to Usiskin (1982, p. 87)
“about 70% of the students who studied proof could do simple proofs requiring only one deduction beyond
those made from the given. Thus about 30% cannot do even the simplest proofs. About half of the students
who study proof can do proofs requiring longer chains of reasoning”.
Research also validates the difficulty of the Geometry content. Jones (2002) argues that “[...] proof had to be
reproduced by students exactly in the form given in Euclid (including in the order the proof occurred in Euclid).
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For very many pupils their experience of geometry was far from positive” (p. 127). The above research results
encouraged researchers to discover ways of introducing formal proofs into geometry/maths instruction
inductively, using computer software. For example, mathematical microworlds (e.g. Logo, DGS software)
increase the chances of students becoming able to construct geometrical meanings, an area in which school
textbooks have proved unsuccessful (Clements, Battista & Sarama, 2001, p.6). Govender and De Villiers (2003)
argue:
“[...] the dynamic nature of the rhombi constructed in Sketchpad seemed to make the acceptance of the
hierarchical classification of a square as a special rhombus far easier than in a traditional non-dynamic
environment, as the student teachers could easily drag the constructed rhombus until it became a
square.[...]” (p. 57).
The transition from the traditional teaching of Euclidean proof to new trends driven by the availability of
microworlds for teaching mathematics has increased the interplay between, on the one hand, what is referred to as
investigation or exploratory experimentation using computer software and, on the other, conjecturing, convincing
with argumentation and proving.
Researchers has studied the impact DGS software environments has had to the development of arguments and the
construction of meanings in Geometry (e.g., Arzarello, Micheletti, Olivero & Robutti, 1998; Laborde, 1998;
Christou, Mousoulides, Pittalis and Pitta, 2004a,b, 2005; Patsiomitou, 2008a, b, 2010, 2012a, b, 2018b). Proof
and proving have been conducted, also using DGS environments or other software, to bridge the gap between the
empirical-experimental and theoretical parts. As a teacher of mathematics I am constantly aware that we have to
differentiate the teaching of proof (e.g., Ball et al., 2002) from what is the product of proof and what is the
process used to arrive at the product of proof (Ferrando, 2005, p. 37). My thorough study on proof and proving
was influenced by the studies of numerous researchers. In the current section, I shall try to briefly report the most
important parts of the research studies mentioned below:

e  Toulmin’s (1958) model for the analysis of argumentation;

Peirce’s (1960) kinds of reasoning, for example inductive, abductive, deductive;

Simon’s (1996) introduction of transformational reasoning;

Hanna’s (2000, 2001) functions of proof;

Bell’s (1976) identification of students’ justifications;

Balacheff’s (1998) justifications of students to “pragmatic” justifications and “intellectual” justifications
and the complexity of students’ way of proving;

Harel & Sowder’s (1998) proof schemes classification;

e Duval’s (1991) structure of proof or reasoning by the triad: entry proposition or given statement, rule of
inference, and conclusion,

Duval’s (1998, 1999) cognitive analysis of argumentation and mathematical proof ;

e De Villier’s (1999b) study “Rethinking Proof with The Geometer’s Sketchpad” and his expansion on
Bell’s work: Proof as Explanation, Proof as Discovery, Proof as Verification, Proof as Challenge, Proof
as Systemization.

For a teacher struggling to teach Euclidean proof in a high school geometry class, the proving process--including
the students’ exploratory experimentation--is more important than its product, which is the rigorous-formal proof.
In my opinion, there is some confusion, even among teachers of mathematics, about the meanings of justifying,
conjecturing, arguing, explaining etc.

The topic of proof is discussed extendedly in the study of Hanna (1983) “Rigorous proof in mathematics
education” (Hanna, 1983b). Hanna (1989b) highlights the importance of distinguishing between “proofs that
prove' and “proofs that explain”. Hanna (2000b) also reports a list of the functions of proof and proving (Bell,
1976b; de Villiers, 1990, 1999; Hanna and Jahnke, 1996):

e “verification” : concerned with the truth of a statement

e explanation : providing insight into why it is true

e systematisation : the organisation of various results into a deductive system of axioms, major concepts

and theorems

discovery: the discovery or invention of new results

communication: the transmission of mathematical knowledge

construction: of an empirical theory

exploration : of the meaning of a definition or the consequences of an assumption
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e incorporation: of a well-known fact into a new framework and thus viewing it from a fresh
perspective”(Hanna, 2000b, p. 8).
De Villiers (1999b) in his study “Rethinking Proof with Geometer's Sketchpad” states that “discovery, intellectual
challenge, verification, systematisation”, are a range of functions of proof, that have to be communicated to
students in a meaningful way, following the sequence shown in the Figure 4.24 (Jones, 2002, p. 132).

Explanation Discovery Intellectual Verification Svstematization
challenge :

Figure 4.24. A learning sequence of functions of mathematical proof (De Villiers, 1999b, cited in Jones, 2002, p. 132)

De Villiers (2004b) also, in his study “The role and function of quasi-experimental methods in mathematics”
reports the methods “that refer to all non deductive methods in mathematics involving experimental, intuitive,
inductive or analogical reasoning” (p. 398). These are the following:
e Conjecturing: looking for an inductive pattern, generalization etc.;
e Verification: obtaining certainty about the truth or validity of a statement or conjecture;
e Global refutation: disproving a false statement by generating a counter-example;
e Heuristic refutation: reformulating, refining or polishing a true statement by means of local counter-
examples;
e Understanding: the meaning of a proposition, concept or definition or assisting with the discovery of a
proof;
In my opinion, before students try to prove formally, or a teacher teaches them Euclidean proofs, it is important
for their understanding that they are given the opportunity to discover, explain and experiment with regard to the
correctness of a statement, proposition or theorem using a computer environment. The important thing is that
students become able to engage in “analysis” and “synthesis”, as they interact with the software (or paper-pencil)
environment. In general, analysis is a Greek work which has been used since antiquity to denote a process of
breaking down an intellectual or substantial whole into its component parts; in contrast, synthesis denotes the
combination of separate elements or components with the aim of forming a coherent whole.

INVESTIGATION

Problem formulating Problem solving Verifying Integrating

[ i
/ /

MATHEMATICAL INVESTIGATION OTHER FORMS OF INQUIRY

Abstracting

Representing . .
Modelling Generalising Proving Theorising Testing

Symbolising

Figure 4.25. Components of the process of investigation (Bell, 1979, p. 362) (adapted)

Bell (1976) distinguishes students’ justifications into two categories: “empirical justifications” (characterized by
the use of examples to convince someone), and “deductive justifications” (characterized of the use of deduction to
connect data with conclusions) (cited in Marrades & Gutierrez, 2000, p.90). In the Figure 4.25, Bell (1979)
illustrates the relations among the notions of (a) investigation and problem solving, (b) Proof, and (c)
Representation, generalisation and abstraction. As Bell (1979) states:
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“Representation, generalisation and abstraction are certainly all important aspects of mathematical activity
but the whole is greater than its parts, and the term 'mathematisation' has been used to denote the particular
combination of these activities in the way we recognise as mathematics” (p. 372)[...] “If generalisation is
the characteristic pure mathematical process, that of applied mathematics is modelling, that is the
representation of some situation via a diagram, a symbolic expression or some other form of analogy” (p.
376).
Duval (1991) expressed the triad of proof or deductive reasoning with three elements: Entry propositions (or
given statements or data), Rules of inference, and New propositions (or conclusion) as it is pictured in the Figure
4.26. The "inference" step is the passage from an hypothesis (or en entry proposition, or given data) to a
Sumperasma (conclusion or a new proposition), thanks to a given rule.

Rules of inference
(axioms, theorems, or
definitions)

Sumperasma or
New propositions
or Conclusion or
Claim

Entry propositions or Given
statements or Data or Ypothesis or
Conclusions from a previous step

Figure 4.26. Duval’s (1991, 1996) structure of deductive reasoning (Olivero, 2003, p.36; Miyakawa, 2004, p.337) (an adaptation for the
current study)

According to Ferrando (2005) the notions of argumentation and proof are different for Duval (1991):
“Duval (1991) makes a clear distinction between argumentation and deductive reasoning. Argumentation is
based on the structure of the language and on the listener’s representations; therefore the semantic content
of the propositions is fundamental. Deductive reasoning is characterized by an “operational status” (statut
opératoire) given by: 1) Entry propositions (propositions données), which are hypotheses or conclusions of
a previous step; 2) Rules of inference (régles d’inférence), which are axioms, theorems, and definitions; 3)
New propositions (obtenues) which are the result of the inference. In a deductive step the propositions are
not related to each other for their semantic value, but only by virtue of their operational status. According
to Duval a proof can be so defined only if it is a logical-formal derivation, there is no concern for its
semantic value but only for the syntactic value” (p. 44)

Pedemonte (2002) in her study “Relation between argumentation and proof in mathematics: cognitive unity or

break?” states:
“Differences between argumentation and proof have been deeply analysed in the work of R. Duval: despite
the use very similar linguistic forms and propositions connectives, there is a gap between the two
processes. According to Duval (1991), the structure of a proof may be described by a ternary diagram:
data, claim and inference rules (axioms, theorems, or definitions). Within proofs, the steps are connected
by a recycling process (Duval, 1992, 1993) the conclusion of a step serves as an input condition to the next
step. On the contrary, in argumentation, inferences are based on the contents of the statement. In other
words the connection between two propositions is an intrinsic connection (Duval, 1992-1993): the
statement is considered and re-interpreted from different points of view. For these reasons the distance
between proof and argumentation is not only logic but is also cognitive: in a proof, the epistemic value
depends on the theoretical status whereas in argumentation it depends completely on the content. Then it is
easy to observe the cognitive distance between the two processes” (p. 72-73)

Miyakawa (2004) argues also, that “As the rule of inference connects two statements, it can be expressed in the

form of an implication “If A then B”..[...]" (p. 337).

In this context, a proof step means the application of a theorem the student knows. Moreover, if we investigate

students’ competency to geometric proofs in the lower secondary level (Ufer & Heinze, 2008, p.1) we can see

that usually it consists of one, two or three “proof steps”. As Ufer and Heinze (2008) argue, it is unusual for

multi-step proofs to be constructed stepwise, but building a plan for the proof will require ideas for all or most of

the steps, which must be looked at all together. To do this, the students need to be able to understand that
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statements’ status can differ/change (e.g. the hypothesis for the first step in a proof is also the premise for a
second step) and to be able to use this understanding to form chains of deductive arguments (Duval, 1991).
Balacheff (1988) divides justification of students to “pragmatic” justifications and “intellectual” justifications.
Balacheff defines as
e “Pragmatic proofs” those proofs which rely upon action (p.2).
o “Intellectual proofs” those proofs which use verbalizations of the properties of objects and of their
relationships (p.2)
Balacheff further divides the pragmatic justification into
e Naive empiricism : justification by a few random examples, affected by prototypes (p.5)
e Crucial experiment: justification by carefully selected examples; it identifies awareness of the problem of
the validity of a mathematical statement, taking into account the problem of generalization (p.6).
e Generic example: justification by an example representing salient characteristics of a whole class of cases
(p.7).
Balacheff further divides the intellectual justification into
e Thought experiment: the justification is disassociated from specific examples, eliminating the particular
e Symbolic calculations: the justification is based solely on transformations of symbols or symbolic
expressions
Balacheff (1988) pinpoints that
“The passage from pragmatic proofs to intellectual proofs requires a cognitive and linguistic base. Our disr
egard of the complexity of this passage could be one of the main reasons for the failure of the teaching of
mathematical proof, since this passage is very often considered only at the logical level” (p. 10).
Sacristan & Sanchez (2002, p. 170) in their study “Processes of proof with the use of technology: discovery,
generalization and validation in a computer microworld” give emphasis to the role of language for the transition
from a pragmatic proof to an intellectual proof, as a pragmatic proof is “based on effective actions carried out on
the representations of mathematical objects”. Rather, intellectual proof requires the use of language to formulate
the properties of and relations between mathematical objects; intellectual proof is detached from the actions on
objects, as these actions have been interiorized. Language facilitates communication between the students in a
group, allowing them to describe, clarify and discuss the structures they observe and re-conceptualize identified
misconceptions. Students discuss how to solve problems and learning occurs in a context of collaborative, social
interactions that leads to understanding (Roehler & Cantlon, 1997).
Marrades & Gutierrez (2001) in their study “Proofs produced by secondary school students learning geometry in
a dynamic computer environment” present an analytic framework to describe and analyze students’ answers to
proof problems (p. 87). According to Marrades & Gutierrez (ibid.) “a complete assessment of students’
justification skills has to take into consideration both products (i.e., justifications produced by students) and
processes (i.e., the ways in which students produce their justifications” (p. 88). In the following Figure 4.27
Marrades & Gutierrez (ibid.) summarize the types of justifications which have previously reported in details in
their study.

~ Failed
Naive [ Perceptual
. empiricism Inductive
~ Empirical -
Crucial Example-based
experiment Constructive
o | Generic Analytical
Justifications =~ example Intellectual
~ Failed
. Thought
- cuv —4- . ’
Eledictive experiment Transformative
< Structural
- Formal

Figure 4.27. Types of justification (Marrades & Gutierrez, 2001, p. 94)
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Harel & Sowder (1996) in their study “Towards Comprehensive Perspectives on the Learning and Teaching of
Proof’ (also Sowder & Harel (1998) define proving as
“the process employed by an individual to remove or create doubts about the truth of an observation”
(Harel & Sowder, 1996, p.6; Harel, 2001).
They argue that proving process is divided in two sub-processes:
e ascertaining, is the process employed by an individual to remove /or eliminate his/her doubts about the
truth /validity of an assertion and it is directed internally
e persuading, is the process employed by an individual or a community to eliminate other people’s doubts
about the truth /validity of an assertion and it is directed externally (Harel & Sowder, 1996, p. 6).
Harel & Sowder (1996) define “proof schemes” as a combination of the following three definitions, (p. 6)
1. Conjecture versus fact: an assertion can be conceived by an individual either as a conjecture or as a fact
(a conjecture is an assertion made by an individual who is uncertain of its truth) [...].
2. Proving (as mentioned above)[...]
3. Ascertaining versus persuading (as mentioned above).
Harel & Sowder further consider that a taxonomy of proof schemes consists of three classes: (a) The external
conviction proof schemes class, (b) The empirical proof schemes and (c) The deductive proof schemes class
(Figures 4.28a, b).

Authoritarian proof schemes
xternal conviction proof Ritual proof schemes
s chemes il Non -referential symbolic proof

Inductive proof schemes
Empirical proof s chemes
P P - * Perceptual proof schemes

Transformational proof

Deductive proof schemes P schemes
Axiomatic proof schemes

Figure 4.28a. Proof schemes (Harel & Sodwer, 1996; Harel, 2001, p. 41) (an adaptation for the current study)

The external conviction proof scheme class is distinguished among three proof schemes:

o Authoritarian proof scheme

e  Ritual proof scheme

o Non-referential symbolic proof scheme
The empirical proof schemes class is distinguished between two proof schemes

e Inductive proof schemes

e Perceptual proof schemes
The deductive proof schemes class is distinguished between two proof schemes

e Transformational proof schemes

e Axiomatic proof schemes
Harel (2001) in his study “The Development of Mathematical Induction as a Proof Scheme: A Model for DNR-
Based Instruction” offers a taxonomy of deductive proof schemes (transformational proof schemes and axiomatic
proof schemes) consisting of more subcategories as it is illustrated in the Figure 4.28b.
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Deductive Proof Schemes

| |

I Transformational I | Modern Axiomatic

[ | | | |

| Contextual | | Genenc | | Causal | I Structiral “ Axiomatizing |
[CGreok Axiomatic | [Constructive |

Arithmetical Symbolic

I Quantitative Symbolic I

Figure 4.28b. Deductive proof schemes (Harel, 2001, p.41) (adapted)

Harel (2008) also in his study “A DNR Perspective on Mathematics Curriculum and Instruction Part I: Focus on
Proving” defines “proof” and “proof schemes” as follows:
“A proof is the particular argument one produces to ascertain for oneself or to convince others that an
assertion is true, whereas a proof scheme is a collective cognitive characteristic of the proofs one
produces” (p.489).
Harel (2008) gives several examples to explain the difference regarding his classification of proof schemes.
Furthermore, according to Harel “A proof is a cognitive product of the proving act, and proof scheme is a
cognitive characteristic of that act” (p.489). Moreover, “a proof is a way of understanding, whereas a proof
scheme is a way of thinking” (p. 490) (Figures 4.28c, d).

Proving
Prgduct Characterigtic

Figure 4.28c. The triad of proving, proof, and proof scheme: a proof scheme is a common characteristic of proofs—the products of
one’s mental act of proving (Harel, 2008, p. 490).

Charagteristic

Problem-Solving
Approaches

Beliefs about
Mathematics

Figure 4.28d. The triad, mental act, way of understanding, and way of thinking (Harel, 2008, p.493)

In the Figure 4.28d, Harel (2008) depicts “the three categories, problem-solving approaches, proof schemes, and
beliefs about mathematics, comprising ways of thinking; and the three categories, external conviction, empirical,
and deductive, comprising proof schemes” (p.493).
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Furthermore, Harel (2008) suggests that
“[...] given the focus on proof and argumentation in current documents [...] there is a need for teachers to
understand the difference between °‘argumentation’’ and ‘‘mathematical proof;’’ without it, teachers
would likely be advancing argumentation skills and little or no deductive reasoning” (p. 499).

Proof and proving process can be achieved by a student if s/he has developed his/her thinking. The
development of a student’s thinking has to do with the development of his/her competence on deductive
reasoning. During the problem-solving process, students develop different kinds of reasoning including
inductive, abductive, plausible and transformational reasoning (Harel & Sowder, 1998; Peirce, 1992; Simon,
1996). For this reason, it is crucial to investigate how students’ reasoning at different levels develop during the
problem-solving process--as the students shift from the particular to the general aspect of figures and become
able to produce deductive reasoning--and what steps the students follow when they develop a proof as a product.

Peirce (1992, p.189) classifies different types of inference thus: “[...] Deductive or Analytic, [and the]
Synthetic [as] Induction and Hypothesis [or Abduction]”. Deduction starts with a general rule and arrives at a
conclusion—put otherwise, it refers to conclusions that are reached on the basis of a logical chain of reasoning
whose every step necessarily follows on from the step before (Ennis, 1969, p. 7 quoted in Simon, 1996, p.197).
Inductive reasoning works in the other direction, starting with specifics/particulars and inferring a general rule(s).
Peirce described the terms deduction, abduction and induction in terms of rules, cases and results as it is
described in the Figure 4.29 below:

Deduction:
Rule — All the beans from this bag are white

Cuase — These beans are from this bag -

Result — These beans are white
Induction:
Case — These beans are from this bag

Result — These beans are white -

Rule — All the beans from this bag are white
Hypothesis:
Rule — All the beans from this bag are white

Result — These beans are white -

Case — These beans are from this bag.

Figure 4.29. Peirce’s (1878) descriptions od deduction, induction and abduction in terms of rules, cases and results (CP
2.623, cited in Reid, 2003, p.2; Ferrando, 2005, p.9)

Ferrando (2005) opines that “abduction is the only logical operation that introduces new ideas, deduction
explicates and proves that something must be; induction evaluates and shows that something actually is
operative” (p. 17). Similarly, Baccaglini-Frank, & Mariotti, (2009) argue that: “[...] abduction marks the
transition from the conjecturing to the proving phase [...]. Abduction guides the transition, in that it seems to be
key in allowing solvers to write conjectures in a logical 'if...then' form, a statement which is now ready to be
proved” (Baccaglini-Frank, & Mariotti, 2009, p. 233).
e “Deductive reasoning is the process of inferring conclusions from known information (premises) based
on formal logic rules, where conclusions are necessarily derived from the given information and there is no
need to validate them by experiment” (Ayalon, & Even, 2008, p.235)
e “Induction is where we generalize from a number of cases of which something is true, and infer that the
same thing is true of the whole class. As, where we find a certain thing to be true of a certain proportion of
cases and infer that it is true of the same proportion of the whole class”. (CP, 2.624 cited in Ferrando,
2005, p.9).
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® “Abduction consists in studying facts and devising a theory to explain them” (5.145); Abduction “consists
in examining a mass of facts and in allowing these facts to suggest a theory” (CP, 8.209, cited in Ferrando,
2005, p.15).
o Abduction is where we find some curious circumstances, which would be explained by the supposition
that it was a case of a certain rule, and thereupon adopt the supposition [...] (CP, 2.624, cited in Ferrando,
2005, p. 80)

According to Simon (1996) “transformational reasoning in many cases overlaps with both inductive and

deductive reasoning” (p.204). Simon (1996) also defines transformational reasoning as follows (p. 201):
“Transformational reasoning is the mental or physical enactment of an operation or set of operations on
an object or set of objects that allows one to envision the transformations that these objects undergo and
the set of results of these operations. Central to transformational reasoning is the ability to consider, not a
static state, but a dynamic process by which a new state or a continuum of states are generated” (Italics by
the author) (p.201).

With the notion of “mental enactment” Simon “refers to operations carried out in mental images” (p. 201). Also

Simon points out that “Transformational reasoning involves not just the ability to carry out a particular mental

or physical enactment, but also the realization of the appropriateness of that process to a particular

mathematical situation (Italics by the author)” (p. 203).

Toulmin’s (1958) model of argumentation is a model which relates the involved elements: claims, data, warrants,

backings, qualifiers and rebuttals in the argument formulated by an individual (or a group of students that

participate) (Figure 4.30a).

Rebuttal

I Unless

So
G —w (G0

i I D : Data T’ C : Claim
Warrant

W : Warrant

On account of I

Figure 4.30a. Toulmin’s (1958) model of Figure 4.30b. Toulmin’s (1958) basic structure of
argumentation (adapted). an argument (Pedemonte, 2007, p.28).

According to Inglis, Mejia-Ramos & Simpson (2007) “Toulmin’s (1958) scheme has six basic types of
statement, each of which plays a different role in an argument.
The conclusion (C) is the statement of which the arguer wishes to convince their audience.
e The data (D) is the foundations on which the argument is based [...].
The warrant (W) justifies the connection between data and conclusion (e.g. with a rule, a definition or a
theorem)
o The backing (B) supports the warrant |...]
The modal qualifier (Q) qualifies the conclusion by expressing degrees of confidence
e The rebuttal (R) potentially refutes the conclusion by stating the conditions under which it would not
hold.[...].” (p.4)
These elements are represented in the Figure 4.30a in which the relationships between them are expressed in
sequential order. In other words, Toulmin’s model consists of the elements described above, which are explicit or
implicit. Several times an argument does not include qualifiers and rebuttals. Krummheuer (1995) suggested and
applied a reduced model of the original scheme, consisting of claims, data, and warrants of arguments “to
examine the learning of mathematics in the context of collective argumentation” (p.11). As suggested by
Krummbheuer (ibid.), during a classroom activity (or during group cooperation) one or more students could be
contributing towards the formulation of the argument, attempting to convince the other participants of the group,
including the class teacher (or the researcher). Pedemonte (2007, p.28) has presented Toulmin’s (1958) basic
structure of an argument constructing a figure with the three basic elements mentioned above (Figure 4.30b).
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Pedemonte (2003) in her study “What kind of proof can be constructed following an abductive argumentation?”
describes the basic structural elements involved in the Toulmin’s model as follows:
“In any argumentation the first step is expressed by a standpoint (an assertion, an opinion). In Toulmin’s
terminology the standpoint is called the claim. The second step consists of the production of data
supporting it. It is important to provide the justification or warrant for using the data concerned as support
for the data-claim relationships. The warrant can be expressed as a principle, a rule and the like. The
warrant acts as a bridge between the data and the claim” (p. 3).
For the representation of a theoretical diagram using tools and theoretical constructs I introduced a pseudo-
Toulmin’s model (Patsiomitou, 2011a, 2012a, b) --based on Toulmin’s model (1958) -- in which: (1) the data
could be the dynamic diagram, or an object and (2) a warrant could be a tool or a command that guarantees the
result which is the claim (or the resulted formulation). The Figure 4.31 presents a pseudo-Toulmin’s model
through example.

C: figure of a
parallelogram

D: drawing of a
parallelogram

W: theoretical dragging

Figure 4.31. An example of a reduced pseudo-Toulmin’s model (Patsiomitou, 2012b, p. 57)

In the Figure 4.31, a drawing of a parallelogram is the data (D), the theoretical dragging is the warrant (W),
and the figure of the parallelogram is the claim (C). This means that a student can theoretically drag a point-
vertex of a drawing-parallelogram and transform it into a figure-parallelogram, trying to acquire additional
properties.

Also, I have expanded the pseudo-Toulmin’s model in order to express a relationship between the figures or a
sequence of diagrams and students’ cognitive analysis as they use the tools.

4.4.1. Indicative Examples of Students’ Argumentation and Proving
Argumentation of students can be represented using Toulmin’s model. A very interesting problem which attracts
students to investigate it, is Varignon’s problem (reported in the study of Oliver, 2001).

Varignon (1654-1722) proved that “a parallelogram is formed when the midpoints of the sides of a convex
quadprilateral are joined in order”. Varignon’s proof was published in 1731 in “Elemens de Mathematique”
(Oliver, 2001, p.316). I shall report here a few indicative examples of students’ argumentation, aiming to explain
the different kinds of reasoning. Complementary to this, a deductive system of axioms, theorems and propositions
as well as concepts and definitions can help the student to organize the proving process.

A. The following excerpt belongs to the third phase, when the students M7, M8 and M13 investigated
several instances of Varignon’s theorem occurring from the use of dragging (Patsiomitou, 2012a). My aim was
for the students to understand the hierarchy of quadrilaterals and how we can construct a classification of them.
This is in accordance with what Dina van Hiele argues: “A classification made by the students is to be considered
by the teacher as proof that the subject matter has been assimilated, that associations have been formed, that the
subject matter can be handled independently” (Dina van Hiele in Fuys et al., 1984, p.170).

A

B
e/ J
B/ K [
G

D S
Figure 4.32a. Implementation of Figure 4.32b. Implementation of
Varignon’s theorem to a convex Varignon’s theorem to a non-

quadrilateral convex quadrilateral
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R: You mean that “If the diagonals are vertical lines, then the shape EFGH is a rectangle”?

M;;5: Is n'’t this a right angle? (Pointing to angle AIB) (Figure 4.32a)

M;;: Can we prove that this small shape (he means EJIK) is a rectangle?... It has a right angle (points to

the angle K1J of the diagonals), and that its sides are parallel and congruent. (Points to the parallelism of

the segments)... EJ//KI and EK//AI therefore it is a right angle.
This is an important point in M;5's development of thinking as he recalled the midpoint-connector theorem (i.e.
“The segment connecting the midpoints of two sides of a triangle is parallel to the third side and half the length of
the third side” reported in Coxford & Usiskin, 1975, p. 273) as well as an economic definition of rectangles. He
combines them both and uses deductive reasoning to support his argument. The student uses Peirce’s case, rule
and result as follows:

Case A: Its sides are parallel and congruent (EJ/KI and EK//AI) and [therefore] angle K1J is a right angle.

Rule B: 1If a quadrilateral has [opposite] parallel sides and one of its angles is a right angle, then [...].

Result C: The quadrilateral is a r