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A monograph is the goal of every author who seeks to share with others crucial ideas on a specialized subject 
s/he considers to be important. For me, the development of students thinking is a goal that I have served all my 
life as a teacher of mathematics; since my high school years, when my schoolmates asked me to help them with 
mathematics. I have understood that every student has his/her own personal way of understanding mathematics: 
their own personal learning style.  
And that it is in our mind that the information we receive is translated into the codes we understand. I have 
examples from my personal life that helped me grasp the importance of learning theories: My mother, for 
example, was trying to help me learn to ride my bicycle by running along beside me (helping me to balance). But 
I could not learn to use my bicycle alone; not until the morning I woke up and tried to instrumentally decode my 
own actions. Preexisting knowledge played an important role, but the non-conceptual behavioral repeats of 
actions on my bicycle did not help me. When teaching me to tell the time, my father used his own watch, moving 
the hands back and forth, to teach me dynamically, refusing to believe my grandmother, who said I was too 
biologically immature to understand time yet. As you can understand, I learned to tell the time more easily using 
my father’s watch as a dynamic manipulative. Cognitive conflicts, instrumental decoding and dynamic actions 
were synthesizing my own learning style. 
As part of the leaning process we have to understand what the mathematical objects are, how to use them and 
how to represent them in static or dynamic means. Language also plays a crucial role in the teaching and 
learning process. Do we learn alone as individuals, or with others in a social context? Do we learn using 
traditional means, or through e-learning and computer software?  Both are important for students. As teachers, 
we have to choose the road, the learning path our students will follow, by using a thought experiment to construct 
a hypothetical learning path that predicts their progress and their thought development.  
The key concept in this monograph is the idea of Linking Visual Active Representations (LVAR) (Patsiomitou, 
2008a, b, 2012a), which I conceived when I was writing my Master’s thesis (Patsiomitou, 2005a), and which I 
would subsequently develop and expand during the research I conducted for my Ph.D. thesis. A second 
important concept is the dynamic hypothetical learning path (DHLP) (Patsiomitou, 2012a, b). When I started my 
PhD, I did not know what I had conceived was actually a DHLP. I called it a didactic scenario, a didactic 
sequence…. But after reading the related bibliography I understood that I had been constructing DHLPs for my 
students all my teaching life to scaffold their knowledge construction and to help them develop their thinking.   
The research underlying the concrete theoretical framework was conducted in accordance with the methodology I 
apply every time I write a paper (e.g., Patsiomitou, 2015b). Specifically, the research with related “key” words 
was conducted in: (1) Databases listing international literature (ERIC, Scopus, etc.), (2) Libraries of International 
Universities, (3) open e-journals with pedagogical-educational subject-matter, (4) Conferences proceedings, (5) 
Self-publishing texts (6) Reports from surveys of international organizations (e.g UNESCO, OECD), or Reports 
on international programs or programs funded by international organizations[qualitative data A type]. The 
gathering of the material focused on studies in English language and applied a strict criterion of publication within 
the last two decades, however important articles from > 25 years ago were also considered [qualitative data B 
type]. The initial screening of the texts (i.e. the evaluation performed as part of the concrete methodical survey) 
was followed by a second screening with a strict limitation in terms of similarities or differences in certain 
characteristics [qualitative data C type]. From these texts, a number of extracts were selected which refer to the 
concepts dealt with in this work, raising issues and creating incentives for further research and study (qualitative 
type D data). Summaries of ancient texts (e.g., by Euclid, Plato and Aristotle) were added to the set of qualitative 
data in the light of their contribution to the definition of terms used in the monograph. The present work is a meta-
analysis of the qualitative type D data, on the basis of which conclusions are drawn utilizing material contained in 
already published works [with reference to the source].  
The concrete monograph includes a substantial amount of references to the bibliography and incorporates 
excerpts from papers by many important scholars. I therefore hope the current work will become the starting point 
of a “hypothetical” learning path in Didactics which I designed, a detailed reading of which will allow my University 
students to “discover” many important theories for themselves. Also, the value of this book is to motivate teachers 
of secondary education, as well as pre-service teachers of mathematics and provide them with the theoretical 
constructs they need to embark on their own investigations.    
This is the key idea of the work in question: searching for more…..discovering the undiscovered and ….seeing 
the unseen. As you read the book and understand the theories, the connections between them become 
increasingly obvious. Mathematical knowledge and understanding as well as representational systems are all 
tightly bound up with the teaching and learning of mathematics.  
However, an investigation of traditional curricula reveals an overwhelming emphasis on working with symbolic 
representations. In the context of my search for “windows” or “keys” which can facilitate the students’ cognitive 
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development, I shall be discussing dynamic geometry environments and microworlds in general with a view to 
understanding their potential and how they can be combined to make the learning of mathematics more 
interesting and relieving students of their fear of the subject.  
Every chapter is written with the goal of addressing overarching research issues, providing guidance for future 
research that involves technology. The aim is to inculcate in students of mathematics a greater awareness of the 
theory and research into the Didactics of Mathematics, taking into account the impact representational 
technological environments have had on mathematics learning and teaching. 
However, the current work reflects my understanding of teaching and learning as communicating vessels, 
allowing teachers to communicate their ideas to their students and to “learn” from their responses. My work have 
influenced from the discussions I have had with my students both in and out of class, and from the results of my 
own research. Furthermore, I would like to acknowledge all my teachers for the knowledge they shared with me 
so generously, particularly since they motivated me to continue and search for more. 
 I wish to thank my family for supporting me all the years of my life spent studying and writing. The monograph is 
dedicated to my parents for believing in me, to my children Alexandros, Loukia-Ioli and Theano-Magdalene for 
their love and patience, and who encouraged me to realize my dreams. I thank you from the heart! 
 
 
 

Athens, July 2019 
 
 

Stavroula Patsiomitou  
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I was born in Larisa, Greece and have lived the last 35 years in Athens, Greece. I am a teacher of mathematics in secondary 
education and, since 2005 a researcher. I was awarded my Ph.D. in the Didactics of Mathematics at the University of 
Ioannina, Department of Primary Education, in 2012. The topic of my thesis was “The development of students’ geometrical 
thinking through transformational processes and interaction techniques in a dynamic geometry environment: Linking Visual 
Active Representations.” I have also introduced the meanings Reflective Visual Reaction, theoretical and experimental 
dragging, instrumental decoding etc. though many international papers that have been published at PME conferences or 
refereed journals. My Ph.D. thesis is held by the Library of the Hellenic Parliament, the National Library of Greece and other 
institutions. It has also been freely available to anyone from the scientific website of the National Documentation Center since 
2013 (webpage [1]). Prior to this, in 2005, I was awarded my Master’s degree in Education, specifically, in the Didactics and 
Methodology of Mathematics, in the inter-university program of the University of Athens (NKUA) and the University of Cyprus.  
My Master thesis topic was “Fractals as a context of comprehension of the meanings of the sequence and the limit in a 
Dynamic Software environment” available on the scientific website (webpage [2]).  

I have taught mathematics many years: (a) in private high schools where I worked as teacher of Mathematics from 1983-1997 
and (b) in state secondary education, appointed in 1998. I got a positive evaluation (“Excellent”) in the context of the 
evaluation process to be appointed in the Model Schools. I was seconded in the Ministry of Education acting as Researcher, 
for the “Authority for Quality Assurance in Primary and Secondary Education” for three years (2014-17). For this time, I was 
evaluated as “Excellent” in the context of civil servants assessment. 

I taught for the academic year 2016-17 and 2017-18 the course MEM321: Didactics of Mathematics at the University of Crete, 
Department of Mathematics and Applied Mathematics. I have been also chosen for the academic year 2017-18 at the 
University of Crete to teach the course “MEM322: Using ICT in Mathematics teaching and learning (spring semester: 2017-
18). Furthermore, I was chosen as visiting Lecturer (according to the PD 407/1980), for the course “Practical training of 
prospective teachers of Mathematics” of the Department of Mathematics and Applied Mathematics of the University of Crete 
(spring semester: 2016-17). (https://orcid.org/0000-0002-7102-4582) 

At the end of the course, my students presented their work in workshops organized by the University and myself. For many 
years I was also collaborating with academics at the National and Kapodistrian University of Athens, Dept. of Mathematics, for 
the Practical training of prospective teachers of Mathematics and in supervising their training at the secondary-level.  

I have written an algebra textbook in Greek for 16- to 18-year-olds, titled “A collection of Algebra problems for students and 
math-teachers” (250 pages). I have also written a dynamic geometry textbook (two volumes-600 pages) in Greek (titled 
"Learning mathematics with the Geometer’s Sketchpad v4") which was approved by the Greek Pedagogical Institute and has 
been sent to experimental Model schools in Greece. Moreover, a didactic portfolio, entitled: “Didactic approaches to teaching 
Mathematics to students with different learning styles” (in Greek), which includes many indicative didactic approaches I use, 
demonstrating also to the results of my teaching on my students, is free at the following link (web page [3]). 

I have authored and presented more than 50 papers at conferences in Greece and abroad, published more than 35 articles in 
refereed journals in both the Greek and English languages. I have organized many interdisciplinary exemplary teachings (or 
teaching demonstrations) and exhibitions for teaching Mathematics in secondary-level education. Furthermore, I strongly 
encourage the use of e-learning in class or out of class. For this, I created e-learning material (15 electronic lessons) for the 
secondary-level (web page [4]) and the tertiary-level of mathematics. I also created an electronic journal, wrote articles and 
managed e-learning material created by secondary students (web page [5]). 

I was involved in the Greek translation of the Geometer’s Sketchpad v.4 dynamic geometry software, advising the translation 
team on the suggestion of its Chief Technology Officer, Nicholas Jackiw. My name is included on the splash screen “Special 
Thanks to ...” of the Greek version of the Geometer’s Sketchpad v.4 dynamic geometry software.  

 I was a NCTM (National Council of Teachers of Mathematics) Member for the years 2007-2012. I am also a PME 
(International Group for the Psychology of Mathematics Education) Member [2008-2019] and act as Reviewer of the 
International Conference for the Psychology of Mathematics Education (for the years 2009-2019).  

I am a mother of three children who have studied at University: a son who has awarded a postgraduate degree from the 
National Technical University of Athens in Mechanical Engineering, a daughter, who has awarded a graduate degree in the 
Chemistry Department of the National and Kapodistrian University of Athens, and a daughter, who has awarded a graduate 
degree in the History and Archaeology Department of the National and Kapodistrian University of Athens.  My scientific writing 
work and my career in Education took place in parallel with raising my three children, without any help from others.  

My aim was (/is) to help students develop their understanding, their cognitive thinking and their intelligence as they interact 
with the software environments. My research interests centre on computer assisted mathematics learning and teaching in 
general and dynamic geometry software in particular, gender’s equality and gender and leadership. 
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In my investigation of learning theories I tried to find the “key words” and common characteristics they shared. In 
the following paragraph I shall try-briefly, and in a very simplistic and superficial way- to treat complex learning 
theory issues as if they were much simpler than they are. However, the order in which they are discussed can 
provide a path, or illustrates a trajectory in didactics.  For example, in Piaget, the notion of the schema and what 
Piaget considers to be assimilation and accommodation are important notions in his theory. What Piaget’s theory 
has in common with other approaches is its investigation in the theoretical construct “development of a pupil’s 
thinking”. Where they differ is in respect of Piaget’s view that a child’s development corresponds with their 
biological mature. The age of 7, the age at which a child can distinguish materials from more than two 
characteristics in accordance to Piaget’s developmental stages, is also important for Vygotsky as the age at 
which a child can develop a close interaction between language and thought. Vygotsky also introduced 
developmental stages. Vygotsky assigns an important role to the social construction of knowledge and the role of 
language and how a student can express his/her thinking. The development of language as the student 
progresses through levels is also a feature of the van Hiele model. The van Hiele model considers the 
perturbations and cognitive conflicts which appear as a student develops their thinking up through the different 
levels. How can a student develop his/her thinking according to van Hiele? Using manipulatives at the first stages 
in their development, following an instructional sequence that seeks to scaffold students’ language. Scaffolding is 
a notion introduced and developed by Vygotsky, who considers the use of tools to provide an important scaffold 
for students’ thinking. Manipulatives are external representations, and the role of visualization has been 
discussed by many scholars. As a student develops their thinking, they develop the way in which they use 
language and formulate: at first, they use mostly inductive reasoning, but as time passes and they follow a 
concrete course of instruction, they start to formulate with abductive and deductive reasoning. The role of 
microworlds as cooperators or “antagonist” environments has been discussed extensively by many scholars, as 
has the ways in which the incorporation of tools in the digital environment scaffolds students’ thinking during 
instrumental genesis. What is the role of the student in the instructional and teaching process? Is s/he a passive 
audience or an active one? Can s/he participate actively in the learning process? Hypothetical learning 
trajectories or paths are theoretical constructs that give the student the advantage of being able to construct the 
didactic sequence and adapt it according to his/her needs. Can a student develop his/her thinking and how can 
s/he achieve it? As I discussed in previous works, using Linking Visual Active Representations a student can 
develop mental linking representations that connect the new knowledge with existing in their mental structures.  
In the current work, I shall describe the theories that led me to the theoretical constructs of my Ph.D. It is very 
important to point out that this study is not a translation of my Ph.D thesis. In my thesis I have tried to restrict the 
theoretical background to the absolute minimum required to analyze the results of the experimental process and 
arrive at new theoretical constructs. My post-doctoral empirical research has led me to “discover” several 
additional notions which are not included in my thesis; for example, the notion of hybrid- dynamic objects. I will 
also incorporate part of my previous research in the form of a meta-analysis, in the sense of an analysis that 
includes those meanings. Most of these results will be included in my next study, which will be published in the 
near future. Moreover it was very difficult for me to include in this text all the notions and theories that has been 
posited and developed since researchers, scholars and psychologists started to write about and investigate the 
fundamental notions of knowledge, understanding, development, learning, teaching and everything else is 
considered part of the Didactics of Mathematics.  
Also, as I aforementioned, the value of this book is to motivate students to start investigations, giving them the 
necessary theoretical constructs for their beginning. In the figure below I have tried to indicatively connect the 
theoretical constructs included in the current work.  

 I start my introduction to the book with the notion of hypothetical learning trajectories, 

providing ways in which the geometry curriculum can invoke a dynamic reinvention process through teaching for the 
construction of geometrical objects. The core idea in the main part of the book is that students will learn in the most 
profound way possible when something happens that makes them love the particular knowledge being studied and are 
responsible for constructing their own knowledge, as Papert argues. After the short introduction, the theoretical 
underpinnings will be presented over five chapters in which I try to incorporate the most important and essential 
meanings, notions and concepts—the presuppositions for describing and analyzing research studies in the didactics of 
mathematics 

 This chapter provides essential answers to the questions: “What are mathematical objects? What 

are diagrams, figures and diagrammatic representation? What is diagrammatic reasoning?” I also present the pairings 
of knowledge types: conceptual-procedural, relational-instrumental, operational-structural along with the concept of 
reflective abstraction.  
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 Representations, representational systems and visualizations of mathematical objects are 

discussed extensively in this chapter. Both internal and external representations and multiple external representations 
are presented with multiple examples and excerpts from the work of important scholars. I also introduce a connection 
between multiple external representations and mental images for the development of understanding, by taking into 
account technological-digital representations; I offer by this a different perspective, updating the Lesh’s model of 
multiple representations. I also discuss indicative representational environments used for the teaching and learning of 
mathematics and their role or capabilities in knowledge construction.  

 An extensive analysis of the literature regarding dynamic geometry systems is presented in this 

chapter. I explain what I mean with the notions “instrumental decoding”, “instrumental obstacles”. Moreover what is an 
artifact and what is meant as instrument during instrumental genesis. Dynamic transformations and their role in the 
construction of mathematical meanings are presented as a crucial particularity of DGS environments. I also discuss the 
notion of hybrid-dynamic objects as well as the notion of procept-in-action.  

Assisting/ Encouraging students’ cognitive growth is a major aim of mathematics education. The 

Piagetian notions (cycle of equilibration, assimilation and accommodation) are discussed in the chapter, along with my 
opinions on this. I also introduce a spiral cycle of equilibration regarding students’ number construction at different 
ages, as well as a spiral curriculum for the learning of numbers, taking into account the notions of Piaget and Bruner. 
The theory developed by van Hiele is analyzed extensively. Argumentation, proof and proving process are also 
discussed, with examples of both Toulmin’s model of argumentation, and the pseudo-Toulmin model which I introduced 
to incorporate the impact the use of the tools has on the construction of arguments. I also present an example of my 
research in which the students used a custom tool to develop their thinking. At the end the chapter I discuss my version 
of the “house of quadrilaterals”, in which I incorporate the non-convex quadrilaterals.  

The word “problem” is derived from the Greek word “provlema”. What is an open problem, what 

are the four problem-solving phases developed by Polya, and what are the factors involved in a successful problem-
solving process are issues which I discuss in the chapter in question. I present a theoretical construct-namely an 
empirical classification model for sequential instructional problems in geometry- a cognitive trajectory, which relates to 
the importance of students building a representation of a problem and the role which modeling a real-world problem 
plays in students’ gradual investigation of a problem.  
Horizontal and vertical mathematization and the modeling process as it has been developed in the international 
literature are also addressed in this chapter. The notions of hypothetical learning trajectories, paths and progressions 
are discussed as well as my adaptation on Mathematics Teaching Cycle, based on the work of Simon. I briefly present 
the DHLP for the research study of my PhD. The chapter ends with an extensive analysis on the notion of Linking 
Visual Active Representations (LVARs) and their importance on students’ thinking.  

I have presented a short history of my Ph.D. study. My advice to you is 

this: tenacity, knowledge, ambition and passion to succeed are the keys to reach your goals. And never give up!  
Are LVARs a new theory for teaching and learning? 
I leave the answer to this question to you, as well the option of commenting on my work. Please do not hesitate to 
communicate via e-mail and/or to send your comments to the following e-mail address (spatsiom@gmail.com). Thank 
you in advance. I wish you pleasant reading! 
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Introduction  

 

I. Curricula and dynamic active learning trajectories: The geometry curriculum as 

a dynamic reinvention process for the construction of geometrical objects 
  

Simon (1995) defined hypothetical learning trajectories as "the learning goal, the learning activities, and the 

thinking and learning in which the students might engage" (p. 133). A hypothetical learning trajectory is 

hypothetical “because […it] “is not knowable in advance” (Simon, 1995, p. 135).  He used the metaphor of a 

sailor to explain the difference between a trajectory and a hypothetical learning trajectory: 

 “You may initially plan the whole journey or only part of it. You set out sailing according to your plan.  

However, you must constantly adjust because of the conditions that you encounter.  You continue to 

acquire knowledge about sailing, about the current conditions, and about the areas that you wish to visit.  

You change your plans with respect to the order of your destinations. You modify the length and nature of 

your visits as a result of interactions with people along the way.  You add destinations that prior to the trip 

were unknown to you.  The path that you travel is your [actual] trajectory.  The path that you anticipate at 

any point is your ‘hypothetical trajectory’.” (pp. 136-137) 

In this thoughtful paragraph, I recognized my own experiences with my every year students in class. The way that 

my students interacted with the pre-prepared material (digital and otherwise) which I had planned for them, 

changed the whole path we followed, as I added paths to explain something that was not understood or helped 

students overcome their misconceptions by using a different path. This was the same feeling I had when I read 

how Clements & Sarama (2004) defined learning trajectories as 

“descriptions of children's thinking and learning in a specific mathematical domain, and a related, 

conjectured route through a set of instructional tasks designed to engender those mental processes or 

actions hypothesized to move children through a developmental progression of levels of thinking, created 

with the intent of supporting children's achievement of specific goals in that mathematical domain” (p. 83). 

Moreover, in their article “Learning Trajectories: Foundations for Effective, Research–Based Education” in 

section “What, if anything, is “new” in the learning trajectories construct?”, Clements & Sarama (2014) discuss 

what is new in learning trajectories, reporting the common characteristics the learning trajectories have with 

psychological and educational theories “for example, Bloom's taxonomy of educational objectives and Robert 

Gagne's conditions of learning and principles of instructional design, information-processing theories, 

information- processing models, developmental and cognitive science theories” (p.8-9).  

Remillard (1999) supports that as teachers interact with their students, they feel the need to understand their 

thinking and find methods of guiding their students towards understanding. Remillard (1999) also emphasizes 

“the substantial role that teachers play in shaping the curriculum experienced by students” (p.316). 

Officially, curriculum includes instructions, informing the teacher how to manage the teaching process in class. 

Teachers follow these instructions, but often not in a detailed way as a curriculum is only ‘an [official] plan for 

teaching” and instruction. (e.g., van den Akker, 1998, cited in Zulkardi, 2002). As Zulkardi (2002) supports  

“The plan can be found at different levels of various educational settings. At the micro level (classroom), 

the curriculum refers to a plan for concrete instructional activities. At the meso level (school or 

institutional) it refers to a course or an educational program and at the macro level it is used to indicate a 

more general curricular framework for a district, province or nation” (p. 23-24).   

According to Zulkardi (2002) “there are several types of curriculum proposed by Goodlad, et al. (1979) and 

adapted by van den Akker (1998) (Zulkardi. 2002, p. 24): 

 “ideal curriculum, the original assumptions and intentions of the designer;  

 formal curriculum, the concrete curriculum documents, such as student materials and teacher guides; 

 perceived curriculum, the curriculum as interpreted by teachers;  

 operational curriculum, the actual instructional process as realized in the classroom (also referred to as 

curriculum-in-action or the enacted curriculum);  

 experiential curriculum, the curriculum as it is experienced by the pupils;  
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 attained curriculum, the learning outcomes of the pupils. In some studies the term intended curriculum is 

used, which refers to a combination of the ideal and formal curriculum while implemented curriculum 

refers to a combination of the perceived and the operational curriculum”. 

The development of the curriculum in class by means of a constructivist process focuses on an active learning 

process (Piaget, 1937/1971), fuelled by the interaction between their experience, the mental processing of their 

knowledge (Vygotsky, 1978) and the students’ sequential construction of this knowledge (Terwel, 1999). This 

kind of knowledge construction is facilitated by the teachers and instructors, who scaffold students’ mathematical 

thinking, facilitate mathematical discussions in class, use mathematical representations, and reinforce alternative 

learning methods (Hiebert & Carpenter, 1992 cited in Fuson, Carrol & Drueck, 2000, p.277). Remillard (1999) 

considers that curriculum materials were in the 1950s “the primary vehicles used […] to stimulate curricular 

change [and] to change the nature of students’ mathematics learning opportunities” (p.315). Teachers can 

develop the curriculum in class, as it is they who have to identify and deal with their students’ difficulties and 

needs. According to Remillard (1999) 

“Regardless of how teachers draw on and use curriculum materials, their work in relation to planning and 

teaching mathematics can be viewed as curriculum development—the processes by which teachers develop 

curricular plans and ideals and translate them into classroom events. Through the curriculum development 

process, teachers plan and shape students’ experiences in the classroom. The term “curriculum 

development” is often used to describe the writing of curriculum materials. In referring to teachers as 

curriculum developers, I suggest that the curriculum development process does not stop when textbooks 

are printed, but continues in the classroom” (p.319). 

This is in accordance with Freudenthal’s proposed educational development of mathematics, his own alternative 

to curriculum development which centres on the development of curriculum materials, and seeks to foster actual 

change in classroom teaching (Gravemeijer and Terwel, 2000, p.779).  

Gravemeijer & Terwel (2000) highlight what Freudenthal  claims: 

“As viewed by Freudenthal, curriculum theory is not a fixed, pre-stated set of theories, aims and means, 

contents, and methods. Rather, it is always related to processes. Understood positively, the word 

‘curriculum’ is more often than not used in combination with change or development, for example, as in 

curriculum development or developmental research. For Freudenthal, curriculum theory was a practical 

endeavour from which new theoretical ideas might arise as a kind of scientific by –product” (p. 779). 

Many researchers (e.g., Cobb & Bauersfeld, 1995; Fuson, Carrol and Drueck, 2000, p.277) agree that problem 

solving is a fundamental process that can help teachers introduce meanings as they encourage their students to 

investigate the problem. Moreover, students can reinvent what is mentioned in textbooks through the problem-

solving process, as Fuson et al. argue:  

“in contrast to traditional textbook instruction focused primarily on rote learning and practice of skills, 

instruction is envisioned through which students construct meaning for the mathematical concepts and 

procedures they are investigating and engage in meaningful problem-solving activities” (Fuson, Carrol and 

Drueck, 2000, p.277) (ibid). 

Dubinsky (1991a) in his study “Reflective Abstraction in advanced mathematical thinking” reports the process of 

memorization without understanding on the part of students as they are obliged or accept to follow the traditional 

learning process following the instructions of the teacher who translates the curriculum into classroom 

instruction. Dubinsky supports that:   

“Our conjecture is that this is due to the overall approach in the traditional classroom, where the goal, as 

presented and defended by the teacher, is for the student to develop skills in computational procedures, to 

display on examinations, and to “get a good grade”. […] the student cannot learn these procedures through 
understanding, whereas he or she is presented by the teacher with a conflict-free way out - imitate and 

memorize. Unsurprisingly, most students accept the offer and take this route. But imitation and 

memorization do not lead to cognitive constructions and the result is that the students’ desire to learn 

through growth is suppressed. He or she is “turned off mathematics” (p. 117) . 

On the other hand, Corcoran, Mosher & Rogat (2009) state that a learning path/trajectory differs from a 

curriculum in that, the latter is not based on an analysis of research results regarding how students learn a 

concrete idea. Additionally, Corcoran et al. state that curricula are not validated by empirical research results. 

Moreover, a learning path can help teachers by providing them with a conceptual structure that allows them to 

adapt their instruction to their students’ needs (Corcoran et al., 2009, p.23). 
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When students construct a learning path, it is a meaningful way for them to construct meanings, since it avoids 

the traditional pedagogy of memorization without understanding and proving theorems in geometry that are 

already known, exactly as Ausubel (1962) reports below, distinguishing between the two types of learning, the 

rote and the meaningful: 

“The rote learning of lists of nonsense syllables and arbitrarily paired adjectives is representative of few 

defensible learning tasks in modern classrooms. […] Meaningful learning of verbally presented materials 

constitutes the principal means of augmenting the learner's store of knowledge, both within and outside the 

classroom. Hence, no research program purporting to advance this objective can avoid coming to grips 

with the fundamental variables involved in meaningful learning” (Ausubel, 1962, p. 215) 

Can we view the learning trajectories or a set of learning trajectories as an evolution of the meaning of a 

curriculum? Certainly, the learning trajectory process allows the same students to determine what the next 

sequential instructional activity will be, whether it is to overcome an obstacle or to form the next cognitive step in 

their understanding of a concrete concept. Brousseau (1986) argues that  

“Students start their learning process in an environment that is unbalanced and full of difficulties and 

obstacles just like human society. The new knowledge comes from the skill to adapt to the new 

circumstances and stimuli and a new reaction to the environment is the proof that a learning process has 

taken place.” (cited in Manno, 2005, p.23) 

Can a teacher working in cooperation with his/her students become the designer of a hypothetical learning 

trajectory (HLT) in mathematics or a sequence of HLTs? While this is not the aim of the concrete study, I 

nonetheless agree with Gravemeijer, Bowers & Stefan (2003) 

“To start developing a sequence of instructional activities, the designer first engages in a thought 

experiment to imagine a route the class might invent (Gravemeijer, 1999). Here, knowledge of the history 

of mathematics as well as prior research concerning students' invented mathematical strategies can be used 

to develop what Simon (1995) has called a Hypothetical Learning Trajectory, or a possible taken-as-shared 

learning route for the classroom community.” (p. 52). 

Corcoran, Mosher & Rogat (2009) also stress that there are common characteristics shared by curricula based on 

research and the learning trajectories. The most important is that both maintain a close connection between the 

tasks and the students’ mathematical thinking. Corcoran, Mosher & Rogat (2009)  defined a learning progression 

in science based on an NRC (2007) report: “[…] empirically grounded and testable hypotheses about how 
students’ understanding of, and ability to use, core scientific concepts and explanations and related scientific 

practices grow and become more sophisticated over time, with appropriate instruction.” (p. 8)   

According to Freudenthal (1973) mathematics education should be a process of guided reinvention. Guided 

reinvention for Freudenthal means a faithful reproduction of a scientific activity by the student, and is thus an 

elaboration on the Socratic Method.  

“Freudenthal saw the reinvention approach as an elaboration of the Socratic method and to illustrate the 

Socratic method, he spoke of ‘thought experiments’, i.e.the thought experiment of teachers or textbook 

authors who imagine they are teaching students while interacting with the man dealing with their probable 

reactions. One part of the thought-experiment, therefore, lies in anticipating student reactions. The other 

part consists in the design of a course of action that fits anticipated student reactions. More precisely, the 

idea is that teaching matter is re-invented by students in such interaction” (Gravemeijer & Terwel, 2000, p. 

786).  

The method of guided reinvention is linked epistemologically with the Socratic Method (“maieftiki” in Greek) by 

which teachers ask questions designed to elicit the correct answer and reasoning processes. The questioning 

process thus helps students determine and extend their underlying knowledge. Guided reinvention differs 

qualitatively form the Socratic method because the aim of the method is the students to completely participate, 

undertaking active role by self-acting for the construction of meanings. “Though the student’s own activity is a 

fiction in the Socratic Method, the student should be left with the feeling that it [i.e. understanding and insight] 

arose during the teaching process; that it was born during the lesson, with the teacher only acting as midwife”. 

(Freudenthal, 1991, p. 100-101, cited in  Gravemeijer & Terwel, 2000, p. 787) 

Gravemeijer (2004) also supports that  

 “The teachers can influence their students’ inventing activity only in a more indirect manner. To do so, 

teachers [adding here: or the designers of a learning trajectory] will have to put themselves in the shoes of 

the students. This asks for a shift from an observer’s point of view to an actor’s point of view (Cobb, 

Yackel and Wood, 1992), where the actor is the student, and the observer the teacher. The challenge for the 
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teacher—and also for us—is to try to see the world through the eyes of the student. How much these 

worlds may differ may be illustrated by other pictures of Watson’s strip about Calvin and Hobbes.” (p.8) 

(Figure I).   

Many researchers argue that working in a dynamic geometry environment allows students to reinvent their 

personal knowledge by interacting with the other members of the group or with the teacher (or the participating 

researcher). For example, Furringhetti & Paola (2003) support that “in this case, the reinvention is guided, […] 
by the use of the [dynamic geometry] environment”. 

 

 
Figure I. “Actor’s point of view” vs “observer’s point of view” 

(Copied from Bill Watson (1996), It’s a magical world, Kansas City: Andrew and McMeal, page 58 and 82, cited in Gravemeijer, 2004, 

p.8) (adapted) 

 

  

Looked at from this point of view, learning geometry is a human activity and learning becomes a process of 

dynamic reinvention (Patsiomitou, 2012a, b, 2014), following on from the guided reinvention posited by 

Freudenthal (1973).  

Papert (1984) in his paper “Microworlds: Transforming Education” describes the experience of a little girl who 

discovered number “zero” as she played with a microworld. This was a crucial point for her understanding, as she 

understood that the command “S0” made the microworld stop moving. As Papert argues (1984, p. 81) 

“I think she was excited because she had discovered zero. They tell us in school that the Greek 

mathematicians, Pythagoras and Euclid and others, these incredibly inventive people, didn't know about 

zero. […]The fact that not every child discovers zero this way reflects an essential property of the learning 

process. No two people follow the same path of learnings, discoveries, and revelations. You learn in the 

deepest way when something happens that makes you fall in love with a particular piece of knowledge.” 

These words of Papert made me think of my own process with my students over the years teaching in class. They 

loved particular pieces of knowledge, presented in static or dynamic geometry software (DGS environment), with 

its active-“alive” representations (e.g., Patsiomitou, 2005a, 2012a, 2018b, 2019a, b) that made different students 

discover concepts in several different ways, at different times over the years. I also fell in love with the particular 

incidents, which have played an important role in my thinking process since then. The role the active-“alive” 

representations play in the learning trajectory which, though it may take several different routes to reach it, has 

the same learning goal, made me think of a way to define what a dynamic active learning trajectory is, based on 

the previous definitions of  Simon (1995) and Clement & Sarama (2004, 2014): Dynamic Active Leaning 

trajectories (Patsiomitou, 2018a, p. 244) are sequential instructional tasks and activities engaged in [with] a 

learning goal and designed with dynamic active linking representations to engender mental linking 

representations which help students develop their thinking in the specific math domain. 
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II. A trajectory for the teaching and learning of the “Didactics of Mathematics”                  

[using ICT] 

Biehler, Scholz, Sträßer, and Winkelmann (1994), in the Preface of “Didactics of Mathematics as a Scientific 

Discipline”, argue that “Didactics of mathematics is an applied area of activity: As in engineering, (applied) 

psychology, and medicine, the boundary between scientific work and (constructive) practice is – to say the least – 

"fuzzy". Didactics of mathematics shares a certain type of (social) problem with the above-mentioned disciplines, 

namely mathematics education; and it uses a multiplicity of methods” (p. 3).  

Novák (2003) states that “Didactics of math is usually considered a special didactics (a subject, possibly branch 

didactics), in a sense of educational theory in math. It is a science with its own structure, logic and the way of 

thinking. We can distinguish four dimensions in it: content, pedagogical, psychological, and constructive.”(cited 

in Blažková, 2013, p.5) 
Chevallard (2005) in his study “Steps toward a new epistemology in mathematics education” determines what 

didactics is. As he argues, “It derives from the Greek didaktikos, which means (or meant) “skilful at teaching”. 

[…] The idea behind didactics is that someone attempts to do something so that someone – generally, someone 

else – learns something. The adjective “didactic” refers to a cultural posture existing from time immemorial” 

(p.1).  

Chevallard’s (2005) definition on didactics is included in the following paragraph:  

“Didactics should, in my view, be defined as the science of the diffusion of knowledge in any social group, 

such as a class of pupils, society at large, etc. This “definition” requires some comments. In the first place, 

let me emphasise that its referring to a science is no writing automatism. It points to the fact that research – 

in mathematics education, for example – is not enough. Science is both a process of gaining knowledge, 

and the organised body of knowledge gained by this process. (It happens that, in didactics, the knowledge 

gained and organised is about… the diffusion of knowledge!) Doing didactics is therefore not only just 
“doing research”, and, consequently, producing pieces of knowledge; it is also, inseparably, organising 

these pieces into a body of knowledge – didactics –, with an experimental (or clinical) basis and a 

theoretical superstructure endowed with a paradoxical capacity, that of strengthening its empirical 

foundation” (p.2) (italics by the author). 

Tchoshanov (2013) defines Didactics “as a science, engineering, and art of teaching and learning” (p.18). 

Tchoshanov (2013) agrees with Chevallard and other scholars that Didactics is not only the science, but also the 

art of teaching and learning. Tchoshanov additionally considers didactics to be “an engineering of teaching and 

learning”, namely “the analysis, design and construction of teaching products for learning” (p.17-18) (Figure II). 

Tchoshanov (2013) also adopts D’Angelo’s (2007) view of didactics which defines it as “e-Didactics”, an ICT-

integrated didactics (p. 21). 

 

 
Figure II. Didactics as a science, engineering, and art of teaching and learning (Tchoshanov, 2013, p.18) (adapted) 

 

For the current work, I have adopted a blending, an amalgam of the aforementioned definitions.  

For me ‘Didactics of Mathematics’ [using ICT] is the science and art of teaching and learning mathematics, 

designing and implementing teaching and instructional products for the learning of mathematics in static or 

computing environments, incorporating the content of the subject of mathematics, mathematics pedagogy, the 

history of mathematics, and psychological theories of learning, teaching and human-computer interactions.  

In the current monograph, my aim is to organize these instructional products into a body of knowledge, a 

trajectory for the teaching and learning of the ‘Didactics of Mathematics” [using ICT]. Trying to synthesize 

everything I have read or heard I found myself “entangled” in knowledge items that can interconnect, or 
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contradict one another. A small part of this body of knowledge will be presented over the next five chapters. I 

have tried to present the content incorporating many illustrating figures-- the radiance of thoughts and wisdom of 

the cited scholars-- which is itself “piece of the art for Didactics of Mathematics”. It is thanks to their efforts and 

ideas that the Didactics of Mathematics [using ICT] is a scientific discipline as important as Mathematics, 

Pedagogy, Engineering, Medicine or Psychology. 
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Chapter I.   

1.1. What are Mathematical Objects?  

Dörfler (2002) in his study “Formation of Mathematical objects as decision making” asserts that the question 

“what is a mathematical object” can be answered from different viewpoints: 

(a) Mathematical objects are “exemplified above an apriori existence outside of time and space and 

independent of human thinking”, an answer offered by Plato (360 B.C.); 

(b) Mathematical objects “are or arise from structures, patterns and regularities in the physical world 

(Kitcher, 1984)”; 

(c) Mathematical objects “are, or reflect, structures, patterns and regularities in and of human actions and 

mental operations (like counting, measuring, comparing, moving), according to genetic epistemology of 

Piaget” (p.340). 

According to Dörfler “All these philosophical or epistemological positions have in common that they in one way 

or the other take a referential view on the mathematical objects as they occur in mathematical texts and 

discourse in general” (p.340).  

When a student endeavors to interpret the word “mathematical object”, s/he could consider it through different 

lenses: as something material we can perceive through our sensory system, as something that we can act on, 

or/and as something we can think about. Mathematical objects are a particular kind of object (e.g., functions, 

operations on functions, spaces of all kinds-for example Banach spaces, geometrical figures). 

Numerous researchers have investigated the nature of mathematical objects and tried to define them (e.g., Davis, 

1983, 1984; Piaget, 1985; Gray & Tall, 1991, 1994; Dubinsky, 1991a, b; Dubinsky & McDonald, 2001; Sfard, 

1987, 1989, 1991, 1992; Tall et al., 2000). As we know, since Plato, a mathematical object has been considered 

as something abstract. Portnoy et al. (2006) report Plato’s (360 B.C.) perspective on the figural constructions of 

geometers as a connection between the figural objects (perceived objects) and the corresponding conceptual 

objects (conceived objects): 

“they are not thinking about these figures but of those things which the figures represent; thus it is the 

square in itself and the diameter in itself which are the matter of their arguments, not that which they draw; 

similarly, when they model or draw objects, which may themselves have images in shadows or in water, 

they use them in turn as images, endeavoring to see those absolute objects which cannot be seen otherwise 

than by thought. (Plato’s Republic, 360 B.C., p. 391, reported in Portnoy et al., 2006, p. 199). 

A large amount of researchers pointed out that a mathematical object can be represented using different models 

and representations (e.g., Chevallard, 1989; Janvier, 1987a, b, c) or semiotic systems (e.g., Duval, 1993, 1995a, b, 

1999, 2000). As Duval (1993) argues “[…] on the one hand, the learning of mathematical objects cannot be other 
than a conceptual learning and, on the other hand, it is only by means of semiotic representations that an activity 

on mathematical objects becomes possible” (p. 38). Moreover, according to Duval (1999) "the only way of 

gaining access to mathematical objects is using signs, words or symbols, expressions or drawings"(p.60).  

On the other hand, what is a mathematical concept? In the words of Peirce (1894): “We think only in signs. 

These mental signs are of mixed nature; the symbol-parts of them are called concepts […]” (Peirce, 1894, 

reported in Stewart, 2008, p. 12). In order to develop an understanding of a concept, the students have to create a 

transitional bridge between the ‘external’ and the ‘internal or mental’ representation of this concept (e.g, Kaput, 

1999; Goldin & Shteingold, 2001; Pape & Tchoshanov, 2001; Tchoshanov, 2013). Tchoshanov (2013) also 

argues that “the development of students’ representational thinking is a two-sided process, an interaction of 

internalization of external representations and externalization of mental images” (p. 74). 

Moreover, students’ visualization of an object may differ from their perception of it, while the important thing 

is to understand which mathematical concept or relationship is being represented. A computer microworld can 

encourage students to interact with visually represented mathematical concepts and ideas, promotes dynamic 

imagery and can help them to translate between mathematical representations or interpret information received 

from a real world environment (e.g., Battista, and Borrow, 1997). Kaput (1991) reporting Vergnaud (1987) 

explains and depicts the relation between mental representations (i.e. the signified) and material representations 

or physically instantiated symbols (i.e. the signifier), for example pictorial, diagrammatic notations, mathematical 

symbols, diagrams, graphic representations (Figure 1.1). According to Kaput (1991)  
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“When using such material notations, we build and/or elaborate our mental structures in cyclical processes 

that go in opposite directions”. (p. 57)[…] The directionality of the reference depends on the cognitive 
operations involved, which in turn depend on the context, and hence is not fixed”.(p.59). 

 

Figure 1.1. Kaput’s (1991) relation between mental representations and physically instantiated representations (p. 57) (an adaptation for 

the current study) 

 

“A science that studies the life of signs within society is conceivable. It would be part of social psychology 

and consequently of general psychology. I shall call it semiology (from Greek semeion “sign”). Semiology 

would show what constitutes signs, what laws govern them.” (Ferdinand de Saussure (1857-1913), cited in 

Danesi, 2004).  

Peirce (1933) conceptualized a semiotic triad consisting of three components: sign, object, and interpretant. 

Kaput (1991) clarifies Peirce’s (1933) semiotic behavior as involving an interaction among “sign, object and 

interpretant”, giving an example: “a numeral A-the sign, that refers to the numerosity of a set of objects B-the 

object and the mind in which the integration takes place-the interpretant […]” (p.59). Similarly, Duval (2000) 

supports that “interpretant is emphasized in such a way [in the triadic conceptualisation of Peirce] that 

representations are mainly mental phenomena and individual beliefs” (p.58).  

In other words the sign/’representamen’ represents somebody or something in a given way or capacity, the 

‘representamen’ conveys an equivalent sign in the mind of someone else. This equivalent sign we call the 

‘interpretant’ of the initial sign and the ‘interpretant’ represents the ‘object’ or ‘idea’ of the first ‘sign’, which we 

call a ‘referent’. A representamen is the ‘vehicle’ for the sign, the interpretant is the ‘sense’ and the referent is the 

‘object’. A representamen thus corresponds to Saussure’s ‘signifier’—it is a perceptible object which functions as 

a sign. A ‘referent’ is an object the representamen stands for. The image the referent creates in the mind of 

another is the interpretant. According to Adda (1984)  

“First of all, being abstract, the objects of mathematics that are treated, the properties and the relations that 

are studied can never be seen (in contrast, for example, with the objects studied by the physical and natural 

sciences) and so the distance between the signified and the signifiers plays here a role that is more crucial 

than for any other type of discourse. […] By studying the «misunderstandings» brought about by this 
confusion between signifier and signified we have observed the responsibility they bear not only in a very 

great number of errors but also in the impossibility of acquiring the concepts themselves” (p.58). 

Saenz-Ludlow & Kadunz (2016) elaborated on Peirce’s semiotics. In their study “Constructing Knowledge seen 

as a semiotic activity” they discuss issues of signs, sign use, and communication. As Saenz-Ludlow & Kadunz 

argue  

 “[…] semiotics elucidates the way knowledge and experience of mathematics students can co-construct 

each other;  

 […] shows how students’ construction of mathematical knowledge is linked to successful communication 

mediated by visible signs with their rule-like transformations” (p. 1). 

Saenz-Ludlow & Kadunz (2016) used the vertices of two joined triangles to position the three components sign, 

object, and interpretant (Figure 1.2).  According to Saenz-Ludlow & Kadunz (2016) 
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“In the counter-clockwise direction (represented by the interior triangle), the sign vehicle materializes 

certain aspects of the real Object. […] The sign-vehicle evokes an interpretant in the mind of the Person 

who perceives it and who is willing to make some kind of sense. This interpretant gives rise to an object, in 

the mind of that Person,[…] Peirce calls this object a dynamic object. This dynamic object is continually 
modified in the mind of the interpreting Person […] Put it differently, the sequence of dynamic objects is 
the result of the Person’s ongoing process of conceptualization” (p. 9). 

 

 
Figure 1.2. The sign-vehicle mediates between the object and the interpretant (Sáenz-Ludlow & Kadunz, 2016, p. 9) 

 

Signs can be classified into three categories: icon, index and symbol (Yeh & Nason, 2004, p. 4):  

 “A “Sign” can only represent certain aspects of the object and in addition, it has aspects that are not 

relevant to the object (Yeh & Nason, 2004, p.4; Cunningham, 1992).  

 An “Icon” stands for an object by resembling or imitating it.  

The key characteristic of an icon is similarity to its object. Its main function is to represent relations. 

Icons represent things by imitation, […] (Peirce, EP II, 17; NEM III, 887, cited in Bakker & 
Hoffmann, 2005, p.338). 

 An “Index” refers to the sign which is the effect produced by the object.     

The main function of indices is to direct someone's attention to something, exactly as in everyday 

language when we use the indices 'here', 'there', 'now', 'tomorrow', 'next', or the letters we use in 

geometry or the variables in algebra […](Peirce, 1.369; NEM III, p. 887, cited in Bakker & 
Hoffmann, 2005, p.339). 

 A symbol refers to objects by virtue of a law, rule or convention.  In this case, language could be a 

prototype of symbols. (Yeh & Nason, 2004, p.5).  

A Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually an 

association of general ideas, which operates to cause the symbol to be interpreted as referring to 

that Object. (Peirce, EP II, 292, cited in Bakker & Hoffmann, 2005, p.339)  

Kadunz and Straesser (2004) define sign “as an entity, which stands for something else, which points to 

something else” (p. 242). They add that “it is not the sign, which points to something, but the person looking onto 

the sign who links it to the object”.  

Johnson-Laird (2004) in his study “The history of mental models” presents an alternative view of signs:  “Peirce 

distinguished three properties of signs […] First they can be iconic and represent entities in virtue of 
structural similarity to them. Visual images, for example are iconic. Second, they can be indexical and 

represent entities in virtue of a direct physical connection. The act of pointing to an object, for example, is 

indexical. Third the can be symbolic and represent entities in virtue of a conventional rule or habit. A 

verbal description, for example, is symbolic. The properties can co-occur: a photograph with verbal labels 

for its parts is iconic, indexical, and symbolic” (p. 181) 

I shall try to explain the meanings of symbol and sign with simple examples. If we ask the question “What is a 

quadrilateral?”, while pointing at a figure of a quadrilateral on the board, the object quadrilateral becomes the 

signifying form for the word “quadrilateral”. This is to say that the word acquires a meaning when we point to a 

correspondent object. In other cases the word can be used to represent the object, in order to communicate with 
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other persons. If we have for example written an article on quadrilaterals in which we try to explain the 

mathematical meaning, the article is a sign which represents the object of our knowledge, which is something we 

want to share with other people. A quadrilateral constructed on a computer screen or on the blackboard can be 

characterized as an image, a diagram, a metaphor or a figure. According to Peirce, 'images', 'diagrams', and 

'metaphors' are three subcategories of Icons. Diagrams in mathematics are “Icons of a set of rationally related 

objects” in the words of Peirce.  

"[…] a Diagram is an Icon of a set of rationally related objects. By rationally related, I mean that there is 

between them, not merely one of those relations which we know by experience, but know not how to 

comprehend, but one of those relations which anybody who reasons at all must have an inward 

acquaintance with. This is not a sufficient definition, but just now I will go no further, except that I will say 

that the Diagram not only represents the related correlates, but also and much more definitely represents 

the relations between them, as so many objects of the Icon." (Peirce, 1906, 'PAP [Prolegomena for an 

Apology to Pragmatism]', NEM 4:316, c. 1906, cited in Kadunz and Straesser, 2004, p. 245). 

Building on the aforementioned researchers’ viewpoint, one might wonder: Are the students able to grasp logical 

operations on abstract mathematical objects? What does it mean to obtain access to an abstract mathematical 

object or a mathematical entity? What about their conceptions of geometrical objects?  

1.2. Geometrical Objects: Drawings, Figures, Constructions 

A number of researchers (for example Dina van Hiele, in Fuys et al, 1984; Parzysz, 1988; Fischbein, 1993; 

Bartolini Bussi, & Mariotti1998; Mariotti, 1995, 1997; Pratt & Ainley, 1997; Jones, 1998; Mesquita, 1998; 

Hollebrands, 2007; Battista, 2007; Patsiomitou, 2009a, b, 2011, 2012a, b) report distinguish among figures, 

constructions, drawings and diagrams when they report geometrical representations.  

Dina van Hiele made clear in her writings the distinction between the ‘drawing’ and the ‘construction’ of a shape. 

She distinguished the notion of construction from the notion of drawing in order to express the difference 

between the images that a student constructs (in a paper/pencil environment) when s/he tries to externalize his/her 

mental representation, using geometry rules (or not in correspondence). According to Dina van Hiele “the teacher 

[in order] to reach his goal [has] to refine [to his/her students] that there is a clear distinction between the drawing 

of figures and the constructing of figures” (Fuys et al., 1984, p. 36).  

Laborde (1993 quoted in Hollebrands, 2007) describes the drawing as referring to the material entity, and the 

figure as the set of discursive representations and diagrams which links the drawing to the abstract mathematical 

meaning (Hollebrands, 2007, p.167). Pratt & Ainley (1997, p.296) also argue that “a drawing incorporates many 

relations which are to be disregarded when considering the corresponding figure […]. Furthermore, a drawing is 
fixed as a single case, whereas the figure is often intended to represent an infinite set of cases.” Pratt & Ainley 

use the term “construction […] as a way of incorporating both the drawing and the figure” (p.297). 

Mesquita (1998) considers that the representation of a figure or a situation in geometry can suggest two different 

possibilities:  

 The possibility to conceive “its ‘finiteness’, in the sense of finite and diversified forms (Gestalten) in its 

spatio-temporality”;  

 The possibility to conceive “its ‘ideal objectiveness’ detached from the material constraints linked to 

external representation” (p. 185-186). 

This consideration is very close to the notion of figural concepts formulated by Fischbein (1993) in his study 

“The theory of figural concepts”.  Fischbein argues that: 

“The objects of investigation and manipulation in geometrical reasoning are then mental entities, called by 

us figural concepts, which reflect spatial properties (shape, position, magnitude), and at the same time, 

possess conceptual qualities -like ideality, abstractness, generality, perfection” (p. 143). 

Building on Fischbein’s figural concepts, Dvora and Dreyfus (2004) declare that  

“the conceptual nature of the geometrical figures includes characteristics such as completeness, abstraction 

and generalization while the figural nature includes characteristics such as colour, size and shape. The 

conceptual and figural characteristics used when proving depend both, on the conceptual system that 

includes abstract ideas and concepts and on the figural system that includes mental representations and 

images.”(Dvora &Dreyfus, 2004, p. 311).  

Parzysz (1991) in his study “Representation of space and students’ conceptions at high school level” mentions the 

main purposes which can be fulfilled by drawings:  
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 “they illustrate definitions or theorems […]. This is due to the nature of geometry […], whose objects are 
obviously linked with material realizations (drawings, or models which can be drawn). 

 they sum up a complex set of information: the "figure", drawn in order to solve a geometrical problem, 

allows a simultaneous glance at most of the data present in the wording.  

 they help in conjecture: the "figure" also makes it possible to suggest potential relations between its 

elements, which will have to be demonstrated afterwards […]” (p. 576). 

A crucial issue concerning geometrical meanings relates to the nature of the geometric reasoning students employ 

to solve construction problems. During the problem-solving process, students develop different kinds of 

reasoning including inductive, abductive, plausible and transformational reasoning (e.g, Harel & Sowder, 1998; 

Peirce, 1992; Simon, 1996). Mariotti (1997) as far as geometrical reasoning is concerned, distinguishes between 

geometrical figures as mental objects and visual images.  Geometrical reasoning deals with a  

"mixture of two independent, defined entities that is abstract ideas (concepts), on the one hand, and sensory 

representations reflecting some concrete operations, on the other" (Fischbein, 1993, p. 140). 

The perception of a visual image of a geometric object does not coincide with the mental object a student has in 

mind. For example, the orientation of the geometrical object could play an important role to students 

understanding of the geometrical figure. I use an example every year with my students, in the light of the 

following episode that occurred one year in class. I was very surprised when, as I was using a material classroom 

triangle tool (a right and isosceles triangle-tool) to investigate their understanding of “triangles’ classification”, a 

student answered as follows (Figure 1.3):  

 
Figure 1.3. A right and isosceles material-triangle 

 

Researcher: What kind of triangle is this?” 

Student: It is an isosceles triangle. 

Researcher: (Turning the triangle through 90 degrees) Now, what kind of triangle is this? 

Student:  It is a right-angle triangle 

Researcher: So, what kind of triangle is it?   

Student: ....It depends on the way you hold it!  

It was the same object, but the orientation of the right angle played an important role in my student’s answer. The 

way the student answered was also affected by his mental image of the right triangle, which Mesquita calls 

“prototypical figure” (1998, p. 189) which is to say an internal representation recalling a prototype image (e.g., 

Hershkovitz, 1990) that s/he has shaped from a textbook or other authority. 

Mesquita (1998) states that the term “figure”’ can be considered “as a synonym for external and iconical 

representation of a concept or a situation in geometry. A concept in the words of Fischbein (1993) “expresses an 

idea, a general, ideal representation of a class of objects, based on their common feature. In contrast, an image 

(we refer here to mental images) is a sensorial representation of an object or phenomenon” (p. 139) 

Parzysz (1988) in a similar way defined a drawing as a material representation of a geometrical object and a 

figure as the “text defining it [the geometrical object]” (p. 80). 

Fischbein (1993, p. 139) explains how one can prove a known geometrical proposition “using descriptions of 

apparently practical operations”: “consider the isosceles triangle ABC with AB = AC. We want to prove that <B 

= <C” (Figure 1.4).    

“In this proof one has used a certain amount of knowledge expressed conceptually: the two sides AB and 

AC have been declared to be equal. One has used the concepts of point, side, angle and triangle. One has 

mentioned verbally the process of reversion. But, at the same time, one has used figural information and 

figurally represented operations - mainly the idea of detaching the triangle ABC from itself, reversing it 

and superposing it upon the original one” (Fischbein, 1993, p. 140) [...] What we assume is that, in the 

special case of geometrical reasoning, one has to do with a third type of mental objects which 

simultaneously possess both conceptual and figural properties. (Fischbein, 1993, p.144). 
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Figure 1.4. Reversing and superposing the triangle ABC 

 

Figure 1.4 illustrates the reversing and superposing of the triangle in Fischbein’s example mentioned above 

(which I created to make the proof obvious).   

In other words it is crucial for the students’ cognitive development to improve their ability to transform the visual 

image or drawing they perceive, into a construction with concrete properties. The investigation of problems in the 

dynamic geometry environment provides the feedback for the students to acquire a theoretical background, 

necessary for the conceptual development in Euclidean geometry. 

1.3. Diagrams, Diagrammatic Representations and Diagrammatic Reasoning 

Diagrams are an important medium (or ‘vehicle’, to use Peirce’s terminology) in mathematics. 

They are visual representations that can transfer information from the problem into a static or dynamic 

environment. Mesquita (1998) states that the term “diagram” sometimes is used in the [same] sense” we use the 

term figure (p 183). Bakker & Hogffmann (2005) argue that geometrical figures are diagrams as they represent 

relations among the lines and the points-vertices, indicated by letters. According to Bakker & Hogffmann (2005): 

“Peirce defines a 'diagram' as a sign "which is predominantly an icon of relations and is aided to be so by 

conventions. Indices are also more or less used." (Peirce, 4..418, 1903). Thus, a diagram is a complex sign 

which includes icons, indices, and symbols (as indicated by the hint at conventions). Most important, 

however, is its iconic character, which results from the fact that a diagram, first of all, is supposed to 

represent relations. Thus, geometrical figures such as triangles are diagrams because they represent 

particular relations of lines and vertices that are indicated by letters. Logical propositions are diagrams, 

because they represent certain relations of other propositions, symbols and indices (e.g. the modus 

ponens)” (Bakker & Hoffmann, 2005, p. 339). 

Furthermore, scholars use the terms “image” or “metaphor” to refer to the material diagram we need to denote 

relations among objects (or to turn a verbal or symbolic expression into a different representation (mental or 

iconic). Kadunz and Straesser (2004) in their study “Image-Metaphor-Diagram: Visualization in Learning 

Mathematics” define  

 “images as potential representations (i.e.: a not necessarily material means to speak about something), 

which can - by means of analogy - present a multitude of relations. […] images - as analogous 

representations - offer the heuristical part of learning […] an image relates to something, it 'denotes' 

something. 

 metaphor as a pattern, which transports the meaning of a word into a meaning, which is valid only by 

means of a mental comparison (Du Marsais, 1730, cited in Kadunz and Straesser, 2004, p. 243) 

Diezmann (2005, p.281) considers that diagrams have three key cognitive advantages in problem solving: 

 “They facilitate the conceptualisation of the problem structure, which is a critical step towards a 

successful solution (van Essen & Hamaker, 1990)”.  

 “They are an inference-making knowledge representation system (Lindsay, 1995) that has the capacity 

for knowledge generation (Karmiloff-Smith, 1990)”.  

 “They support visual reasoning, which is complementary to, but differs from, linguistic reasoning 

(Barwise & Etchemendy, 1991)” (p. 281). 

Reasoning through a diagram is called diagrammatic reasoning, namely diagrammatic reasoning is reasoning 

through a diagram. Students often fail to generate accurate diagrams in mathematics as they do not have 

experience or competence in what Peirce (1903), Bakker & Hoffman (2005) and others call “diagrammatic 

reasoning”. For Peirce, diagrammatic reasoning involves three steps (Bakker & Hoffman, 2005): 
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 “The first step is to construct a diagram […] Such a construction of diagrams is motivated by the need to 

represent the relations that students consider significant in a problem. This first step may be called 

'diagrammatization'”. 

 “The second step is to experiment with the diagram (or diagrams). Any experimenting with a diagram is 

being executed within a representational system and is a rule or habit-driven activity. […]” 

 “The third step is to observe the results of experimenting and reflect on them […]” (pp. 340-341).  

 

 
Figure 1.5. A metaphor for the Proposition 5 (the algebraic identity a2-b2), from Euclid’s “Elements”, BOOK II, created by the author 

in a DGS (Patsiomitou, 2008d, p. 199) 

 

And although students have knowledge, they cannot use it effectively to represent a diagram that stimulates their 

ability to make sense of mathematics. This is to say that diagrams as both representations encourage students to 

reflect both on the structure of the problem they have been presented with, and on their own pre-existing 

mathematical knowledge—meaning that the diagrams the students produce can serve as a window through which 

to view their mathematical strengths and weaknesses. However, while diagrams can help students to 

conceptualise a problem, they cannot make up for a lack of fundamental mathematical knowledge. Dvora & 

Dreyfus (2004) similarly support that diagrams in geometry can become obstacles that can be divided in three 

types:  

 Particularity of Diagrams: [...] This obstacle causes students to be trapped by the one case concreteness 

of an image or diagram which may contain irrelevant details or may even introduce false data 

 Prototypical Diagrams as Models: [...] a prototypical image may induce inflexible thinking thus 

preventing the recognition of a concept in a non-standard diagram. 

 Inability to "See" a Diagram in Different Ways: [...] It is only at level 2 [van Hiele level –analysis] that 

the student can focus on parts of a diagram and analyze properties of figures. (p.311-312) 

Dvora & Dreyfus, suggest that: 

“In order to prevent the development of misconceptions regarding this phenomenon, teachers should be 

equipped with appropriate tools for working with their students [...]” (p.318)  

Figures 1.5 and 1.6 are snapshots of a diagram that I created in Geometer’s Sketchpad (Jackiw, 1991) to 

represent in an interactive way the Proposition 5, in Euclid’s “Elements”. The conceptualization of  its 

construction is reported in details in the study “Do geometrical constructions affect students algebraic thinking” 

(Patsiomitou, 2008c) and in extended version in the study “The impact of Structural Algebraic Units on students’ 
algebraic thinking in a DGS environment” (Patsiomitou,  2009a).  

“Netz’s (1999) study of the practices of lettering diagrams in Greek geometry allows the observation that 

Greek geometers would produce their diagrams at the same time that they would conceive their proofs.  In 

other words, the diagram would not be drawn at the end to merely illustrate the written proof; nor would 

the diagram be drawn in its entirety before the production of the argument. Rather, the Greeks would use 

the argument to complexify a diagram by adding new constructions, or at least complexify the reading of a 

diagram by adding new signs to focus attention on previously ignored features of a diagram” (Herbst, 

2004, p. 134). 
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Figure 1.6.  Interaction with the dynamic diagram (Patsiomitou, 2008c, p. 199) 

 

Scholars have debated the effectiveness of diagrams in reasoning. Barwise and Etchemendy (1998) conclude that 

diagrams play an important role in reasoning as a diagram can assist students visualize the steps of a proof.  

 [...] Diagrams, like sentences, carry information: they carve up the same space of possibilities, though 

perhaps in very different ways.[...] Maps. charts. diagrams, and other nonsentential forms of representation 

can be and often are, of equal importance to sentences. (p. 109, cited in Sinclair, 2001, p. 27).  

Herbst (2004) has proposed four modes of interaction with diagrams: empirical, representational, descriptive, 

and generative; these are also reported and clarified in the study of Gonzalez & Herbst  (2009, p. 157). 

“Within the empirical mode of interaction, a student uses proximal, physical experiences with diagrams as 

resources for making statements about geometric objects of discourse. These statements are the symbols 

that point to the properties of diagrams as referents. Conversely, within the representational mode, the 

agent uses distal physical experiences (oral declarations and questions) to describe how diagrams as 

symbols represent abstract geometric objects of discourse. These two modes of interaction, the empirical 

and the representational, portray two opposite views about how students may work with diagrams when 

solving problems in geometry.[…]”. 

Michal Yerushalmy (2005) in her study “Functions of Interactive Visual Representations in Interactive 

Mathematical Textbooks” argues that  

“While any diagram presents information and point of view (thus implicitly engaging the viewer in 

meaningful interpretations), the interactive diagram [like the interactive math applets accessed across the 

Web], explicitly requires from the viewer to take action, to change and inscribe the diagram within given 

limitations” (p.228). 

Gadanidis  (2000) also argues that “well designed interactive applets enable students to engage in investigations 

of mathematical relationships without having to spend a lot of time learning how t use the tool that creates the 

various representations of these relationships”(p.1). 

“Building with blocks” (Figures 1.7a, b) is a math applet provided by the Freudenthal Institute for Science and 

Mathematics Education (FI). It is available from the Institute’s website (Webpage [6]). Students of any age can 

use this applet to play and develop their spatial reasoning. Parts of the diagram are hidden, but the student can 

change the orientation of the diagram to better view another option. Students can also add or remove blocks to 

“build” a construction (e.g., a castle).  

 Boon (2006) in his article “Designing didactical tools and micro-worlds for mathematics education” has drawn a 

distinction between three different kinds of applets:  

 “Applets that offers a 'virtual reality'. These applets are used for representing and simulating real-world 

objects and processes that form the basis of mathematical reasoning.  

 Applets that facilitate the use of 'models'. These applets offer interactive models that can be helpful in 

building and understanding the more abstract mathematical objects and concepts.  

 Applets that offer a mathematical microworld. In these applets mathematical objects like formulas, 

equations and graphs can be constructed and transformed” (p.1). 
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Figures 1.7a, b. “Building with blocks” math applet (Freudenthal Institute for Science and Mathematics Education) (Webpage [6]) 

 

According to Boon (ibid.) “the block building environment [Figures 1.7a, b] gives the user freedom in making 

his own constructions, but the environment also enforces a cubic structure that draws the attention more easily to 

orthogonal co-ordinates as a means to model space” (p.2). 

Students can visualize the effect of modifying the coefficients of the trigonometric functions in the NCTM 

interactive diagrams (Figures 1.8 a, b, c, d). This action on interactive diagrams helps students to acquire a direct 

perception of transformations of the mathematical objects (Patsiomitou, 2006g, in Greek); they also prompt the 

students to examine the role which the coefficients play in the graphic representation of the trigonometric 

function.  

 

Figures 1.8 a, b, c. Trigonometric functions and their graphic representations (Webpage [7]) 
 

Teachers can use the interactive applets to create an interactive assignment. Students can use them to scaffold 

their understanding: the applets let them focus their attention on the modified objects and the reasons for the 

modifications; most importantly, the students can save time as they can experiment at home--the diagrams are 

web-based and easy to understand.   

The NCTM interactive math applet (Figures 1.9.a, b, c, d) allows students to modify the graphic representations 

and trace the changes to the families of the quadratic function which result from the modification of its 

coefficients. The coefficients are the same colour as the sliders, which help the students to focus and directly 

perceive the role played by the coefficients of the functions in relation to the graphic representation. They can 

articulate this, thanks to the direct manipulation of the sliders and the effect they have on the interactive diagram. 
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Figures 1.9 a, b, c. Investigating the families of functions (Webpage [8]) 
 

The same is true in the graphs below (Figures 1.10 a, b, c, d); the student can construct a graphic representation 

from the three points that are the roots of the polynomial function. Then, s/he can view the graphic representation 

of its derivative, as well as the calculation of the area, representing a definite integral.  

 

 

 

Figure 1.10 a, b. Examples of functions and  their derivatives (Webpage [9]) 

 

 

Figures 1.10 c, d. Examples of functions and  their derivatives –Investigating definite integrals (Webpage [9]) 

 

Sinclair (2001) in her Thesis “Supporting Student Efforts to Learn with Understanding: An Investigation of the 

Use of JavaSketchpad Sketches in the Secondary Geometry Classroom” argues that “if we expect students to 
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develop [reasoning] based on a given diagram, we must ensure that they are able to interpret what is shown 

(p.27)[…] The challenge will be to use or create [diagrams] that help students concentrate on important details 
(p.28). 

Sinclair (2001) concludes that “[her] study results show that JavaSketchpad [pre-constructed applets] motivates 

and engages students. It helps students strengthen their geometric thinking skills-especially at the visualisation 

and analysis levels, by supporting student exploration, visual reasoning, and communication activities” (p. 136).  

On the other hand, Sinclair (2001) states that “colour and motion [of pre-constructed diagrams in JavaSketchpad] 

attracted the students’ interest, but this was not always enough to help them interpret visual details. Students 

needed to be prompted to notice particular features and relationships” (p. 134). Generally speaking, students face 

it difficult to notice relations among objects in a diagram, whether it is constructed in a static of in a dynamic 

environment. This is because the students are working in the spatio-graphical field of geometry, while their 

teachers are teaching them --and expecting them to answer-- in the “axiomatic” or theoretical field of geometry. 

This is in accordance with what Parzysz (2002) and  Jore & Parzysz (2005) assert. The way of teaching geometry 

at the beginning of junior high school can be distinguished between the:  

  ‘spatio-graphical’ geometry (Parzysz, 2002) [...which] is a formalisation of the physical space; in this 

geometry, the objects (e.g., models, drawings on a sheet of paper, or a blackboard, or a computer screen 

have a physical nature); the actions are actually carried out on the objects [...]; 

  ‘proto-axiomatic’ geometry (Parzysz, 2002) can be considered as a geometry partially theorized, the 

implicit reference of which is a Euclidian axiomatic theory[…]. Its objects (configurations) have a 

theoretical nature; the actions refer to these theoretical objects and the validations are of a ‘hypothetic-

deductive’ type (mathematical proofs) (Jore & Parzysz, 2005, p.113) 

 

 
Figure 1.11. Illustration of the activity of the problem solver (Laborde, 2005, p. 162) (adapted) 

 

Laborde (2005) in her study “The hidden role of diagrams in students’ construction of meaning in geometry” 

distinguishes between robust and soft diagrams created in a DGS environment, placing emphasis on difficulties of 

students to connect their construction with the theory of geometry. As Laborde claims “diagrams in two-

dimensional geometry play an ambiguous role: on the one hand, they refer to theoretical geometrical properties, 

while on the other, they offer spatio-graphical properties that can give rise to a student's perceptual activity” ( 

Laborde, 2005, p. 159) 

In a DGS, students can construct either a robust or a soft diagram. In a DGS milieu “robust constructions are 

constructions for which the drag mode preserves their properties” (Laborde, 2005, p.22).  Laborde (2005) made a 

distinction between the domain of geometrical objects and relations (which she denoted by T, referring to 

Theoretical) and that of spatio-graphical entities (which she denoted by SG, referring to Spatio-Graphical), 

instantiated by diagrams on a static or a dynamic environment.  

Laborde (2005, p.162) illustrates the activity of the problem solver according to this view in the case of a 

problem that starts and ends in the T domain (Figure 1.11). Laborde (2005) constructed the diagram to explain 

that the way in which figures /or diagrams are used in school problems requires “the use of both domains and 

several moves between them” (p.162). 

According to Laborde, a continuous interplay between the T domain (e.g. a theoretical question posed by the 

teacher) and the SG domain (e.g. an experimental process in a DG environment relating to the issue) scaffolds 

students’ answer in the theoretical field.  

“[…] our thinking is performed upon signs of some kind or other, either imagined or actually perceived. 

The best thinking, especially on mathematical subjects, is done by experimenting in the imagination upon a 

[dynamic] diagram or other scheme, and it facilitates the thought to have it before one's eyes. (Peirce, 

NEM I, p.122, cited in Bakker & Hoffmann, 2005, p.335). 
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Paraphrasing Peirce’s argument, I think that dynamic diagrams facilitate thought “to have it before our eyes”. 

Dynamic diagrams make it easier than static diagrams to experiment, since students are provided with feedback 

(or receive feedback) from the on-screen results.  

The reason for this is the continuous interplay between the spatiographical and theoretical aspects of the 

environment, which helps students to overcome the expected difficulties.  These difficulties also have to do to the 

students’ competence at relating procedural knowledge with conceptual understanding.  

1.4.  Kinds of Knowledge Pairs 

High-school students’ ability to rightly and accurately construct a figure using static or dynamic means relates to 

two factors: whether they know how to construct it, and whether they know why the concrete method of 

construction results in a figure with concrete properties and not a drawing—which is to say a shape that looks like 

a figure. The answer to the question “How do we construct it?” relates to what is called procedural knowledge. 

The answer to the question “Why to construct it in this way?” relates to what is called conceptual knowledge. 

Which is to say there is a duality or polarization in mathematical  knowledge between  “Knowing  how”  and 

 “Knowing why”  (Scheffler, 1965;   Hiebert  &  Lefevre,   1986). Even and Tirosh (2008)  state that the notions 

“knowledge” and “understanding” are the focal interest and subject under analysis of many researchers. 

According to them:  

“Different forms of knowledge and various kinds of understanding are described in the mathematics 

education literature (e.g., instrumental, relational, conceptual, procedural, implicit, explicit, elementary, 

advanced, algorithmic, formal, intuitive, visual, situated, knowing that, knowing how, knowing why, 

knowing to)” (p. 206). 

Many theorists and researchers in the field of developmental psychology, educational psychology, cognitive 

science etc. have for various reasons investigated why students cannot apply their previous conceptual knowledge 

(in other words, knowledge of the concepts and the relations among them) to solve unfamiliar problems, or use 

concrete concepts to accomplish procedures (e.g., Byrnes & Wasik, 1991; Kitcher, 1984;  Hiebert, 1986; Rittle-

Johnson, & Alibali. 1999; Carpenter, 1986; Carpenter et al.,1999; Kadijevich,  & Haapasalo, 2001; Schneider & 

Stern, 2010; Rittle-Johnson, & Schneider, 2014). According to Hiebert & Lefevre (1986): 

  “Conceptual knowledge is characterized most clearly as knowledge that is rich in relationships. It can be 

thought of as a connected web of knowledge, a network in which the linking relationships are as 

prominent as the discrete pieces of information. Relationships pervade the individual facts and 

propositions so that all pieces of information are linked to some network In fact, a unit of conceptual 

knowledge cannot be an isolated piece of information; by definition it is a part of conceptual knowledge 

only if the holder recognizes its relationship to otherpieces of information. The development of 

conceptual knowledge is achieved by the construction of relationships between pieces of information.” 

(Hiebert & Lefevre, 1986, pp. 3-4). 

 “Procedural knowledge of mathematics encompasses two kinds of information. One kind of procedural 

knowledge is a familiarity with the individual symbols of the system and with the syntactic conventions 

for acceptable configurations of symbols. The second kind of procedural knowledge consists of rules or 

procedures for solving mathematical problems. Many of the procedures that students possess probably 

are chains of prescriptions for manipulating symbols” (Hiebert & Lefevre, 1986, pp. 7-8).  

Haapasalo and Kadijevich (2000) suggest the following “dynamic” characterizations for conceptual and 

procedural knowledge (cited in Haapasalo, 2008, p.55):  

 “Procedural knowledge denotes dynamic and successful utilization of particular rules, algorithms or 

procedures within relevant representation forms. This usually requires not only the knowledge of the 

objects being utilized, but also the knowledge of format and syntax for the representational system(s) 

expressing them.  

 Conceptual knowledge denotes knowledge of and a skilful “drive” along particular networks, the 

elements of which can be concepts, rules (algorithms, procedures, etc.), and even problems (a solved 

problem may introduce a new concept or rule) given in various representation forms”.  

Baroody, Feil & Johnson (2007) define procedural knowledge as the “mental actions or manipulations, including 

rules, strategies, and algorithms, needed to complete a task.” (p. 123). 
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In the words of Schneider & Stern (2010, p. 179) “procedural knowledge can be automatized to different degrees, 

depending on the extent of practice. Automatized procedural knowledge can be used with minimal conscious 

attention and few cognitive resources (Johnson, 2003)”.  

The point of investigation is: how conceptual and procedural knowledge influence each other? What kind of 

knowledge must be developed first during the teaching and learning of mathematics if students are to understand 

mathematics? Do students have to learn the concepts before they apply them during procedures or vice versa?    

In my opinion, procedural knowledge can support the conceptual knowledge and vice versa. How does this 

occur?  

The students use their conceptual knowledge to construct a figure in different ways. For example, they can use a 

definition or a theorem as the basis for the construction of an equilateral triangle: thus, according to the 

definition, an equilateral triangle is a triangle all of whose sides are congruent. This means that students can use 

their rulers to construct a triangle with three equal sides. Alternatively, if the student knows the theorem “an 

equilateral triangle has three angles equal to 60 degrees”, they can also use the information incorporated in it and 

use a protractor to construct a triangle whose angles are equal to 60 degrees. In the DGS software, students have 

to cooperate with the environment in order to accomplish their constructions. They cannot touch the tools, but 

they can create constructions using the mouse in accordance with their mental representation. 

However, if a student has not grasped the concept of “equilateral triangle” but knows how to construct an 

equilateral triangle, then s/he can perceive the properties of the figure and can be guided, through proper 

questioning, to discover and formulate them (e.g., Patsiomitou, 2008a).  

One of the cognitive aims in my teaching is my students to actively construct the properties of a figure and the 

connections between them -in other words I want them to be able to link conceptual and procedural knowledge. 

In the table below, I present an example of the conceptual and procedural knowledge needed to construct a 

parallelogram in a DGS environment, The Geometer’s Sketchpad (Patsiomitou, 2012a, p.125, in Greek).  

 

Table 1.1: Construction of a parallelogram  

Procedural knowledge  Conceptual knowledge  

1. Constructing a segment AB 

2. Constructing a point C above  

segment AB 

3. Constructing a parallel line from 

point C to AB. 

4. Joining points A and C with a 

segment. 

5. Constructing a parallel line from 

point B to AC.  

6. Constructing the intersection point 

D  

7. Hiding the parallel lines  

8. Joining points C and D, and D and 

B, with segments CD and DB. 

(Figure 1.13a, b, c, d, e )  

 

 

The following Propositions in Euclid’s 

“Elements”, BOOK I, support students’ 
conceptual understanding.  

Proposition 27: If a straight-line falling across 

two straight-lines makes the alternate angles 

equal to one another then the (two) straight-lines 

will be parallel to one another. (reported in 

Fitzpatrick, 2007, p. 30) (Figure 1.12) 

Proposition 31: To draw a straight-line parallel to 

a given straight-line, through a given point. 

(reported in Fitzpatrick, 2007, p. 33)  

Proposition 33: Straight-lines joining equal and 

parallel (straight lines) on the same sides are 

themselves also equal and parallel. (reported in 

Fitzpatrick, 2007, p.35) 

Definition 23 (κγ΄) in Euclid Elements, BOOK I : 
Parallel lines are straight-lines which, being in 

the same plane, and being produced to infinity in 
each direction, meet with one another in neither 

(of these directions). (reported in Fitzpatrick, 

2007, p.7) 
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Figure 1.12.  The concept of parallelism [Proposition 27 (κζ΄) in Euclid Elements, BOOK I]                      
(Fitzpatrick, 2007, p.30) 

 

a 

 
 

b 
c  

 
d 

 
 

e 
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Figures 1.13a, b, c, d, e, f: A step-by-step construction of a parallelogram –[and] a script describing the process of 

constructing a parallelogram  

 

The steps of the construction are also described in a script (a custom tool created using Sketchpad), as it is 

illustrated in the Figure 1.13f. Lopez-Real and Leung (2004) argue that DGS environments promote links 

between procedural and conceptual knowledge.  In order to construct a parallel line using the software, one has to 

select two objects: a straight object (for example a line) and the point from which the line parallel to the initial 

line will be drawn. I intentionally familiarize the students with the software, “‘step by step’, in parallel with the 

corresponding theory” (Mariotti, 2000, p. 41): all too often, students make purely mechanical use of the software, 

which makes it impossible for them to understand the logic underlying the command options. Furthermore they 

would not be able to construct the connections between the spatiographical field and the theoretical field of the 

software (Laborde, 2005). Through the procedure of constructing a perpendicular or parallel line, the student is 

led to understand the necessity of two given objects: the point and the straight object (line). Therefore, is the 

construction that leads the student to “shape” the respective notion (for example the meaning of perpendicularity 

or parallelism) as well as their connection to the Euclidean proposition. Furthermore, the construction of the 

parallel line using the software’s tools (point and straight line) is related to the notion of the figure as theoretical 

object. In this case, students use the definition of the parallelogram to construct the figure.  The construction is a 

drawing (or a perceptual object), since the starting point is random and the lines drawn do not necessarily form a 

parallelogram, or dragging may mess the construction up as it does not maintain its properties.  
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The notion of “knowledge” is closely related to the notion of “understanding”. Skemp (1978) was a pioneer who 

investigated "What does it mean to understand mathematics?" (Byers & Herscovics, 1977, p. 24). Skemp (1978) 

presented his view on the distinction between two kinds of understanding in mathematics: relational and 

instrumental. 

 Relational understanding is described as knowing both what to do and why. This kind of understanding 

denotes the ability of the student to infer particular rules or procedures by considering some general 

relationships. 

 Instrumental understanding entails “rules without reasons” (Skemp, 1978, p. 9). This kind of 

understanding denotes the ability of the student to apply /utilize rules without knowing why they work 

(see also Even and Tirosh, 2008, p.206; Haapasalo,  2013, p.2). 

Skemp (1978) proposes three advantages for the “instrumental understanding”: 

 “Instrumental mathematics is usually easier to understand […]  
 The rewards are more immediate and more apparent […] 
 One can often get the right answer more quickly and reliably by instrumental thinking […]” (p.12) 

Skemp (1978) also proposes four advantages for “relational understanding”: 

 "It is more adaptable to new tasks […] 
 It is easier to remember […] 
 Relational knowledge can be effective as a goal in itself […] 
 Relational schemas are organic in quality"[…] “very much like a tree extending its roots” (p.12-13) 

Moreover, ‘logical understanding’ (Skemp, 1986) “is the ability of the student to reason deductively or the ability 

to connect mathematical symbolism with relevant mathematical ideas and to combine these ideas into chains of 

logical reasoning” (p.166). Given that  these   kinds  of  knowledge  differ so much, he argues, should we perhaps 

distinguish between instrumental  mathematics and  relational  mathematics, in the same way we do between  

instrumental  and  relational  understanding?   Looked at thus, learning  instrumental   mathematics  entails 

learning  a  number  of  maps showing us how to get from A to B, while  learning relational  mathematics  means 

constructing a conceptual structure that will allow us to generate an infinite number of ways of getting from  any  

A to  any  B  within  a  structure. White and Mitchelmore (2002) in their study “Teaching and learning 

mathematics by abstraction” discuss Skemp’s ideas (1986) and “how concepts are formed through an abstraction 

process” (p.236). According to Skemp (1986) abstracting is "an activity by which we become aware of 

similarities [...] among our experiences" and a concept as "some kind of lasting change, the result of abstracting, 

which enables us to recognize new experiences as having the similarities of an already formed class" (p. 21 cited 

in White and Mitchelmore, 2002, p. 236). 

Skemp also distinguished between “primary and higher-order concepts, explaining that higher-order concepts are 

abstractions of earlier abstractions and so progressively removed from experience of the outside world" (1986, p. 

24, cited in White and Mitchelmore, 2002, p. 237).  

In one way or the other, researchers have developed theories that seek to explain how students develop abstract 

processes which encompass an experience broader than the primary concept developed previously. For example, 

“green” or “red” is a primary concept developed from sensory experience while “colour” is a secondary concept, 

developed through a generalization, a synthesis of the primary concepts which ultimately becomes an abstract 

concept which incorporates all the primary concepts (Skemp, 1986, p. 24). “Generalizing, synthesizing and 

abstracting” is a sequence also for Dreyfus (1991) that a student has to follow as “abstraction may be seen as a 

many-to-one function where generalisations about the base contexts are synthesized to form a new abstraction” 

(White and Mitchelmore, 2002, p. 236).  

 
Figure 1.14. Links between an idea and Ci concrete objects (White, & Mitchelmore, 2002, p. 239) (adapted) 
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White and Mitchelmore (2002) illustrate with figures how they conceive the links between an “idea” and Ci 

concrete objects, based on Skemp’s (1986, p.20) notion of concept.  As White and Mitchelmore  make clear “The 

word "idea" […] could refer to any mathematical object such as a concept, an operation or a relation[…] These 
links enable the learner both to recognize the idea in each Ci and to call up a variety of contexts in which the 

abstract idea is found” (p.239) (See also Figure 1.14). 

White and Mitchelmore (2010) developed a teaching model called “Teaching for Abstraction” which consists of 

four phases:  

 “Familiarity. Students explore a variety of contexts where a concept arises, in order to form 

generalizations about individual contexts and thus become familiar with the underlying structure of each 

context.    

 Similarity. Teaching then focuses on helping students recognise the similarities and differences between 

the underlying structures of these contexts.   

 Reification. The general principles underpinning the identified similarities are drawn out, and students are 

supported to abstract the desired concept into a mental object that can be operated on in its own right.   

 Application. Students are then directed to new situations where they can use the concept.” ( cited in 

White, Wilson & Mitchelmore, 2012, p.761) 

Pirie and Kieren (1989) characterize understanding as follows: “Mathematical understanding can be characterized 

as leveled but non-linear. It is a recursive phenomenon and recursion is seen to occur when thinking moves 

between levels of sophistication […] each level of understanding is contained within succeeding levels. Any 
particular level is dependent on the forms and processes within and, further, is constrained by those without”. (p. 

8). 

 
Figure 1.15. The Pirie & Kieren (1994, p.186) model for the growth of mathematical understanding (adapted) 

 

Pirie & Kieren (1994) consider "[…] understanding as a whole dynamic process and not as a single or multi-
valued acquisition, nor as a linear combination of knowledge categories" (Pirie & Kieren, 1994, p. 165). They 

developed a model for the growth of mathematical understanding. They identified eight levels of understanding 

and depicted their model as nested rings or embedded layers (see also, Sinclair, 2001 p.12; Slaten, 2006, p.32).     

Pirie & Kieren model support that students can move back and forth between the rings: they come to the learning 

task with “primitive knowledge”, their understanding is informal when they are operating in any of the three next 

modes, but can ultimately become more abstract. According to Pirie & Kieren (1994) the model explains how a 

student understands is an interactive process of organizing and reorganizing his/her conceptual structures (Figure 

1.15). 

Primitive Knowing refers to the starting knowledge, at the beginning of instruction. For me it is the preexisting 

knowledge that a student has in his/her mind at the beginning of the teaching and learning process.  

Image making refers to the mode of understanding that is developed through actions and reflections on those 

actions. 
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Image having refers to the mode of understanding that is developed without having to act on the objects. Now the 

student can use his/her mental representations of the involved concept. 

Property noticing refers to the mode of understanding when a student can construct properties, combining aspects 

of images relevant to the objects. 

Formalising in the next level of understanding when the student constructs formal or abstract methods from the 

previous images, from which s/he has constructed properties. 

Observing refers to the mode of understanding where a student can reflect on his/her formal understanding. 

Structuring is the next level where a student can use deductive reasoning and logical argumentation.  

Inventising is the level where a student can create a new concept from his/her structural understanding.  

Sfard (1991, 1994) identified the dual meanings of “operational understanding”, which is to say knowledge of 

the operations that can be performed on mathematical objects, and “structural understanding”, meaning 

knowledge of the structure of a mathematical object.  

Sfard (1991, p.5) in her study “On the Dual Nature of Mathematical Conceptions: Reflections on processes and 

objects as different sides of the same coin” illustrates through examples the duality of structural and operational 

understanding (Figure 1.16), presenting in this way the “dual nature of mathematical conceptions”. It seems that 

processes and objects are what are conceptualized as “different sides of the same coin” (p.1).  

Sfard (1989, 1991, 1992) argues that a mathematical object, or an abstract object generally, can be conceived or 

interpreted both operationally, when it is considered as a performed process or a process to be carried out, and 

structurally when it is interpreted as a permanent object with concrete properties. She identifies the meaning of 

reification as the next step in the mind of learner as “it converts the already condensed process into an object-like 

entity” (Sfard, 1992, pp. 64-65, in Davis, Tall & Thomas, 1997, p.133). In Sfard’s opinion mathematical objects 

can be seen as discursive objects within a mathematical discourse occurred or taking place in a classroom.  

 

 
Figure 1.16. Structural and operational descriptions of mathematical notions (Sfard, 1991, p. 5) (adapted)  

 

Concretely, according to Sfard (1991) “seeing a mathematical entity as an object means being capable of referring 

to it as if it was a real thing […] it also means being able to recognize the idea “at a glance” and to manipulate it 

as a whole[…]” (p. 4). 

Sfard describes a historical example regarding “the development of the notion of number as a cyclic process […] 
whenever a new kind of number was being born” (p.13). Sfard summarized schematically in a figure the whole 

process of the development of the concept of number in the Figure 1.17 below.  

As Sfard (1991) concludes and summarizes: “the history of number is a long chain of transitions from operational 

to structural conceptions […] processes performed on already abstract objects have been converted into compact 
wholes, or reified[…] “(p. 14).   

Sfard (1991) distinguishes three stages in concept development: interiorization, condensation and reification. 
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 Interiorization is the stage through which “a learner gets acquainted with the processes which will give 

rise to a new concept” (Sfard, 1991, p. 18) […] A process has been interiorized if it can be carried out 

through mental representations “(Piaget, 1970, p.14). 

 Condensation is the stage through which a learner “becomes more and more capable of thinking about a 

given process as a whole […] (Sfard, 1991, p. 19). 
 Reification is defined “as an ontological shift –a sudden ability to see something familiar in a totally new 

light […] “ (Sfard, 1991, p. 19).  

 

 
Figure 1.17. The Development of the concept of number (Sfard, 1991, p. 13) (adapted) 

 

Sfard (1991) argues that “the terms “operational” and “structural” refer to inseparable, though dramatically 

different, facets of the same thing” (p.9). Thus, unlike “conceptual and procedural” or algorithmic and abstract” 

she argues that “we are dealing here with duality, rather than dichotomy” (p.9). 

Even and Tirosh (2008) in their article: “Teacher knowledge and understanding of students’ mathematical 

learning and thinking” have investigated among others the meanings of instrumental understanding and 

relational understanding, also trying to clarify if they consist a “dichotomy or a continuum” (p.206). According 

to Even & Tirosh,  

“Skemp argued that although instrumental mathematics is easier to understand within its own context, its 

rewards are more immediate and apparent, and one can often obtain the right answer more quickly and 

reliably, relational mathematics has the advantages of being more adaptable to new tasks, being easier to 

remember and capable of serving as a goal in itself” (p.206).  

Eventually, Even & Tirosh (2008), conclude that “While Skemp assumes a dichotomy between instrumental and 

relational knowledge, and Nesher (1986) and Resnick and Ford (1981) question its usefulness, Hiebert and 

Carpenter (1992) and other researchers suggest that absolute classifications are impossible” (p. 207). Concretely:  

 Nesher(1986) does not consider there to be a dichotomy between performing procedures with algorithms 

and learning through understanding concepts. In his view students must acquire the competence to use 

both algorithms and  concepts.  

 Resnick and Ford (1981) consider competence with algorithms to help students extend their working 

memory.  

 Hiebert and Carpenter (1992) argue that both conceptual and procedural knowledge are important for the 

acquisition of competence in mathematics.  

Moreover, Mason and Spence (1999), determined a special form of knowing: “Knowing-to act in the moment”, 

which is “the type of knowledge that enables people to act creatively rather than merely react to stimuli with 

trained or habituated behavior” (cited in Even and Tirosh, 2008, pp. 207-208). 

Schneider & Stern (2010, p. 190) report also other theorists who have proposed numerous other pairs of 

knowledge kinds, for example,  

 “competence and performance (Chomsky, 1965),  
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 structures and procedures of the mind (lnhelder & Piaget, 1980),  

 declarative and procedural knowledge (Anderson, 1983),  

 explicit and implicit knowledge (Schacter, 1987)”.  

Schneider & Stern (2010) argue that “researchers are far from understanding how these kinds of knowledge relate 

to each other and how they shape development. Valid empirical measures are an indispensable precondition for 

scientifically investigating these questions rather than merely speculating about them.” (p. 190)  

Stein and Smith (1998) state that “tasks that ask students to perform a memorized procedure in a routine manner 

lead to one type of opportunity for student thinking; tasks that require students to think conceptually and that 

stimulate students to make connections lead to a different set of opportunities for students thinking” 

(Tchoshanov, 2013, p. 67).  

Research into mathematical education has long concerned itself with the transition from a process to a concept. 

Many researchers (e.g. Dienes, 1960; Piaget, 1972 a, b; Davis, 1983, 1984) also, “focused on the idea of a 

process becoming a mental object […] as a fundamental method of cognitive development in mathematical 

thinking” (Davis, Tall & Thomas, 1997, p.132). On the other hand, in the words of Sfard (1989)  

“Although ostensibly incompatible (how can anything be a process and an object at the same time?), they 

are in fact complementary. The term “complementary” is used here in much the same sense as in physics, 

where entities at subatomic level must be regarded both as particles and as waves to enable full description 

and explanation of the observed phenomena […]”(Sfard, 1991, pp. 4–5) 

The process-object duality is important for the learning of mathematics. If a student has developed his/her 

conceptual understanding then s/he has also developed the ability to see both the process-facet and the object-

facet of a concept. This development is called encapsulation (Dubinsky, 1991a) or reification (Sfard, 1991) as a 

redefinition of the notion of “conceptual entity” introduced by Piaget (1977). Beth & Piaget (1966) consider the 

notion of encapsulation to be a “dynamic” process which transitions into a mental object when “[...] a physical or 

mental action is reconstructed and reorganized on a higher plane of thought and so comes to be understood by the 

knower” (Beth & Piaget 1966, p. 247). Gray & Tall (1991) defined the meaning of ‘procept’ as a combination of 

the words “pro-[cess] + [con]-cept”, “to be the amalgam of process and concept in which process and product is 

represented by the same symbolism” (Gray &Tall, 1991, p. 73). A procept, “is consisted of a collection of 

elementary procepts which have the same object” (Gray & Tall, 1994 reported in Davis, Tall & Thomas, 1997, 

p.134). The meaning of an elementary procept is according to them “an amalgam of […]: a process which 
produces a mathematical object and a symbol which is used to represent either process or object […]” (Gray & 

Tall, 1994 reported in Davis, Tall & Thomas, 1997, p.134). Gray and Tall (1994) “hypothesise that successful 

mathematical thinkers can think proceptually, that is, they can comfortably deal with symbols as either process or 

object. An operational orientation would thus interpret 2(a + b) and 2a + 2b quite differently, whereas 

proceptually the two expressions would be seen as identical” (White and Mitchelmore, 2002, p. 236). 

Kadijevich & Haapasalo (2001) argue that, using computers, students can spend less time on procedural skills 

and more on developing their conceptual understanding (Fey, 1989). 

Moreover, Kadijevich (2018) in his study “Relating procedural and conceptual knowledge” reports the ways that 

promote relations between procedural and conceptual knowledge. As he argues:  

 “Links from procedural to conceptual knowledge may be established through the elaboration and 

coordination of several microworlds […].The links in question can be promoted through replicating 

solutions with technology on the basis of technology-generated partial solutions[…] 
 By applying some general problem solving productions (i.e. if-then rules), links from conceptual to 

procedural knowledge may be established […]Problem solving through the development of expert 
system knowledge bases comprising if-then rules (the so-called knowledge engineering)[…] 

 By using the notion of procept (i.e. “a combined mental object consisting of a process, a concept 

produced by that process, and a symbol which may be used to denote either of both”)[…]. 
Relatingdifferentproblemrepresentationswouldestablishlinksbetweenprocedural and conceptual 
knowledge […] 

 Procedural and conceptual knowledge may be unconnected, […] and it is big ideas (e.g. equal 

partitioning) that, applied as overarching concepts, connect concepts and procedures […]Using 
comparisons (e.g. comparing methods whereby problems are solved; comparing problems solved with 

the same procedures) may be a way to promote links between procedural and conceptual knowledge 

[…]” (pp.19-20). 
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Given the core role in mathematics education of developing procedural and conceptual knowledge and forging 

links between the two, a key question is how different technologies affect the relationship between the two. 

1.5.  The Concept of Reflective Abstraction  

Piaget introduced the concepts of empirical abstraction, pseudo–empirical abstraction and reflective abstraction 

“to describe the construction of logico–mathematical structures by an individual during the course of cognitive 

development” (Dubinsky, 1991a, p.95). 

 “Empirical abstraction: a subject (e.g., a student) proceeds to this kind of abstraction after the observable 

experience with a few objects through which the subject understands that these objects have a common 

property or in the words of Dubinsky “the subject observes a number of objects and abstracts a common 

property” (p.98) Empirical abstraction derives knowledge from the properties of objects (Beth & Piaget, 

1966, pp.188–189). 

 Pseudo–empirical abstraction: a subject (e.g., a student) proceeds to this kind of abstraction after the 

experience with actions performed on the objects (p.98). Pseudo–empirical abstraction “is intermediate 

between empirical and reflective abstraction and teases out properties that the actions of the subject have 
introduced into objects” (Piaget, 1985, pp.18–19). 

 Reflective abstraction, “is completely internal” (p.97). Reflective abstraction is drawn from what Piaget 

(1980, pp. 89–97) called the general coordinations of actions and, as such, its source is the subject and it 

is completely internal. 

 
Figure 1.18.  Schemas and their construction (Dubinsky, 1991a, p.105) (adapted) 

 

According to Piaget, “The development of cognitive structures is due to reflective abstraction” (Piaget, 1985, p. 

143)”Reflective abstraction is the construction of mental objects and of mental actions on these objects. Piaget 

found that the development of children’s logical thinking could be described in terms of five sub-operations or 

forms of construction in reflective abstraction: interiorization, coordination, encapsulation, generalization, and 

reversal (Dubinsky, 1991a, p. 103). 

 Interiorization “is the translation of a succession of material actions into a system of interiorized 

operations” (Beth & Piaget, 1966, p. 206, cited in Dubinsky, 1991, p.100). 

 Coordination “of successive displacements can form a continuous whole” (Piaget, 1980, p. 90, cited in 

Dubinsky, 1991a, p.100) 

 Encapsulation “of actions or operations become thematized objects of thought or assimilation” (Piaget, 

1985, p. 49, cited in Dubinsky, 1991, p.100). 

 Generalization “is the passage from “some”to“all, from the specific to the general (Piaget & Garcia, 

1983, p. 299, cited in Dubinsky, 1991, p.97)”. 

Paschos & Farmaki (2006) analyzed the mental operations of university students, employing the Piagetian theory 

of reflective abstraction. As they conclude  

“[…] the mental mechanism and operations of the students are gradually revealed. Understanding this 

mechanism will allow us to decide and distinguish whether the students come to a true understanding of 

the definition of the definite integral concept, as opposed to having just an empirical perception of 

integration, by which they can act effectively only in a limited and particular framework. The methodology 
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developed here may have a wider applicability in guiding our actions to help students develop advanced 

mathematical thinking” (p. 343-344). 

A schema is a reasonable, consistent and coherent collection of actions on objects and processes (Figure 1.18). I 

attempted to briefly give the following description of the organization and construction of a schema based on the 

above figure, which can, in my opinion, be used in several mathematical areas, and not only at the advanced level 

of mathematics: 

 “[…the word] “objects” encompasses the full range of mathematical objects […] each of which must be 
constructed by an individual at some point in her or his mathematical development. […] At any point in 
time there are a number of actions that a subject can use (italics used by Dubinsky) for calculating with 

these objects […] an action must be interiorized. […] An interiorized action is a process. Interiorization 

permits one to be conscious of an action, to reflect on it and to combine it with other actions.[…] If the 
process is interiorized, the student might be able to reverse it to solve problems[…]” (Dubinsky, 1991a, 

p.105-106) 

Lehtinen & Repo (1996) elaborated on the Piagetian theory of reflective abstractions. They conducted a study, 

aiming to investigate the construction of advanced mathematical concepts in a computer-based environment. 

According to them, a student can solve typical problems with the help of “horizontal generalization” (empirical) 

but “is not able to construct an adequate conceptual understanding because their medal models are limited to the 

level of concrete mathematical knowledge” (p.108). 

According to Lehtinen & Repo (1996) “reflective abstraction refers to a process in which the student tries to 

construct abstract structure and operations by reflecting on his /her own activities and the arguments used in 

social interaction” (p.106) 

 

 

Figure 1.19.  Presuppositions of adequate reflective abstraction (Lehtinen & Repo, 1996, p. 113): (an adaptation 

for the current study) 

Lehtinen & Repo in their study systematically analyze the prerequisites for effective abstraction with a focus to 

“(a) critical activities, (b) multiple representations, and (c) challenging and facilitating social interaction” (p.108).  

In Lehtinen & Repo’s opinion, the basic activities should be of optimal difficulty and allow time for the 

construction process. The activities should also relate to the concept to be learned in a way that activates the 

student’s relevant prior knowledge and provides opportunities for all the sub-operations of reflective abstraction 

Continuous guidance is also needed from the teacher in the form of direct or indirect intervention, as is the 

utilization of multiple representations and the continuous shifting between different representational systems with 

expert modeling of the use of digital tools. Lehtinen & Repo “elaborated a model that summarizes the previous 

described presuppositions of adequate reflective abstraction in the following figure” (p. 112) (Figure 1.19) 

Finally, Lehtinen & Repo concluded that  
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 “good school achievement in mathematics is not always a valid indicator of a high –level understanding 

of mathematical concepts and operations” (p.124)  

 “the average level of conceptual understanding can be improved noticeably by involving students in a 

sequence of critical activities and by changing the quality of their social interaction” (p. 125).  
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Chapter II.  

2.1. Visualization and Dynamic Visualization  

Trying to understand more deeply the activities of teaching and learning, a number of educators, researchers and 

psychologists have turned their attention to representations and systems of representations of mathematical and 

scientific objects and ideas (e.g., Goldin, 1988; Greeno, 1991; Kaput, 1987; Janvier, 1987a, b, c). 

Representations, representational systems and visualization of mathematical objects are reported as being 

fundamental in the international literature. Most researchers, educators and teachers agree that representations of 

mathematical and scientific objects positively impact on students’ understanding and on the way they 

communicate and share mathematical meanings; they also help students develop their mathematical reasoning  

during the problem-solving process (e.g., Palmer, 1977a, b; Vinner, 1983; Presmeg, 1986a, b; Janvier, 1987a, b, c; 

McCormick, DeFanti,& Brown, 1987; Vergnaud, 1987; Glasensferd, 1991; Zimmermann & Cunningham, 1991; 

Goldin, 1998 a, b; Boulton-Lewis, 1998; Kaput, 1987, 1989, 1991, 1992, 1998, 2001; Lakoff, 1993; Duval, 1993, 

1995a, b; Arcavi, 2003; Ainsworth, 1999a, b, 2006; Clements & Sarama, 2007, 2009; Lavy, 2006; Duval, 1998, 

1999, 2006; Goldin, 2003, 2008; Hitt, 2002; Zazkis, & Liljedahl, 2002; Patsiomitou, 2008a, b, 2012a, b, 2013a, 

b). The increasing research interest regarding representations and representational systems, is a result of the need 

to face practical and theoretical issues concerning the difficulties students encounter when they try to translate 

from one form of representation to another (e.g., to transform a verbal expression in a geometrical problem into a 

figure using static or dynamic means, or to transform an algebraic type of a function into a graphical 

representation). Specifically, a problem representation is “a cognitive structure which is constructed by a solver 

when interpreting a problem” (Yackel, 1984, p. 7, cited in Cifarelli, 1998). Word problems are a kind of 

representation. In the words of Susan Gail Gerofsky (1999) “The word problems represent a final test of students' 

competence in recognizing problem types […] and translating those problems into tractable diagrams and 
equations which can be solved using taught algorithmic methods. School word problems are not social events not 

part of an oral culture. They are ideally meant to be solved silently, individually, using pencil and paper”.  

From a cognitive psychological point of view a major problem in constructing a representation of a problem is 

that we need to know which lines go together to form objects (Anderson, 1983/2015, p.34). In other words how 

to organize the components of the figure in geometry. Anderson (2015) states that “we organize objects into units 

according to a set of principles called the gestalt principles of organization, after the Gestalt psychologists who 

first proposed them (e.g., Wertheimer, 1912/1932)” (p.34).   

 
Figure 2.1.  Illustration of the gestalt principles of organization (Anderson, 1983/2015, p. 34). 

 

Anderson (2015) defines gestalt principles of organization as “the principles that determine how a scene is 

organized into components. The principles include proximity, similarity, good continuation, closure, and good 

form” (p. 368). Figure 2.1 illustrates the gestalt principles (Anderson, 2015, p. 34):  
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 “Figure 2.1a illustrates the principle of proximity: Elements close together tend to organize into units. 

Thus, we perceive four pairs of lines rather than eight separate lines.  

 Figure 2.1b illustrates the principle of similarity: Objects that look alike tend to be grouped together. In 

this case, we tend to see this array as rows of o’s alternating with rows of x’s.  

 Figure 2.1c illustrates the principle of continuation. We perceive two lines, one from A to B and the 

other from C to D, although there is no reason why this sketch could not represent another pair of lines, 

one from A to D and the other from C to B. However, the lines from A to B and from C to D display 

better continuation than the lines from A to D and from C to B, which have a sharp turn. 

 Figure 2.1d illustrates the principles of closure and good form. We see the drawing as one circle 

occluded by another, although the occluded object could have many other possible shapes. The principle 

of closure means that we see the large arc as part of a complete shape, not just as the curved line. The 

principle of good form means that we perceive the occluded part as a circle, not as having a wiggly, 

jagged, or broken border” (Anderson, 2015, p. 35). 

Another source of difficulty for many students during the problem-solving process in geometry is that they 

compare the image with a prototype which they have in their mind - (an archetype, a prototype which differs for 

each individual student). “A prototype is a mental representation which is a good example of a category” (Lakoff, 

1987, p. 43, cited in Presmeg, 1992, p. 597). Mesquita (1998) in her study “On Conceptual Obstacles Linked with 

External Representation in Geometry” defined also the notion of “Prototypical Figures” as  

“those ones corresponding to a regular organization of contour, orientation and form; prototypical figures 

tend to respect enclosure laws (closed borders are preferentially perceived), privileging some directions 

(such as horizontal and vertical ones) and forms (which tend to be regular, simple and symmetric); the 

components of the figure (sides, angles, for instance) have approached dimensions. Stability and aesthetic 

preoccupations may reinforce the perception of these prototypical figures. In opposition to them, we can 

consider the limit-cases figures” (p. 189) 

In view of the fact that most students face cognitive obstacles when a part of their knowledge, generally effective 

for their problem-solving processes is inadequate and cannot be adapted to the process at hand (Brousseau, 1992, 

1997), the utilization of proper representations helps students overcome obstacles (Goldin & Shteingold, 2001). 

According to Brousseau (1997)  

“Students start their learning process in an environment that is unbalanced and full of difficulties and 

obstacles just like human society. The new knowledge comes from the skill to adapt to the new 

circumstances and stimuli and a new reaction to the environment is the proof that a learning process has 

taken place.[…] “ the problem s/he has to face has been chosen in order to make him learning and gaining 

a new knowledge, this knowledge is justified by the inner logic of the situation”(cited in Manno, 2006, 

p.23) 

In addition, Mesquita (1998) distinguishes two roles of external representations in geometrical problems: a 

descriptive one and a heuristical role.  

 “an external representation is descriptive when its sole function is to give a synoptical apprehension of 

the properties mentioned in the problem statement” (p. 191) 

 “an external representation has a heuristical role if it acts as a support for intuition, suggesting 

transformations that lead to solution” (p.191). 

Difficulties in mathematics generally are associated with visual processing and may be overcome. The role of 

visualization and visual reasoning in geometry and generally in mathematics understanding have been the focus 

of interest for many researchers, educators and psychologists (e.g., Tall & Vinner, 1981; Vinner, 1983). 

There is a substantial bibliography on visualization, spatial visualization, spatial ability, visual thinking, mental 

imagery and their relation with students’ mathematical performance (e.g., Presmeg, 1986a, b, 1992, 1997; 

Zimmerman & Cunningham 1991; Goldenberg, 1992). A few researchers use the terms visualization and mental 

imagery alternatively (e.g., Drake, 1996). Guttierez (1996) argues that  

"There is no general agreement about the terminology to be used in this field: It may happen that an author 

uses, for instance, the term "visualization" and another uses "spatial thinking", but we find that they are 

sharing the same meaning for different terms. On the other hand, a single term, like "visual image", may 

have different meanings if we take it from different authors. Such an apparent mess is merely a reflection 

of the diversity of areas where visualization is considered relevant and the variety of specialists who are 

interested in it " (p. 4) 
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Norma Presmeg (1986b) in her study “Visualization in High School mathematics” defines the notion of visual 

image, as “a mental scheme depicting visual or spatial information” (p.42). Presmeg (1986b) classified the kinds 

of imagery used by students/visualisers in her study as follows (p.43): 

(i) Concrete pictorial imagery: pictures created in the mind by the learner […] Concrete imagery is 

effective in alternation with abstract non visual modes such as analysis, logic, or a facile non visual 

use of formulae (p. 45). 

(ii) Pattern imagery: pure relationships depicted in a visual-spatial scheme […] 
(iii) Memory images of formulae: visualisers “see” a formula in their minds […] 
(iv) Kinaesthetic imagery:  imagery involving muscular activity […] 
(v) Dynamic (moving) imagery: use of moving images […]Dynamic imagery is potentially effective 

(p.45) 

Abraham Arcavi (2003) in his study “The role of visual representations in the learning of mathematics” 

introduces the notion of visualization as a way we can “see” what is unseen. He makes a metaphor and reports 

examples of the way we can “see” what is unseen through the use of technology (for example, the zoom function 

in computer environments is a way to “see”  the unseen). According to Arcavi (2003) 

“In a more figurative and deeper sense, seeing the unseen refers to a more “abstract” world, which no 

optical or electronic technology can “visualize” for us. Probably, we are in need of a “cognitive 

technology” (in the sense of Pea, 1987, p. 91) as “any medium that helps transcend the limitations of the 

mind … in thinking, learning, and problem solving activities.” Such “technologies” might develop visual 

means to better “see” mathematical concepts and ideas” (p.26).  

Arcavi defines visualization “blending and paraphrasing the definitions of Zimmermann & Cunningham (1991, 

p.3) as well as Hershkowitz et al. (1989, p.75)” as follows:  

“Visualization is the ability, the process and the product of creation, interpretation, use of and reflection 

upon pictures, images, diagrams, in our minds, on paper or with technological tools, with the purpose of 

depicting and communicating information, thinking about and developing previously unknown ideas and 

advancing understandings.” (p.26) 

In the Table 2.1. below I have brought together indicative definitions of visualization reported in the international 

literature, as well as definitions of related notions.  

 

Table 2.1. Visualization 

Author  Definition of visualization  

Hershkowitz, Ben-

Chaim, Hoyles,  

Lappan, Mitchelmore, 

& Vinner, S. (1989) 

“Visualization, generally refers to the ability to represent, 

transform, generate, communicate, document, and reflect on visual 

information” (p. 75). 

Cunningham (1991) defines visualization as “the ability to focus on specific 

components and details of very complex problems, to show the 

dynamics of systems and processes, and to increase the intuition 

and understanding of mathematical problems and processes”. (p. 

70, cited in Elliot, Hudson & O'Reilly, 2000, p. 152). 

Presmeg (1986b) argues that  “a visual image is a mental scheme depicting visual or 

spatial information” (p. 42). 

Presmeg (1997) defines visualization as “the process involved in constructing and 

transforming visual mental images…” (p. 304). 

Zimmerman and 

Cunningham (1991) 

define visualization as "the process of producing or using 

geometrical or graphical representations of mathematical concepts, 

principles, or problems, whether hand drawn or computer-

generated" (p. 1). [ …]  Consider visualization to be “the process 

to form a mental image” (with paper and pencil, or with the aid of 

technology)” (p. 3).  

Goldenberg (1999)  “Visualizing [is] picturing (and drawing) what is inherently 

visible as well as that which is not (either because it is an abstract 

object or relationship, or because it is a concrete object that has not 
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yet been built)” (p.197). 

Duval (1999)  argues that “Vision refers to visual perception and, by extension, to 

visual imagery. The epistemological function of vision consists in 

giving direct access to any physical object […] The synoptic 

function of vision consists of apprehending simultaneously several 

objects or a whole field” (p. 12)[…] visualization is based on the 

production of a semiotic representation” […which] does not show 
things as they are. A semiotic representation shows relations or, 

better, organization of relations between representational units (p. 

13). 

 

Spatial ability and spatial visualization are defined as the ability to perceive and mentally manipulate visual 

images, as the following researchers support:  

 

Kelly (1928) defines spatial ability as the combination of two ingredients: (1) 

the ability to percept and reserve visual images; and (2) the ability 

to mentally manipulate these images (cited in Lawrence Joseph 

Pleet, 1990, p. 17). 

Lohman (1979) defines spatial ability as the ability to generate, retain, and 

manipulate abstract visual images”(p. 188). 

Chien (1986) defines spatial visualization ability as: “the individual's ability to 

mentally manipulate, act upon, and transform visual stimuli. The 

ability to anticipate mentally a series of object movements is also 

involved in this process”. (p. 11, cited in Lawrence Joseph Pleet, 

1990, p. 17) 

 

In the international bibliography we read also about ‘dynamic imagery’ (Presmeg, 1986a, b), ‘dynamic reasoning, 

dynamic visualization, or dynamic imagery’, (Goldenberg, 1992). There is also a substantial bibliography 

investigating the inter-relationships between visualization, mental imagery, and mathematical performance. 

Α visual image in the words of Presmeg is “a mental construct depicting visual or spatial information” (Presmeg, 

1992, p. 596). Moreover, visual reasoning is legitimated as a way of reasoning through visualization, which is 

recognised as fundamental to mathematical reasoning. Barwise and Etchemendy (1991, p.16) consider that visual 

reasoning can be considered as valid reasoning: 1. visual information is part of the given information from which 

we reason; 2. visual information can be integral to the reasoning itself; 3. visual representations can play a role in 

the conclusion of a piece of reasoning (cited in Elliott, Hudson, O’ Reilly, 2000, p.152) 

Goldenberg (1992) suggested visual representations as a mean for the students to discover the properties of 

geometrical figures. Goldenberg considers 

“that by ignoring visualization and qualitative reasoning, curricula not only fail to engage a powerful part 

of students’ minds in their mathematical thinking, but also fail to develop students’ skills at visual 

exploration and reasoning” (cited in Rahim & Olson, 1998, p. 374). 

Goldenberg (1999) incorporates visualization among other “habits of mind” as a close interaction with skills 

(p.197). Cuoco, Goldenberg & Mark (1996) in their study “Habits of mind: an organizing principle for 

mathematics curriculum” support that there are many kinds of visualization in mathematics (pp.381-382):  

 One involves visualizing things that are inherently visual […] 
 A second involves constructing visual analogues to ideas or processes that are first encountered in non-

visual realms […]. 
 Finally, there are, for some people, visual accompaniments (not analogues, exactly) to totally non-visual 

processes […]. 
Then they subdivided these three categories to more categories (for example, visualizing data, relationships, 

processes, change, calculations)  

Cuoco, Goldenberg & Mark (1996) consider the following repertoire of habits of mind that students should have 

(pp. 3-8): Students should be pattern sniffers, experimenters, describers, tinkerers, inventors, visualizers, 
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conjecturers.  Cuoco, Goldenberg & Mark argue that “high school curricula should strive to develop these habits” 

(p.3). 

Zazkis, Dubinsky and Dautermann (1996a) expand the notion of visualization and define it as a dynamic process, 

meaning the action of alternating transformations between external media (/stimuli) and a student’s mind. Zazkis, 

Dubinsky, and Dautermann (1996a) define visualization as "an act in which an individual establishes a strong 

connection between an internal construct and something to which access is gained through the senses" (p. 441). 

My review of the related literature, makes me view visualization as a dynamic process whose dynamism is 

further expanded /or enriched in a computer environment, in which a student-user can make transformations on 

screen that have an impact on his/her mental transformations (Patsiomitou, 2012a, b; 2019a). Visualization 

functions as a microscope through which to view an abstract idea, or to dynamically transform ideas or processes 

using visual or non-visual means. In other words, visualization is a person’s competence to “move” images in 

mind, even if s/he is working in a paper-pencil environment, operating by thus dynamically. A student’s 

competence at transforming mental images is rooted in dynamic visualization. Dynamic visualization can become 

a mediator in the problem-solving process, as it can be a very powerful instrument for the students to gain a 

greater understanding of the mathematical concepts embodied in the problem. In other words, the peculiar 

property of dynamic visualization is that individuals who possess this ability can reason.  

2.2. Representations and Representational Systems 

“Representation is a crucial element for a theory of mathematics teaching and learning, 

not only because the use of symbolic systems is so important in mathematics, the syntax 

and semantic of which are rich, varied, and universal, but also for two strong 

epistemological reasons: (1) Mathematics plays an essential part in conceptualizing the 

real world; (2) Mathematics makes a wide use of homomorphisms in which the reduction 

of structures to one another is essential”. (Vergnaud, 1987, p. 227, cited in Goldin, 2008) 

Goldin (1998b) in his study “Representational Systems, Learning, and Problem Solving in Mathematics” through 

a brief but comprehensive and in depth discussion regarding the evolution of theories for the learning of 

mathematics argues  

“In my study of mathematical problem solving, learning, and development over the past 25 years, I have 

become persuaded that the notion of representational systems and their construction can provide the 

foundation for a model incorporating and synthesizing all the above ideas[…]” (p. 140).  

Researchers in the sphere of the Didactics of Mathematics take different approaches to conceptual determination, 

the theoretical interpretation of the notion of representation, and the ways that representations are used. 

Indicatively, I shall report issues 1 and 2 of the Representations and the Psychology of Mathematics Education 

journal and Vol. 17, No. 1 and 2, of the Journal of Mathematical Behavior, in which the researchers approach the 

matter in different ways.  For example:  

Goldin (1998b) denotes the notion of “Representational systems” or “representational modes,” as that systems 

“which include systems of spoken symbols, written symbols, static figural models or pictures, manipulative 

models, and real world situations, discussed by Lesh (1981)[…]” (p.143). He terms them as “external systems of 

representation”. Goldin (1998b) also mention that the term representational system bears some resemblance to 

what Kaput (1987, p.162) calls “symbol scheme”.  

“What Kaput (1985, 1987), following Palmer (1977), called a “representation” or “representation system” 

corresponds most closely in my terminology to a relationship of symbolization between two 

representational systems.” (Goldin, 1998b, p. 143). 

Kaput (1998) in his study “Representations, Inscriptions, Descriptions and Learning: A Kaleidoscope of 

Windows” defines internal representations as hypothesized mental constructs and the “external representations” 

as material notations of one kind or another. Kaput also defines the term “notation system” in an interchangeable 

way with the meaning of “representation system” and even “symbol system” (p. 270). Kaput adds that “We now 

turn to an illustration of how the computational medium offers notational opportunity for instructional design 

within a curricular context” (p. 272).  

Vergnaud (1998) in his study “A Comprehensive Theory of Representation for Mathematics Education” argues 

that “representation is not a static thing but a dynamic process that borrows a lot from the way action is 

organized. This leads to strong objections to the metaphor of the triangle (Figure 2.2), on which many authors 
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have commented, in one way or another, since Aristotle. It is too static, and does not offer any insight for the 

representation of relationships, while most scientific concepts are relational.” (p. 167)  

Similarly, Vergnaud (2009, p.93) argues: 

“Representation is a dynamic activity, not an epiphenomenon that would accompany activity without 

feeding it or driving it. […] it organizes and regulates action and perception; at the same time, it is also the 

product of action and perception. Therefore, the operational form of knowledge must be considered as a 

component of representation. Schemes are essential: they organize gestures and action in the physical 

world, as well as interaction with others, conversation, and reasoning.[…]”. 

 

 

Figure 2.2.  The metaphor of the triangle (Vergnaud, 1998, p. 168) (adapted) 

 

Duval (1988a, b) “coined the term “register” in order to refer the different semiotic systems used to present 

information or to objectify a representation. […] Basically, in geometry, three registers are used: the register of 
natural language, the register of symbolic language, and the figurative register. This register is linked to the 

perceptual visual system, which has its own organization laws” (Mesquita, 1998, p.183). 

Duval (2000) in his study “Basic Issues for Research in Mathematics Education” supports that when we talk of 

"representations" the four following aspects must be taken into account: 

 “the system by which representation is produced […] 
 the relation between representation and the represented object […] 
 the possibility of an access to the represented object apart from semiotic representation […] 
 the reason why representation using is necessary […]”(p.58) 

I shall cite a few examples to explain the notion of representational systems with which students can express, 

communicate and/or share ideas in mathematics. For example the Proposition 25, in BOOK 5, of Euclid’s 

“Elements” [“If four magnitudes are proportional then the (sum of the) largest and the smallest [of them] is 

greater than the (sum of the) remaining two (magnitudes)” (reported in Fitzpatrick, 2007, p. 154)], expresses an 

abstract idea for which diagrams of the reported objects can provide considerable support (Figure 2.3).   

 

Figure 2.3. Proposition 25, in BOOK V of Euclid’s “Elements” (Fitzpatrick, 2007, p. 154) 

 

The formulation of the proposition belongs to a “verbal” representation system (or is a written symbol) while the 

figures belong to another representation system: “the pictorial”.  

If we transfer the proposition into a DGS environment using parameters supported by the environment and 

following the mode of construction I describe in my study “Hybrid-dynamic objects: DGS environments and 
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conceptual transformations” (Patsiomitou, 2019b), then we have a representation system which supports iconic 

representations in an interactive way (Figures 2.4 a, b).  

 

 
 

Figures 2.4.a, b. Proposition 25, using DGS tools 

 

I know from my classroom experience that students find it difficult to translate a formal Euclidean proposition 

into a figure on screen, which is to say they encounter difficulties translating between different systems of 

representation.  

Sakonidis (1994) also argues that “representations which are too abstract for the child lead to rote manipulation 

of symbols and rules, and to excessive concern with learning the representations at the expense of the concept 

represented” (p. 42).  

 

Figure 2.5. Investigating and validating Proposition 25 in a DGS environment  

 

We can validate the truth of the Proposition by changing the values of the parameters in the figures constructed in 

the DGS environment (Figures 2.4b, 2.5), --something that can also be done in a paper and pencil environment 

using a compass and a ruler for construction. 

Different semiotic systems will produce different representations for any mathematical object. Each new 

representational system (or semiotic system in the words of Duval) provides new means of representation, new 

ways to process mathematical representations and consequently new ways to mathematical thinking. Suppose we 

try to explain the Proposition 25 mentioned above in a paper pencil environment. We will produce different 

representations for the same mathematical object. We have, therefore, to adapt Peirce’s triadic conceptualization 

thus: 

[Object, "representamen" (sign), "interpretant] to [Object, one of the various semiotic systems, composition of 

signs] (Duval, 2000, p. 59). 

Duval (2000) constructed a diagram (Figure 2.6) to visualize what he supports: “In that perspective, deeper 

causes of misunderstanding appear. Whenever a semiotic system is changed, the content of representation 

changes, while the denoted object remains the same. But as mathematical objects cannot be identified with any of 
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their representations, many students cannot discriminate the content of representation and the represented object: 

objects change when representation is changed!” (p. 59) 

 

 
Figure 2.6. Representation and understanding for mathematical knowledge (Duval, 2000, p. 59) (adapted). 

 

Goldin (1998a) in his study “The PME Working Group on Representations” noted several different meanings that 

have been given to the notion of representation “in connection with the learning, teaching, and development of 

mathematics (Goldin, 1998, p.285): 

 “A. External physical embodiments (including computer environments)-any physical situation or set of 

situations external to the individual, which can be described mathematically or seen as embodying a 

mathematical concept; e.g., (1) a number line, drawn and labeled, illustrating order relationships among 

numbers; (2) a configuration of pegs on a peg-board providing an array model for multiplication; or, 

more broadly, the peg-board apparatus itself, (3) a calculator- or computer-based environment, within 

which mathematical constructs such as functions and graphs can be displayed and manipulated.  

 B. External linguistic embodiments-we also took “representation” to include verbal, syntactic, and related 

semantic aspects of the commonly shared language in which mathematical problems are posed and 

mathematics is discussed.  

 C. Formal mathematical constructs-still with emphasis on a problem environment external to the 

individual, a different meaning of “representation” is that of a formal structural or mathematical analysis 

of a situation or set of situations; e.g., (1) state-space representations of problems or games such as the 

Tower of Hanoi, Nim, etc.; (2) representations of mathematical entities, such as groups, rings, functions, 

etc., by means of other mathematical entities, such as linear operators on vector spaces representing 

elements of groups, graphs representing elements of function-spaces, etc. Though there is a sense in 

which all mathematics can be regarded as “internal” to individuals, the emphasis here was on 

“representation” as an analytical tool for formalizing or making precise mathematical ideas or 

mathematical behavior.  

 D. Internal cognitive representations- we considered a very important meaning of the term 

“representation” to refer to internal, cognitive configurations of learners and problem-solvers. Thus we 

could talk about a student’s internal, individual representation(s) of or for mathematical ideas such as 

“area,” “functions,” etc. We also considered systems of cognitive representation in a broader sense, as 

constructs to assist in describing the processes of human learning and problem solving in mathematics”. 
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2.3. External and Internal Representations  

Goldin (2008) in his study “Perspectives on representation in mathematical learning and problem solving”  

argues that “to discuss representation, we must be able to consider at a minimum configurations of symbols or 

objects external to the individual learner or problem solver, configurations internal to the individual, relations 

between them, and  structures within and across them. These basic notions are essential to characterizing the 

nature of the patterns that mathematics is about” (p. 178).  

Goldin (2008) defines the term “representation” using the notion of configuration. He defines representations by 

means of a number of synonymous verbs, also used by different researchers and scholars when they deal with the 

term “representing configuration”.  

“a representation is a configuration that can represent something else in some manner. […] the 
representing configuration might, for instance, act in place of, be interpreted as, connect to, correspond to, 

denote, depict, embody, encode, evoke, label, link with, mean, produce, refer to, resemble, serve as a 

metaphor for, signify, stand for, substitute for, suggest, or symbolize the represented one”. (Goldin, 2008, 

p.179)  

Α mathematical object is a creation in a person’s mind that is formed as we have defined /or determined it 

through our experience or has been formed previously. The mathematical concept as it has been mentioned 

previously embody a web of relations between objects; they cannot be touchable through our daily experience 

neither through our sensory system just like the real of natural objects of the environment around us. In other 

words the mathematical concepts as mathematical objects are touchable only through their signs and the semiotic 

representations. Sakonidis (1994) considers that students / learners acquire the ability to use a representation in a 

gradual process which involves the following steps:  

 “Identification of the elements of the representing world  

 Establishment of relationships between the elements of the representing world 

 Transformation of the above relationships to the ideas for which these elements stand for, that is, to 

relationships between elements of the represented world 

Moreover, includes, the ability to move between representation systems”. (p.42) 

Verhoef & Broekman (2005) in their study “A process of abstraction by representations of concepts” consider 

that experience with objects in the real world is important for the development of students’ knowledge and can be 

divided into direct experience with objects and mediated experience through media. They support that during the 

representation process “the representing medium (the representation) is related to the represented object (the 

reality) through a set of mapping principles that maps elements of the reality to elements in the representation”.  

 The term pictures have been chosen by Verhoef & Broekman to characterize the kind of representations 

“if they are (almost) similar to the represented object, such as photographs or statues. In these cases, […] 
there is a one-to-one mapping or isomorphism between the two” (p. 274).  

 The term icons have been chosen by Verhoef & Broekman to characterize the kind of representations that 

“[…] represent the represented object to some extend of similarity. […] An example of this is the figure of 

a man or a woman on a toilet door. The relationship between an icon and the represented object depends on 

their ‘mode of correspondence’” (p. 274).  

 The term “symbol” has been chosen by Verhoef & Broekman to characterize the kind of representations 

when “[they] have no similarity at all with their represented object. These are chosen arbitrarily by 

convention. Examples of these are the letters of the alphabet, or numerals” (p. 274). 

De Vries, Demetriadis and Ainsworth (2009) identify “a pervasive underlying distinction into dyadic and triadic 

views of representation: 

 From a cognitive perspective a representation can be characterized as dyadic, referring to Palmer’s 

definition: a representation is something that stands for something else.  

 From a triadic perspective, “a representation involves three entities: […] the referent or object existing in 

the world, the signifier or representamen (i.e., a mark, an idea, a word, an image, a sound, a smell), and 

the signified or interpretant (the idea evoked in someone’s head), referring to Peirce’s definitions of a 

sign” (de Vries, Demetriadis and Ainsworth, 2009, p. 139).   
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The most researchers and scholars agree that a potentially useful distinction can be drawn between external 

representations and internal representations. Others, think there is no such distinction. According to Sakonidis 

(1994) 

 “Mason (1987) and von Glasersfeld (1987) criticize the internal/external distinction, on the grounds that 

for the child inner representations are not a representation of the real world but of a child’s inner world. 

Von Glasersfeld suggests that is more appropriate to talk about inner experiences, and their expression in 

terms of pictures, diagrams, words or symbols as a presentation of an inner world”(Sakonidis, 1994, p.41) 

Tschoshanov (2013) also states that “scholars claim that representation could refer to both internal and external 

manifestations of concepts (Pape & Tchoshanov, 2001)” (p.73).  

 
Figure 2.7. Internal versus external representations (Goldin & Kaput, 1996, p. 399) (adapted) 

 

Goldin & Kaput (1996) in their study “A joint perspective on the idea of representation in learning and doing 

mathematics” provide a “sound basis for further development” with regard to the concept of representation in the 

psychology of mathematical learning and problem solving. They distinguish internal from external 

representation:  

 With the term internal representation Goldin & Kaput (1996) “refer to possible mental configurations of 

individuals, such as learners or problem solvers. Of course, being internal, such configurations are not 

directly observable” (p. 399). Also, they do not “refer to the direct object of introspective activity […] 
although the experience of introspection is subjective, the descriptions that result from introspection are 

observable as, for example, verbal and gestural behavior” (p.400). 

 With the term external representation Goldin & Kaput (1996) “refer to physically embodied, observable 

configurations such as words, graphs, pictures, equations, or computer microworlds. These are in 

principle accessible to observation by anyone with suitable knowledge” (p. 400).  

Goldin & Kaput (1996) depict an interaction between mental representations (“as those […] that are encoded in 
the human brain and nervous system and are to be inferred from observation”) (p. 402) and external 

representations (as those accessible to direct observation, for example, written words, speech, formulas, concrete 

manipulatives, computer microworlds as they appear on a screen […]). Figure 2.7 presents a correspondence 

between what is accessible by and what is in the human brain.   

For example, if a teacher writes on a computer screen the formula sin (2x-1) (an external representation) the 

resulting function should plot a sinusoidal curve (Figure 2.8). The students may mentally relate the formula with 

the (internal) visual image of the graph as a sinusoidal curve representing the graphic representation of the 

function written with the symbolic expression.  

According to Goldin & Kaput (1996) “[…] intrinsically, an interaction or at of interpretation is involved in the 

relation between that which is representing and that which is represented (von Glasersfeld, 1987) (p. 399). 

Such correspondence “involve complex prior constructions achieved through representational acts” (Goldin & 

Kaput, 1996, p. 401). If the student has developed an interaction between the external and the internal 

representation of the concept then s/he has developed the level of understanding of this concept. 
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The above example reminds me of an example provided by Karadag (2009) who explains the “dynamically 

nested RBC model of abstraction” introduced by Hershkowitz, Schwarz, and Dreyfus (2001)
 1
 (see also, Schwarz, 

Hershkowitz, & Dreyfus, 2002).  Karadag (2009) clarifies that  

 “ […] in order to calculate sin 2x by knowing the value of sin x or cos x, students need to recognize (or is 

guided to recognize) that they can use sin (A+B) as a reference point. By taking summation identity of the 

trigonometry, they can build sin 2x identity with sin (A+B) = sin (x+x). After obtaining sin2x=2sinxcosx, 

they can construct this knowledge to produce the formulas for sin 3x, cos 2x, etc. In order to produce new 

knowledge structures, the process starts from the beginning” (p. 24).  

 

 
Figure 2.8. Sinusoidal curves graphically representing the symbolic form of the trigonometric functions (constructed in Sketchpad 

dynamic geometry software) 

 

Similarly, Piaget (1937/1971) claims that we understand new constructs by assimilating or accommodating them 

into our pre-existing cognitive structures. Piaget and Inhelder (1956) also pointed out that a student has 

developed his/her perceptual thinking when s/he can internally manipulate his mental images. They emphasize 

that in this case the students has been fully developed their representational thinking. According to Pape & 

Tschoshanov(2001) 

“[…] representational thinking [is] the learner’s ability to interpret, construct, and operate (communicate) 

effectively with both forms of representations, external and internal, individually and within social 

situations” (p. 120). 

Tschoshanov (2013) poses a key question concerning the relationship between external/ internal representations 

in learning and the meanings of assimilation/accommodation: “how students’ internal schemata assimilates 

external representations, and how new external representations help students to accommodate their emerging 

internal representations”. (p. 74). This assumption is depicted in the Figure 2.9 (Tchoshanov, 2013, p. 74), 

namely an interplay between students’ external and internal representations in developing understanding of a 

concept (the concept five). According to Tchoshanov (2013) “the development of student’s representational 

thinking is a two-sided process, an interaction of internalization of external representations and externalization of 

mental images” (p. 74) 

 

                                                 
1
 “Hershkowitz, Schwarz, and Dreyfus (2001) presented a theoretical and practical model for the cognitive analysis of 

abstracting in mathematics learning.[…] Processes of knowledge construction are expressed in the model through three 

observable and identifiable epistemic actions: Recognising, building-with, and constructing (RBC). Recognising takes place 

when the learner recognizes that a specific previous knowledge construct is relevant to the problem he or she is dealing with. 

Building-with is an action comprising the combination of recognised constructs in order to achieve a localised goal, such as 

the actualisation of a strategy or a justification or the solution of a problem. The model suggests constructing as the central 

epistemic action of mathematical abstraction. Constructing consists of assembling and integrating previous constructs by 

vertical mathematisation to produce a new construct. […] Vertical mathematisation represents the process of constructing 

new mathematical knowledge within the mathematics itself and by mathematical means” (Hershkowitz et al., 2007, p. 44) . 
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Figure 2.9. Tchoshanov’s (2013, p.74) illustration for the relationship between external and internal representations in developing 

understanding of the concept five (Tchoshanov, 2013, p. 74, modified from Pape and Tchoshanov, 2001) 

 

In the words of Mesquita (1998) the terms “external” and “iconical” representation in geometry, are used in the 

following senses: “External, embodied materially on paper or other support; Iconical, or figurative: centered on 

visual image (in opposition to other possible semiotic systems). We also use the term “figure”’ as a synonym for 

external and iconical representation of a concept or a situation in geometry” (p. 183). Mesquita (1998) argues that 

the “external representation of a geometrical problem, per se, does not enable one to solve the problem, but it 

may contribute to the definition of the structure of the problem in order to facilitate treatments” (p.184).   

Cifarelli (1998) examined the development of mental representations during the problem solving situations, 

involving a constructivist point of view. The mental representations occur as a mathematical conceptualization 

during problem solving. Cifarelli (1998) claims that students develop three increasing abstract levels of solution 

activity (Figure 2.10).   

 
Figure 2.10. Levels of Conceptual Structure (Cifarelli, 1998, p. 246) (adapted) 

 

According to Cifarelli (1998) “The construct of problem representation has played a central role in describing the 

knowledge that learners bring to mathematical problem solving situations […].” (p. 239).  Cifarelli 

complementary states that “we need to reconsider traditional views of representation, and adopt a perspective 

which:  

 acknowledges both the constructive function of representation in the development of conceptual 

knowledge and the resulting mental objects which solvers can then reflect on and transform as they 

interpret problem situations. […]  
 the process of representation appears much more dynamic than previously articulated by traditional 

theories of mathematics learning.[…] 
 the finding that the solvers demonstrated increasingly abstract levels of solution activity while solving 

the problems suggests the need to address qualitative aspects of mathematical performance seldom 

considered as important in the study of representations in mathematical problem solving.[…]” (p.262) 

The term ‘‘representation’’ in the words of Scaife and Rogers (1996)  

“has a variety of different meanings, depending on the context.  A common distinction is between 

representation as process, and representation as product, as the outcome of this process. Process concerns 
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the transformations and preservations that occur in deriving the representation from what is being 

represented” (p. 190) 

In the Table 2.2. below, I have brought together indicative definitions of the notion of representation and how 

researchers conceive its role.  

 

Table 2.2. The Notion of Representation 

Author /s Definition of the notion of representation  

Stephen Palmer (1977b) 

 

A representation is “first and foremost something that stands 

for something else” 

There are five elements/aspects involved in a representation: 

(i) [what] the represented world is 

(ii) [what] the representing world is 

(iii) [what] aspects of the represented world are being 

represented /[modeled] 

(iv) [what] aspects of the representing world are doing  the 

representing /[modeling] 

(v) [what] are the correspondence between the two worlds 

(cited in Sherin, 2000, p.404) 

Johnson-Laird (1983)   Propositions are strings or symbols that correspond to 

natural language  

 Mental models are structural analogues of the world  

 Images are perceptual correlates of models from a 

particular point of view (cited in Sakonidis, 1994). 

Lesh, Post & Behr (1987) “The term representation is interpreted in a naive and restricted 

sense as external (and therefore observable) embodiments of 

students' internal conceptualizations-although this 

external/internal dichotomy is artificial” (p.33).(Webpage [10]) 

Kaput (1991)  has distinguished between  

 mental structures as means by which an individual 

organizes and manages the flow of experience, and  

 notation systems as materially realizable cultural or 

linguistic artifacts shared by a cultural or language 

community.(p.55) 

Seeger, Voight & 

Werchescio (1998) 

“[…] a mental reproduction of a former mental state” “a 

structurally equivalent ‘presentation’ through pictures, symbols 

or signs,” and “something ‘in place of’ something else” 

(Seeger, 1998, p. 311 cited in Pape & Tchoshanov, 2001, p. 

120). 

Pape & Tchoshanov (2001) “use the term representation(s) to refer to both the internal and 

external manifestations of mathematical concepts. [They] write 

representation(s) with the parenthetical “s” to emphasize that, 

[they] are speaking of both the act of representing (the verb, to 

represent) and the external form of the representation (the noun 

form)” (p. 118). 

 

Tschoshanov (2013) “as external stimuli (numerals, equations, graphs, tables, 

diagrams, etc.) of concepts or internal cognitive schemata — 

abstractions of ideas that are developed by a learner through 

experience. Representation could also refer to the act of 

externalizing an internal, mental abstraction” (p.73).  

defines representational thinking “as the ability of the student 

to construct, interpret, and communicate effectively with both 
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forms of representations, external and internal, individually and 

in social context” (p. 75)  

 

 

In other words, researchers consider representations to be actions developed within the mind of the learner, but 

also the object created / brought into being during the action, using static or dynamic means. Computer 

microworlds can be viewed as specific forms of external representations or external representational systems. 

Having taken on board the aforementioned definitions in the literature, I think that a representation is both (a) an 

external entity (such as a verbal expression, a graph, a figure, a map, a picture), which is to say an external  

correspondence of objects or processes with the objects that are represented by the entities brought into being as 

representing objects by the modelling process, and (b) an internal mental entity, meaning a structurally 

equivalent modification of physical/mental objects/processes which are constructed in the mind as a result of the 

processing/elaboration of information and the manipulation of objects and concepts due to the cognitive schemes 

which have developed in the subject’s mind.  

2.4. Multiple External Representations 

Students’ mathematical thinking can be “represented” using different modes. Bruner (1966) proposed three 

sequential modes of representation that can be used to build a hypothetical learning path for the learning of a 

concept (for example, the number 7): 

 Enactive representation 

This mode of representation is based on actions. For example, the pupil uses his/her pencils to understand 

the number 7. S/he has to touch them, put them in order, count them, act on them and experiences the 

correspondence between the seven pencils and number “7”. S/he acts on them through direct action. The 

same happens if the pupil counts his/her fingers. 

 Iconic representation  

This mode of representation is based on images. For example, the student uses an image of 7 pencils. 

S/he has to look at them and count them. S/he recalls the material objects-pencils in his mind. Before the 

age of 6 the pupil cannot classify the materials from more than one characteristic (e.g., combining color 

and size, or color and shape).   

 Symbolic representation  

This mode of representation is based on symbols. For example, the student uses the symbol 7 that has 

replaced the image with the seven pencils, which has already been replaced by the seven material objects 

or manipulatives used to understand the concept. Now, s/he has constructed a mental representation of 

the numbers and begins to understand the concept of the number.  

Bruner (1966) argues that a child’s development has to follow the sequential learning representational path for 

the mastering of the concepts: from concrete real-world objects representation through iconic representation to 

symbolic representation. The concrete materials help students develop connections between conceptual and 

procedural knowledge and makes new learning easier and more meaningful. These kinds of representation take 

under consideration an increasing degree of abstraction.  

 
Figure 2.11a. Lesh’s model (1979) for translation between modes of representation (cited in Post, 1988, p.11) (an adaptation for the 

current study) 



[43] 

 

Post (1988) in his study “Some notes on the nature of mathematics learning” examines the implications that 

behavioral and cognitive theories have for the teacher in the mathematics classroom, as “two broad theoretical 

umbrellas under which the vast majority of learning theories can be classified” (p.1). According to Post (1988)  

“when learning a new concept, it is important that students “see” the concept from a variety of perspectives 

or interpretations. […] These modes, [shown in Figure 2.11a] represent an extension of Bruner’s early 

work in representational modes (Bruner, 1966). The term "manipulative aids" in this figure relates to 

Bruner's enactive level, "pictures" relates to Bruner's iconic level, and "written symbols" relates to Bruner's 

symbolic level. Lesh (1979) added verbalization ("spoken symbols") and "real-world situations" to 

Bruner's model and stressed the interdependence of these modes. Expanding (to five) the number of modes 

of representation and stressing the various translations within and among these modes are the two most 

important contributions of this model” (p. 10) […] Mathematical problem solving requires a move from the 
real-world situation to mathematical symbolism. Manipulative aids are in a sense halfway between the 

concrete real world of problem situations and the world of abstract ideas and mathematical symbols 

(written or oral). They are symbols in that they are made of physical materials, which in turn represent real-

world situations” (p. 13). 

 

  
Figure 2. 11b. The Lesh (1979) multiple representation 

Translation model, adapted from Lesh, Post, and Behr (1987, 

p.34) (an adaptation for the current study). 

Figure 2.11c. Interplay among distinct types of 

representation systems (Lesh, Post, and Behr, 1987) 

(Webpage [10]) (adapted) 

 

 

Behr, Lesh, Post, & Silver (1983) have identified five distinct types of representation systems that occur in 

mathematics learning and problem solving:  

 “experience-based "scripts"-in which knowledge is organized around "real world" events that serve as 

general contexts for interpreting and solving other kinds of problem situations;  

 manipulatable models-like […] arithmetic blocks, fraction bars, number lines, etc., in which the 
"elements" in the system have little meaning per se, but the "built in" relationships and operations fit 

many everyday situations;  

 pictures or diagrams-static figural models that, […] can be internalized as "images";  
 spoken languages-including specialized sub languages related to domains like logic, etc.;  

 written symbols-which, like spoken languages, can involve specialized sentences and phrases (X+3=7, 

AUB) as well as normal English sentences and phrases’ (reported in Lesh, Post & Behr, 1987) (Webpage 

[10]) 
Lesh, Post and Behr (1987) proposed a multiple representation model in which they suggest a student 

understands a concept if s/he has the competence to translate between different modes of representation of the 

concept. Many similar figures have been constructed. For example Lesh & Doerr (2003) replaced the “Real 

scripts/or Real life situations” mode of representation with the “Experienced-based Metaphors”, adding by this 

new information in the multiple representation figure (Figures 2.11b, c).  

Lesh (1979) considers that translation among representations in problem solving process occurs in three steps: 

“translating from the given situation to a mathematical model; transforming the model so that the desired results 
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are apparent; translating the model based result back to the original problem situation to see if it is helpful and 

makes sense” (cited in Shavelson et al., 1987, p.4). Lesh Post and Behr (1987) identify five steps in the 

translation process, concerning to modeling a problem in mathematics: “simplifying the problem by ignoring 

irrelevant information; mapping between the givens and the “model”; transforming the properties of the model to 

arrive at a result; translating the result back to the givens; evaluating the fit of the result to the givens” (cited in 

Shavelson et al., 1987, p.4). 

Lesh, Landau & Hamilton (1983), Behr, Lesh, Post, & Silver (1983), Lesh, Post & Behr (1987) emphasize the 

“translation among these distinct types of representational systems and transformations within them”                         

(Figure 2.11d). Lesh, Post & Behr (1987) argue that a student understands a concept or an idea (for example 

what does it mean 1/3) if s/he: “(a) can recognize the concept in different representational systems ; (b) can 

flexibly manipulate the idea within given representational systems and (c) can accurately translate the idea from 

one system to another” . 

For example if a student reads a mathematical word problem, s/he understands it if s/he can reformulate it in 

his/her own words. This is a transformation within the same representational system. S/he can also use a 

symbolic expression to express it [the problem] using mathematical symbols. This is a translation among 

different representational systems.   

 

 
Figure 2.11d. Translations and transformations during problem solving (Lesh, Landau & Hamilton, 1983) (Webpage [11]) (adapted)  

 

As mentioned above, we can represent a concept with multiple representations, such as pictorial representations, 

verbal representations, real-world representations, manipulatives or concrete representations, and symbolic 

representations.  

 Pictorial representations or iconic representations: Pictorial representations are any two–dimensional 

pictures generated in a paper-pencil or computer environment which represent concrete objects. (e.g., Ainsworth, 

1999a, b; Ainsworth et al., 2002; Tabachneck-Schijf & Simon, 1998; Gagatsis & Elia, 2004; Gagatsis, Spyrou, 

Kapetanidou, Patsiomitou & Evangelidou, 2004, in Greek).  These pictures (e.g., a photograph, a picture, a graph, 

a map) can be generated by the teachers, the students or they form part of a problem in textbooks. 

Students/teachers can also construct their own pictures in a static or dynamic environment in order to experience 

several aspects of mathematical ideas and meanings kinesthetically.  

Carney and Levin (2002) study has proved that the function of pictures/images in mathematics can be very 

influential. They identify five different functions for pictorial representations in mathematics problems and tasks 

(e.g., decorative, representational, organizational, interpretational and transformational)(reported in Finesilver, 

2014, p. 72):  

 “Decorative pictures simply decorate the page, bearing little or no relationship to the text content,  

 Representational pictures mirror part or all of the text content.  

 Organizational pictures provide a structural framework for the text content. 

 Interpretational pictures help to clarify difficult text, and  

 Transformational pictures include systematic mnemonic components designed to improve recall of text 

information”. 

Many studies implemented this model (e.g., Gagatsis & Elia, 2004) to investigate how students perceive the 

pictorial representations in mathematics. Finesilver (2014) concludes that there is a “relationship between the 

development of representational strategies and multiplicative thinking.” (p.2).  
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Lesh, Landau & Hamilton (1983) put pictorial representations in the centre in the following figure (Figure 2.11e) 

during problem solving process because a picture can help a student to understand fractions as “s/he can express 

fraction ideas presented with circular regions using rectangular regions, or using written symbols” (Webpage 

[11]). 

 

 
Figure 2.11e. Translations among modes of representation during problem solving (Lesh, Landau & Hamilton, 1983) (Webpage [11]) 

(adapted) 

Johnson-Laird (2010) in his study ‘Mental models and human reasoning” states that iconic representations help 

persons to visualize a verbal expression of a problem and how the different objects mentioned in the problem 

relate to each other. As he writes:  

“A visual image is iconic, but icons can also represent states of affairs that cannot be visualized, for 

example, the 3D spatial representations of congenitally blind individuals, or the abstract relations between 

sets that we all represent. One great advantage of an iconic representation is that it yields relations that 

were not asserted in the premises (24, 28, 29). Suppose, for example, you learn the spatial relations among 

five objects, such as that A is to the left of B, B is to the left of C, D is in front of A, and E is in front of C, 
and you are asked, “What is the relation between D and E?”[…] “You could use formal rules to infer this 

relation, given an axiom capturing the transitivity of “is to the left of.” (p. 2) 

An iconic representation can also be used in a problem presented in a DGS environment. If we copy-paste a 

picture into a DGS environment, we can process it using the tools provided by the software. In this case, the 

picture becomes an illustration that can help students to understand and organize the objects in the picture (e.g., 

Patsiomitou, 2014).  

 Verbal representations: These are representations that are generated through the language and verbal 

expressions we use while discoursing in a mathematics class. Examples of verbal representations include the 

definitions, theorems or geometrical properties, that a student formulates in support of his/her logical reasoning 

as s/he tries to solve an equation or a geometrical or mathematical problem. But the students fail to support their 

thinking when they do not know the exact terminology in mathematics, or when they confuse the meanings. 

Moreover, when students do not understand a concept, they cannot “speak” about it. Vergnaud (2009) in his 

study “The Theory of Conceptual Fields” considers that the linguistic and symbolic expressions are a “part” of a 

concept which can be developed during didactic situations: 

“Because language and symbols play an important role in the conceptualizing process, many researchers 

identify conceptualization and symbolization, as if the wording and symbolizing activity were sufficient 

roots of knowledge, particularly mathematical knowledge. This is not the case. The analysis of situations 

and schemes shows that the conceptualizing process already takes place in the simplest forms of activity 

(even without language): the reason is that no action can be efficient without the identification of some 

objects and their properties. Even more complex concepts, to gain sense and operationality, need to be 

contextualized and exemplified in situations. Therefore, from a developmental point of view, a concept is 

altogether: a set of situations, a set of operational invariants (contained in schemes), and a set of linguistic 

and symbolic representations” (p. 94). 
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Skinner (1957/1992) in his monograph “Verbal Behavior” poses a very important issue concerning the 

correspondence between verbal expressions and the things or situations these verbal expressions represent:  

“It has been tempting to try to establish the separate existence of words and meanings because a fairly 

elegant solution of certain problems then becomes available. Theories of meaning usually deal with 

corresponding arrays of words and things. How do the linguistic entities on one side correspond with the 

things or events which are their meanings on the other side, and what is the nature of the relation between 

them called “reference”? Dictionaries seem, at first blush, to support the notion of such arrays. But 
dictionaries do not give meanings; at best they give words having the same meanings. The semantic 

scheme, as usually conceived, has interesting properties. Mathematicians, logicians, and information 

theorists have explored possible modes of correspondence at length. For example, to what extent can the 

dimensions of the thing communicated be represented in the dimensions of the communicating medium? 

But it remains to be shown that such constructions bear any close resemblance to the products of genuine 

linguistic activities” (p.41).  

This is a very important issue and one that every teacher may find themselves facing when s/he tries to teach a 

concept in class using only verbal expressions (e.g., a lecture). A few students will be unable to understand the 

teacher, because they cannot translate the information in their mind according to their pre-existing structures, or 

because they simply cannot imagine it. Certainly, when we teach geometry or mathematics, a figure (or a graphic 

representation) generally contributes to a better understanding of the concepts. This issue is supported 

theoretically by the theory developed by Paivio (1986), as well as by Baddeley’s (1986) model of the architecture 

of memory.  

 

 
Figure 2. 12: The Dual Coding Theory (Paivio, 1986, cited in Gilbert, 2010, p.4) (adapted) 

 

Paivio (1986) in his “Dual Coding Theory” proposes that when a person /a student is studying a subject, s/he 

encounters the meaning of the concrete subject (e.g. quadrilaterals) in a network of words and ideas (Paivio 

attaches a common label ‘logogens’ to the verbal information) and separately in the images or non-verbal 

information (e.g., information received through touch, sight, sound, taste) relating to the concrete subject (Paivio 

attaches a common label “imagens” to the non-verbal information). They can be linked together to provide an 

understanding of the subject (Figure 2.12). Gilbert (2010) states that  

“Paivio proposes that verbal stimuli – those which come in verbal form– and non-verbal stimuli – are 

processed in different ways by sensory systems that are in common to them both. […]These can be linked 
together to provide an enriched understanding of that system. Most importantly, the two types of 

associative structures are capable of ‘cross-linking’ to form ‘referential connections’. […]When called 
upon to do so, an individual will either produce a verbal or a non-verbal output based on the relevant 

associative structures, or will produce one or both of them based on the referential structures that have been 

developed. As the presentation of a comprehensive account of verbal stimuli, non-verbal stimuli, their 

associations and referential connections would be very lengthy, this introductory paper is only concerned 

with those non-verbal stimuli presented in visual form” (pp. 3-4).   
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Moreover, according to Baddeley’s (1986) model, if a verbal expression is accompanied by a visual picture of the 

object, their relation will be strengthened. De Vries, Demetriadis and Ainsworth (2009) distinguish internal 

representations to: propositional representation, mental images and mental models. 

“Following Paivio (1971, 1990), cognitive psychology has typically distinguished two types of internal 

representations depending on the type of correspondence relations: propositional representation, which is a 

verbal or text-like mode, and mental images which correspond to a visual-pictorial mode of representation. 

In addition a third kind is often postulated which are mental models as structural or logical analogues of the 

word (Johnson-Laird, 1983)” (de Vries, Demetriadis and Ainsworth, 2009, p. 139) 

Mayer and Anderson (1992) claim that a student has to construct three types of connections during a meaningful 

learning process, connecting iconic with verbal representations:  

 “representational connections between verbal information that is presented and the learner’s verbal 

representation of that information;  

 representational connections between pictorial information that is presented and the learner’s visual 

representation of that information; and  

 referential connections between corresponding elements in the learner’s verbal and visual 

representations.” (Reported in Sullivan, 2004, p. 9). 

Mayer and Moreno (1998) propose also that meaningful learning occurs when “five active cognitive processes 

are involved in learning from multimedia presentations: selecting words, selecting images, organizing words, 

organizing images, and integrating words and images. This has become known as the SOI (Select, Organize, and 

Integrate) model of meaningful learning. Selecting words and images equates to building mental representations 

in verbal and visual working memory (respectively). Organizing words and images consists of building internal 

connections among either the propositions or the images (in that order). Integrating implies building external 

connections between a proposition and its corresponding image”(Sullivan, 2004, p. 7).  

 Symbolic representations: These are representations which include/incorporate symbols such as letters, 

numbers, other symbols, formulas, operations on numbers and formulas, arithmetic, algebraic or geometric 

symbols (e.g., Vergnaud, 1988; Ainsworth, 1999a, b; Johnson, 2017).  

For example, the solution of an equation represents the structure of a symbolic representation in which a student 

performs calculations between numbers of different variables. The symbols can have different meanings, 

depending on the framework in which we implement them. For example, the symbol “<” has different meanings 

depending on whether it is implemented in an algebraic or geometric utterance (e.g., 3x +2 < 5,  < xOy =90
o
 ). 

Symbolic representations may be produced in a static or a computer environment. 

Kalavasis (2018) in his study “Mathematics and the real world in a systemic perspective of the school” presents 

examples of the history and epistemology of mathematics, (e.g. the figurate numbers) and their symbolic 

representations as they have been conceived by Pythagoreans (Figure 2.13).  

 

 
Figure 2. 13: Symbolic representations of the figurate numbers (conceived by Pythagoreans, cited in Kalavasis, 2018, p.17) (adapted) 

 

Kalavasis (2017) states that the figurate numbers “evolved their representational constructions using the practical 

and noetic instrument of the gnomon” (p.16). As Kalavasis argues:   
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“The role of representations and symbolic languages, playing a crucial role in mathematics, becomes an 

obstacle in the interdisciplinary learning path of the students in the everyday school timetable across their 

differentiated uses in the different disciplines. Thus, the widely studied didactical transposition is 

effectively enriched with the praxeological transposition” (p. 9). 

 Real-world representations: These representations are correlated with situations, events and objects that 

take place in the real world. The students who use these representations are supported to make mathematical 

connections among the objects in the real world and the abstract mathematical meanings (e.g., Lesh, Post & Behr, 

1987). Real-world representations may be produced in a static or a computer environment.  

For example, in the Figures 2.14a, b, I have pasted a picture of an island into a DGS environment; it is an 

isosceles triangular shape and can support the solution to Viviani’s theorem [Vincenzo Viviani (1622-1703)]. 

Point D lies on the base of the isosceles triangle. As we know, the sum S of the length of the perpendiculars from 

the point D to the sides is equal to the altidute h (CG in the Figures 2.14 a, b). The students can experimentally 

prove that the sum S will not be modified if we change the position of point D. 

 

  
Figures 2.14a, b. A real world representation for Viviani’s theorem in a dynamic environment (Patsiomitou, in 

press) 

 

Viviani’s problem could be reformulated as following: “A man lives in a triangular island. His house is located 

on a side of the equilateral triangle. Every morning he starts out from his house to buy several things and walks 

along two paths that are perpendicular to the other sides of the triangle. He counts his steps and finds that even if 

he does not always starts from his house, but from the side of the triangle on which his house stands, and walks 

along perpendiculars to other sides, he always walks the same distance in total. Could you explain this?” 

This representation is complex as it combines pictorial, symbolic and real-world options, which I implemented in 

a dynamic environment.  

Tünde Kántor (2013) investigates many occasions of Viviani’s Theorem. Tünde Kántor (2013) gives among 

others the following benefits of using historical problems (p.81):  

 “We can show the continuity of mathematical concepts and processes over past centuries […] 
 We motivate learning process in the classroom, because our pupils deal with problems which were 

objects of investigation centuries ago. […] 
 Pupils connect mathematics to various cultures and other intellectual developments in science […]” 

A real-world representation can be an interpretation of a real-world problem. Such problems are incorporated in 

the “Nine Chapters on the Mathematical Art” (Jiuzhang suanshu). According to O’Connor and Robertson (2003) 

“Jiuzhang suanshu is a practical handbook of mathematics consisting of 246 problems intended to provide 

methods to be used to solve everyday problems of engineering, surveying, trade, and taxation.” (Webpage [33]). 

I chose to set the following problem for my university students last year, as I think it is very interesting: 

“There is a square town of unknown dimensions. There is a gate in the middle of each side. Twenty paces outside 

the North Gate is a tree. If one leaves the town by the South Gate, walks 14 paces due south, then walks due west 

for 1775 paces, the tree will just come into view. What are the dimensions of the town”.  
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Figure 2.15. Solution to the real-world problem in a DGS environment 

 

My questions on the problem concern the way that proactive teachers of mathematics would use the concrete 

problem in class. What kind of representations would they use, how would they model the problem etc.?                      

Figure 2.15 is an image of the solution to the problem resulting from the interpretation of the problem into the 

DGS environment.  

 Manipulatives, or concrete representations: These are objects (e.g., Dienes cubes, geoboards, pattern 

blocks, fraction pieces) which are designed to mediate between a particular mathematical concept and the way 

students learn the concept. Students can manipulate them by touching or moving, and thus are concrete means 

(Dienes, 1960; Baroody, 1989; Van de Walle, 2005; Johnson, 2017). Ross (2004) defines manipulatives as 

follows: “[…] materials that represent explicitly and concretely mathematical ideas that are abstract. They have 
visual and tactile appeal and can be manipulated by students through hands-on experiences” (p. 5). 

Clements & Mcmillen (1996) in their study “Rethinking “concrete” manipulatives” argue that “attidutes towards 

mathematics are improved when students are instructed with concrete materials by teachers knowledgeable about 

their use[…]” (p.270).   

Clements & Mcmillen (1996) in an extended and substantial study present the advantages/ key benefits of using 

computer manipulatives, and rethink the meaning of “concrete” manipulatives. They argue that” “ (1) Computers 

offer a manageable and clean manipulative, (2) Computers afford flexibility, (3) Computer manipulatives allow 

for changing the arrangement or representation, (4) Computers store and later retrieve configurations, (5) 

Computers record and replay students’ actions, (6) Computer manipulatives link the concrete and the symbolic 

by means of feedback, (7) Computer manipulatives dynamically link multiple representations, and (8) Computers 

change the very nature of the manipulatives” (p.272-274). Clements & Mcmillen highlight also the advantages of 

computer manipulatives for teaching and learning “Computer manipulatives link the specific to the general, 

encourage problem posing and conjecturing, build scaffolding for problem solving, focus attention and increase 

motivation and encourage and facilitate complete, precise explanations “(p. 275-276). They finally support that  

“Now when teachers close their eyes and picture children doing mathematics, manipulatives should still be 

in the picture, but the mental image should include a new perspective on how to use them” (p. 278).  

Janvier (1987b) considers a representation to be a combination of both ingredients: external objects, as “written 

symbols and real objects” and “mental images”. He created an illustration to present “a visual resemblance 

between a representation and a star” (Figure 2.16).  

A strong argument that a student cannot understand a concept from one type of representation of the concept 

alone is that this type of representation cannot describe a mathematical concept thoroughly-- each representation 

has its own distinct advantages. The core of mathematical understanding can thus be reached /achieved through 

the use of multiple representations.  

Janvier’s (1987b) Model of multiple representations incorporates “Tables, Graphs, Formulations, Verbal 

Descriptions and Object”. Janvier (1987b, c) considers that the translation (meaning the psychological process 

mediating between different forms of representations) occurs as the star turns around to appear another foot.  
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Figure 2.16.  A visual resemblance between a representation and a star (Janvier, 1987b, p.69, cited in Coskun, 2011, p.33) (adapted) 

Arcavi (2003) states that:  

“Another cognitive difficulty arises from the need to attain flexible and competent translation back and 

forth between visual and analytic representations of the same situation, which is at the core of 

understanding much of mathematics. Learning to understand and be competent in the handling of multiple 

representations can be a long-winded, context dependent, non-linear and even tortuous process for students 

(e.g. Schoenfeld, Smith and Arcavi, 1993). The sociological difficulties, include what Eisenberg and 

Dreyfus (1991) consider as issues of teaching. Their analysis suggests that teaching implies a “didactical 

transposition” (Chevallard, 1985) which, briefly stated, means the transformation knowledge undergoes 

when it is adapted from its scientific, academic character to the knowledge as it is to be taught” (p.38). 

Johnson (2017) in her study “A New Look at the Representations for Mathematical Concepts: Expanding on 

Lesh’s Model of Representations of Mathematical Concepts” expanded Lesh’s model including the 

“technological type of representations”. Johnson (2017) created an exagon to incorporate this model (p. 6). As 

Johnson argues “future research on representations should directly include technology as a distinct 

representation” (p.7).  

 

 
Figure 2.17. My proposal for the connections between multiple external digital representations and mental images of the concept for 

the development of understanding of the concept 
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Figure 2.17, which I created to illustrate connections between external and internal representations of a concept, 

incorporates Janvier’s, Lesh’s and Tchoshanov’s translational model of multiple representations. I think that 

technological and digital representations that can be developed on several computer have the potential to change 

the way the students perceive the manipulation of objects, the written or oral language, as well as the symbolic 

and graphic representations provided to them. We can still provide animated real-life situations that enrich the 

problem-solving with an external representation which does not stand as an obstacle exactly as Mesquita (1998) 

reports.  

In Figure 2.17 arrows connect the different modes as well as the different technological modes, as I think that 

every mode can be expanded to encompass its technological/digital version.  

According to Kaput, Noss & Hoyles (2002) in their article “Developing New Notations for a Learnable 

Mathematics in the Computational Era” the aim to introduce and incorporate digital infrastructures in the 

teaching and learning of functions “is to put phenomena at the center of the representation experience, so children 

can see the results, in observable phenomena, of their actions on representations of the phenomenon, and vice 

versa. These are 

 The definition and direct manipulation of graphically defined and editable functions, especially 

piecewise-defined functions […] 
 Direct, hot-linked connections between functions and their derivatives or integrals. […] 
 Direct connections between these new representations and simulations to allow immediate construction 

and execution of variation phenomena. […] 
 Importing physical motion-data […] and reenacting it in simulations […] to drive physical phenomena 

(including cars on tracks)”. (p. 19) 

As Kaput, Noss & Hoyles (2002) conclude  

“Thus we wish to challenge our community to focus attention on the design and use of representational 

infrastructures that intimately link to students’ personal experience. This is a necessary step if we are to 

move away from a 19th century school mathematics concentrating on isolated skills based on static 

representational systems in a tightly-defined curriculum (with only a minority able to engage in 

independent problem solving). Our contention is that knowledge produced in static, inert media can 

become learnable in new ways, and new representational infrastructures and systems of knowledge become 

possible, serving both the learnability of previously constructed knowledge and the construction of new 

knowledge” (p.39). 

 
Figure 2.18. Affective states interacting with heuristic configurations (Goldin, 2000, p. 213) (an adaptation for the current study) 
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Goldin (2008) in his study considers to be five types of mature systems of internal representation (Goldin, 1987, 

1992, 1998), psychologically fundamental, extending earlier “dual code” and “triple code” models (Paivio, 1983; 

Zajonnc, 1980). These are (Goldin, 2008, p. 184)  

 “Verbal /syntactic systems, that include natural language capabilities-lexicographic competencies, verbal 

association, as well as grammar and syntax; 

 Imagistic systems, including visual/spatial, tactile/kinesthetic, and auditory /rhythmic encoding; 

 Formal notational systems, including the internal configurations corresponding to learned, conventional 

symbol-systems of mathematics (numeration, algebraic notation, etc.) and how to manipulate them; 

 A system of planning, monitoring and executive control that guides problem solving, including strategic 

thinking, heuristics, and much of what are often referred to as metacognitive capabilities; and  

 An affective system that includes not only the “global” affect associated with relatively stable beliefs and 

attitudes, but also the changing states of feeling as these occur during mathematical learning and problem 

solving. The characterization of affective structures is emerging as an important way to help understand 

students’ mathematical engagement and motivation” (p. 184) 

Goldin has elaborated on the role that affective states play in the problem–solving process in  numerous articles. 

Goldin (2000) in his study “Affective Pathways and Representation in Mathematical Problem Solving” constructs 

a realistic model from problem-solving competence. He outlines in the above figure (Figure 2.18) and discusses 

in the article, “two major affective pathways, one favorable and one unfavorable, together with conjectured 

relationships between affective states and useful or counterproductive heuristic configurations” (p. 209) 

According to Goldin (2000) 

“The affective states described are not global attitudes or traits, but local changing states of feeling that the 

solver experiences and can utilize during problem solving-to store and provide useful information, 

facilitate monitoring, and evoke heuristic processes. Thus affect, like language, is seen as fundamentally 

representational as well as communicative)(p. 209)[…] affect is not incidental but fundamental, and it 

cannot  be handled simply by a commitment to make mathematics fun or enjoyable. 

Learning style is how a learner process information and prefer to learn. There are four main learning styles: (a) 

Visual (a person learns more effectively through seeing) (b) Auditory (a person learns more effectively through 

hearing) (c). Kinesthetic (a person learns more effectively through feeling) (d). Tactile (a person learns more 

effectively through touching). The terms learning style and cognitive style differ among scholars. Kordaki (2005) 

in her study “The role of multiple representation systems in the enhancement of the learner model in open 

learning computer environments” states that “learners seem to arrive at schools with different learning styles, 

such as: intuitive, visual, holistic, field dependent, reflective, rational, analytic and field independent” (p. 253). 

Hartley (2008) defines “learning styles” as the ways that the subjects/students/learners conduct their learning 

tasks. He also defines “cognitive styles” as the ways that the subjects conduct their cognitive tasks.  

Ainsworth (1999) in her study “Designing effective multi-representational learning environments” supports that 

“Multi-representational learning environments are used by a wide range of learners in a number of domains and 

many advantages are claimed for their use. By using multiple external representations (MERs), it is hoped that 

learners can benefit from the properties of each of the representations and that ultimately this will lead to a deeper 

understanding of the subject being taught. However, research that has evaluated how effectively multi 

representational environments support learning has produced mixed results. A number of studies have shown that 

learners find working with MERs to be very difficult (e.g., Tabachneck, Leonardo & Simon, 1994; Yerushalmy, 

1991).” (p. 1).   

A few difficulties that can occur relate to the format of the representations as well as to the operators that act on 

them (Ainsworth, 1999b, p. 34). These kinds of difficulties are presented in the following table: 

 

Table 2.3. Difficulties with MERS (Ainsworth, 1999b, p. 34) 

Difficulties with MERS have to do with: 

(Ainsworth, 1999, p. 34) 

Referring to: 

1. “the modality of the representations – 

(propositional v graphical)”  

2. “the levels of abstraction (e.g. concrete to 

symbolic representations) […]” 

3. “the type of representation (e.g. 

“differences in the format of representations 

(and hence their operators)” 
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histogram, equation, table, line-

graph)[…]” 

4. “the specificity of representations[…]”   

5. “whether representations are static or 

dynamic […]” 

6. “differences in labeling and symbols on 

the representations […]” 

7. “alternative uses of representations […]” 

8. “the interface to the representations […]” 

9. “self-constructed & selected 

representations versus pre-determined 

representations […]” 

10. “whether the representations encourage 

different strategies […]” 

“differences in operators as the format of 

these representations need not necessarily 

differ”. 

 

Consequently, designers of multi-representational learning environments are faced with the question of how to 

develop a system where the learners can benefit from the advantages of MERs. Ainsworth (1999a, 2006) 

introduced taxonomy of the functions of MERs and created a diagram to visualize theses functions (Figure 2.19). 

According to Ainsworth (1999a) in her study “The functions of multiple representations” supports that  

“A conceptual analysis of existing multi-representational learning environments suggests there are three 

main functions that MERs serve in learning situations – to complement, constrain and construct. The first 

function is to use representations that contain complementary information or support complementary 

cognitive processes. In the second, one representation is used to constrain possible (mis)interpretations in 

the use of another. Finally, MERs can be used to encourage learners to construct a deeper understanding of 

a situation” (p.3). 

Complementary functions: MERs differ either in the processes each supports or in the information each contains 

(Ainsworth. 2006, p.188): 

 “Individual differences: if learners are presented with a choice of representations, they can choose to 

work with the representation that best suits to their learning style  

 Task: […] learners given MERs can benefit from choosing the best representation for the current task 

[…]. 
 Strategy: Different forms of representation can encourage learners to use more or less effective 

strategies” […] “as each strategy has inherent weaknesses, switching between strategies made problem 

solving more successful by compensating for this”(p.188)     

Constraining functions: “A second advantage of using MERS is that certain combinations of representations can 

help learning when one representation constrains interpretation of a second representation […]” (Ainsworth. 

2006, p.188) 

Constructing [deeper understanding] functions: MERs support deeper understanding “when learners integrate 

information from MERs to achieve insight […]” (Ainsworth. 2006, p. 189) 

 “Abstraction is the process by which learners create mental entities that serve as the basis for new 

procedures and concept at a higher level of organization […]”; 

 “Extension can be considered as a way of extending knowledge that a learner has form a known to an 

unknown to representation, but without fundamentally reorganizing the nature of that knowledge 

[…]”and 

 “Relational understanding is the process by which two representations are associated again without 

reorganization of knowledge […]” (p. 189).  

Ainsworth (2006) argues that “multiple external representations can provide unique benefits when people are 

learning complex ideas […] the effectiveness of multiple representations can best be understood by 

considering three fundamental aspects of learning: the design parameters […], the functions that multiple 
representations serve in supporting learning and the cognitive tasks that must be undertaken by a learner 

interacting with multiple representations” (p. 183) 
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Figure 2.19.  A taxonomy of functions of MERs (Ainsworth, 1999a; 2006, p. 187) (an adaptation for the current study) 

 

A very powerful way to facilitate and enhance students’ understanding can be achieved with the use of multiple 

representations, particularly in computer-based learning environments (e.g., Moreno 2002; Mayer& Moreno, 

2003). A few examples of multiple representations in a computer-based learning environment include “interactive 

diagrams with embedded transcripts, […] video presentations, interactive graphs and forms, audio explanations 
of concepts, and still images” (Sankey, Birch and Gardiner, 2011, p. 20). Sankey, Birch and Gardiner (2011) 

argue that “students reported very favorably on their use of the multimodal learning elements and perceived that 

these had assisted comprehension and retention of the material” (p. 18). Wong, Yin, Yan and Cheng (2011) also 

in their study “Using Computer-Assisted Multiple Representations in Learning Geometry Proofs” propose and 

use a multimedia learning environment to let students interact with multiple representations relevant to a 

geometry proof. Concretely, they propose a “computer-assisted learning environment called MR Geo to help 

students in learning to do theorem proving, with the help of multiple representations including problem 

description, static figure, dynamic geometry figure, formal proof and proof tree” (p. 43). (Figure 2. 20) 

 

 
Figure 2.20. A formal proof and its proof tree provided by the MR Geo computer-assisted learning environment (Wong, Yin, Yang, & 

Cheng, 2011, p. 47) 

According to   Wong, Yin, Yang, & Cheng (2011, p. 52) “The connection between formal proof and proof tree 

raised students’ comprehension of geometry proof. Some LG students indicated that after understanding the 

geometry proving process, they no longer hated geometry classes. The above results indicated that MR Geo 
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might offer an attractive, alternative approach to geometry education with multiple representations in a computer-

assisted learning environment, comparing to traditional classroom teaching”.  

2.5. Duval’s Cognitive Model of Geometrical Reasoning  

Duval (1995b, p.145-147) provides an analytic framework for analyzing the semiotics of geometric objects 

as theoretical and abstract objects. Duval identifies or distinguishes four types of cognitive apprehension, namely 

how we perceive (with our sensory system) and conceive (in our mind) a figure.  These types of cognitive 

apprehension are the following (reported also in Jones, 1998; Deliyianni, Elia, Gagatsis, Monoyiou & Panaoura, 

2009; Patsiomitou, 2011, 2012a, b, 2018b, 2019a, b; Forsythe, 2014):  

 perceptual apprehension: this is what is recognised at first glance; how one perceives a figure, what are 

the sub-figures in the figure; in other words what one can view in the figure or perceive in regard of the 

objects that belong to the figure.  

 sequential apprehension: how one understands the order of the construction steps; what are the geometric 

properties and definitions used for the construction of the figure. Using a DGS or computing environment 

generally a student can enrich his understanding of the different paths that can be used for the same 

construction of a figure (see also Gomes and Vergnaud, 2004, cited in Forsythe, 2014, p.40) 

 discursive apprehension: how one verbalizes the construction steps and explicate/interpret the 

construction steps using reasoning; “the definition of a geometrical object and a description of its 

construction are part of discursive apprehension” (Forsythe, 2014, p.40) 

 operative apprehension, how one operates the figure “which involves manipulating the figure mentally or 

physically to provide an insight into a problem” (Jones, 1998, p. 31). “Operative apprehension depends on 

the various ways of modifying a given figure: the mereologic, the optic and the place way” (Deliyianni et 

al. 2009, p. 697). 

Duval (1999) in his study “Representation, vision and visualization: cognitive functions in mathematical 

thinking. Basic issues for learning”, describes three kinds of operations delimited by how a given figure is 

transformed: 

 “The mereologic way: you can divide the whole given figure into parts of various shapes [...] and you can 

combine these parts in another whole figure or you can make appear new subfigures.[...] We call 

«reconfiguration» the most typical operation. 

 The optic way: you can make a shape larger or narrower, or slant, as if you would use lenses. In this way, 

without any change, the shapes can appear differently [...]. 

 The place way: you can change its orientation in the picture plane. It is the weakest change. It affects 

mainly the recognition of right angles, which visually are made up of vertical and horizontal lines” (Duval, 

1988, pp. 61-63; 1995, p.147).  

The mereologic, the optic way and the place way constitute what Duval defined as “the operative apprehension” 

of the figure, which according to him differs from the perceptual apprehension “because perception fixes at the 

first glance the vision of some shapes and this evidence makes them steady” (p.19) [...] Operative apprehension is 

[also] independent of discursive apprehension”(p.21) 

Duval (1995b) supports that “a mathematical way of looking at figures only results from co-ordination between 

separate processes of apprehension over a long time, something that is supported with work with computers, if 

the software has been defined having this in mind” (reported in Jones, 1998, p.31). Duval (1998, p.38) proposes 

“that geometrical reasoning involves three kinds of cognitive processes which fulfil specific epistemological 

functions, namely (Figure 2.21):  

 • visualisation processes, with regard to space representation (italics by the author) for the illustration of a 

statement, for the heuristic exploration of a complex geometrical situation, for a synoptic glance over it, or 

for a subjective verification” (p.38).  

• construction processes, by tools (e.g., ruler, compass, protractor) or dynamic tools (e.g., a DG software’s 

primitives): “construction of configurations can work like a model in that the actions on the representative 

and the observed results are related to the mathematical objects which are represented” (p.38);  

• reasoning processes “in relation to discursive processes for extension of knowledge, for proof, for 

explanation” (p.38).  
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Duval argues, “[...] these three kinds of cognitive processes are closely connected and their synergy is cognitively 

necessary for proficiency in geometry” (ibid. p38) 

 

 
Figure 2.21. The cognitive interactions involved in geometrical activity (Duval ,1998, p.38)( Webpage [12]) (an adaptation for the 

current study) 

In the Figure 2.21, Duval illustrates the different cognitive processes and the arrows that represent the way that 

one of these can support another in any geometrical activity. For example, an arrow starts from the ‘construction’ 
cognitive process towards ‘visualization’ but this arrow is not reversed. Namely, Duval points out that (a) these 

different processes can be performed separately and (b) a cognitive process (e.g., visualization) does not 

necessarily depend on another cognitive process (e.g., the construction process). The arrow 2 is dotted as Duval 

considers that visualisation does not always help students to reason or formulate an argumentation. Arrows 5A 

and 5B show how that reasoning can emerge along a path separate from the processes of construction or 

visualisation. Of course, construction can leads to visualisation, but even then the actual processes of that 

construction stem from links between pertinent mathematical properties and from the limitations/or constraints 

imposed by the tools used. In the same way, even if visualisation can help students formulate their thinking by, 

guiding them in the direction of a proof, it can still be misleading at times (Jones, 1998, p. 32). 

To facilitate visualization Duval suggests the student has to develop the operative apprehension of the figure, 

namely the mereologic, the optic way and the place way of the figure and its subfigures. This will happen 

physically by manipulating the figures in a static or a dynamic environment or mentally when a student has 

developed the competence to achieve it. It is very crucial for the teachers to find ways to trigger and elicit it 

through proper activities. 

 

2.6.  Linking Visual Active Representations  

The topic of LVAR is discussed extendedly in Chapter 5. 

2.7. Indicative Representational Environments used for the Teaching and 

Learning of Mathematics  

Edwards (1998) argues that “we can speak of a microworld as "embodying" a sub domain of mathematics or 

science: not because of some reifying link between the representation and the mathematical or scientific entity, 

but because of the opportunity that such environments provide for learners to kinesthetically and intellectually 

interact with the designers' construction of these entities, as mediated through the symbol system of a computer 

program” (p. 74).  

Kynigos (2007) introduces the term “half-baked” microworlds 

“to describe digital media designed to facilitate communication between researchers, technicians, teachers 

and students as they become engaged in changing them. Microworlds have been the main Logo-based 

vehicles through which the key ideas of generation of meanings through communicational and 
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constructionist activity have been mediated within the field of instructional design (Goldenberg, 1999)” 

(p.335).  

 

   

   
Figures 2.22 a, b, c, d, e, f. Multiple Linked Representations created in the E-slate microworld 

(Patsiomitou, 2012c, p.144) 

 

E-slate (Kynigos, 1997; Kynigos et al., 1997) (http: //e-slate.cti.gr) is a logo-based microworld, used in Greek 

schools in the teaching and learning process of mathematics at several levels, but also for investigating different 

aspects of educational practice. E-slate consists of three distinct but interlinked work areas, the components of E-

slate. According to Kynigos (2004)  

“In the E-slate environment, components are black boxes in that the user cannot alter their main 

functionality and in that they are developed primarily to be technically efficient. However, each component 
is designed so as to be as generic as possible in the sense that it can be used for a family of activities and 

not just a few activities” (p.31). 

The linked representations I have constructed using the E-slate microworld (Figures 2.22 a, b, c, d, e, f) reveal 

an approach to the concept of the circle which uses an increasing number of circumscribed regular polygons. E-

slate “emphasizes connectivity by adopting a variety of ways to connect components” (Kynigos, 2004, p. 33). 

Sliders also have been designed “in order to allow the user to manipulate some value by changing it continually 

through the slider” (Kynigos, 2004, p. 35). 

The mathematical component which is called “the variation tool” “extends traditional Logo to the role of a 

scripting language and on a database component” (Kynigos, 1997; Kynigos et. al., 1997). According to Kynigos 

(2002) (paper available at Webpage [35]) 

“The variation tool is designed so that it provides a kinesthetic means for continually changing the 

independent variable of the respective world to which it is connected and observing what remains constant 

and what changes. In this case, when the language, turtle, canvas and variation components are connected 

to each other, execution of a variable procedure with any value for the variable(s) and clicking on the 

turtle’s trace “energizes” the variation tool which recognizes which command resulted in that particular 

trace (fig. 1). A slider appears for each variable with editable range and step. Dragging the slider results in 

a continual reshaping of the figure according to the corresponding variable value. The effect is that of the 

same figure dynamically changing form (in a way similar to that of Geometry Sketchpad). More important, 

it gives a feeling of the way things change and the rate of change” (p. 15). 

MaLT is also a constructionist microworld environment (Kynigos & Latsi, 2007) widely used in Greek schools 

(especially in Model Schools). Other packages also used in the teaching and learning process are Cabri II 

(Laborde et al., 1988), Function Probe (Confrey & Smith, 1992), Geogebra (Hohenwarter, 2001), Geometer’s 

Sketchpad (Jackiw, 1991), Web Sketchpad (McGraw Hill, 2019) etc.  

Many activities have been constructed in the MaLT environment and are available online through Digital School 

Platform (Webpages [13, 14]). Teachers and students can even access them (in class during the lesson or out of 

the class) using their mobile phones (e.g., Geogebra, Web Sketchpad) or tablets for the teaching and learning 

process of mathematics. Furthermore, MaLT is a 3D programming environment that enables dynamic 
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manipulation; it is a very useful Web tool for the construction of meanings. According to MaLt Manual (retrieved 

in May 2018):  

 “MaLT+ (MachineLab Turtleworlds) is an online tool of symbolic expression in mathematical activity by 

means of programming for the creation and tinkering of 3D dynamic graphical models […] On the left side 
of MaLT+ appears the component of the ‘3D scene’, which also includes the avatar. The avatar is a 3D 

object that you can move it in the 3D space by executing some Logo commands” (p.4). (See also, Webpage 

[15])  

For example, constructing a rectangular shape or a cube in the MaLT environment along with its 2D or 3D 

transformations makes MaLT a very important tool for the intuitive perception, construction and deep 

understanding both of meanings in 2D and 3D figures and of the figures’ properties. In the Figures 2.23 a, b, c, d 

the screenshots of four linked representations could constitute part of a sequence of actions and processes for the 

construction of the meaning of rectangle and cube. The rectangle is projected along the axis system of the grid. A 

slider appears for each variable (i.e., for every side of the rectangular shape). Students can also measure the sides 

of the quadrilateral, using the grid provided by the MaLT environment, and then use formulas to continue their 

calculations, combining symbolic, graphic and visual representations. The MaLT environment also provides 

dragging facilities through the manipulation of the sliders or the object on screen. According to Kynigos & Latsi 

(2007) “Studying in a dynamic way 3D geometrical objects students have to analyze a 3D figure, break it into 
smaller parts and determine angle measures and lengths of line segments. Projecting themselves into the place of 

the turtle and moving from the visual to the descriptive level of thought students have to search for ways to 

reconceptualize 3d objects in terms that can be explained to the 3d turtle through logo commands. Moreover 

through the use of sliders students are provided with a direct manipulation metaphor for sequentially changing 

variables’ values and simultaneously observing the variation both of 3d object and of their place in 3d space” 

(p.360).  

 

  

 
 

Figures 2.23 a, b, c, d: Screenshots of figures in the 2D or 3D MaLT constructionist microworld  

(Webpage [16]) 

 

When a representational environment is combined with another environment (e.g., a DGS environment), the two 

can complement one another, offering to learners advantage through the properties of different representations. 

This will ultimately lead to a deeper understanding of the meaning under investigation. Research has evaluated 

how effectively representations constructed in different environments can support learning by operating 

complementarily.  
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Figure 2.24.  Construction of two rectangular figures in a DGS environment. 

 

For example, constructing two rectangular shapes--a square with 4 cm sides and a rectangle with sides a, b equal 

to 8cm and 2cm respectively--in a DGS environment (e.g., Sketchpad, Geogebra or other DGS software) and 

experimenting with them helps students by allowing dragging and direct manipulation of the object, to move 

from visualizing a square to describing and analyzing it as that a square is the rectangular shape with the 

minimum perimeter among rectangular shapes that all have the same area. (Figure 2.24, Area of square AS = 

16cm
2
, area of rectangle AR= 16cm

2
, perimeter of square PS= 16cm , perimeter of rectangle PR= 20cm). 

At an advanced level the students can solve the problem “Suppose a rectangle has a fixed area of c square 
meters. Find the dimensions that minimize the perimeter” (Kreider and Lahr, 2002, p.1).  

If we suppose that a and b are the lengths of the sides, then the area of the rectangle is A = a b, and the perimeter 

P of the rectangle is P = 2a + 2b.  

 

 
 

The use of Cabri3D (Laborde, 2004) also enhance the visualization of a figure’s properties as well as 

experimentations with “real” object on screen, --importantly, this is true not only for students in the first classes 

of Secondary or in Primary education, as every student needs to directly manipulate a geometrical object to 

understand it (Figures 2.25a, b). Cabri 3D is a three-dimensional interactive software package for exploring 

geometry. It was launched in 2004. According to El-Demerdash (2010, p. 22-23) the key features of Cabri 3D can 

be summed up in the following points:  

 “Create solid geometric construction with just a few clicks of the mouse.  

 Integrate numeric data using measurements and calculation tools. 

 Manipulate and animate constructions and reshape objects using only the mouse.  

 Print out patterns from virtual constructions and transform them into real objects”. 

Cabri 3D also allows the construction, transformation and on-screen unfolding of three-dimensional objects (such 

as cubes, cones and pyramids). New objects may also be formed when planes intersect with each other: the 

intersection of a cone with a plane that does not go through the vertex of the cone, for instance, generates conic 

sections (see also Kösaa, & Karakus, 2010, p.1386) 

I shall focus on this favorite to me example, which combines History of mathematics and the use of technology: 

the conics sections. According to Bogomolny (2004) “Menaechmus (c. 375-325 BC), a pupil of Eudoxus, tutor to 

Alexander the Great, and a friend of Plato (Smith, p. 92), is credited with the discovery of the conics. A more 

revealing term is conic sections on account of their being found as the intersections of circular cones by planes. If 
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the planes pass through the vertex of the cone, the conics are said to be degenerate, otherwise they are not. There 

are three non-degenerate conics: the ellipse, the parabola, and the hyperbola” (Webpage [36]).  

 

  
 

Figure 2.25a. Unfolding a cube in the Cabri 3D 

dynamic geometry environment (Webpage [17]) 
 

Figure 2.25b. Implementing direct manipulation using 

the mouse (Webpage [17]) 

 

Conic sections have remained at the epicentre of interest since antiquity. If we try to answer the question “what is 

the definition of conic sections” we will receive answers depending of the frame within we are investigating the 

construction. Thus, a conic section is a curve in the plane, a locus of points or, in a 3D plane, the intersection of a 

cone (Patsiomitou, 2007d).  

Bartolini Bussi & Mariotti (1999) argue “Since the age of Apollonius, a deep understanding of the properties of 

conic sections has been achieved. However, most of the properties were expressed through relationships, which 

are neither immediately related to the shape of the cone to be cut nor to the shape of the section[…] in addition to 

the historical point of view, the relationship between the arguments used in theoretical and in practical geometry 

seems interesting to investigate from a cognitive perspective.” (p.28) 

 

  

Figures 2.26 a, b, c, d. Creating conics sections using Cabri3D (Patsiomitou, 2007d, p.  in Greek) 

 

 In the Figures 2.26 a, b, c, d, I have constructed a few illustrations of conic sections using Cabri3D 

(Patsiomitou, 2007d, p. 40, in Greek). It is crucial for students directly manipulate the representation and 

subsequently the abstract object, as Laborde & Laborde (2011) in their study “Interactivity in dynamic 

mathematics environments: what does that mean?” argue: “Direct manipulation has proven to be a key feature to 

facilitate creative user interaction with computer and has slowly generalized to most of computer platforms.“ 

(Laborde and Laborde, 2011, p.1).  
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Figures 2.27 a, b: Creating conic sections using linkages (cited in Masami Isoda, 1998, p. 87) 

 

Isoda (1998) has written the article “Developing the Curriculum for Curves Using History and Technology” in 

which, history of mathematics is combined with technology, meaning how linkages can be combined with new 

technological systems for the teaching and learning of mathematics. According to Isoda (1998) “in the age of 

Descartes, curves were only figures defined by geometry and drawn using devices such as ruler and compass, 

linkages, and mechanics, etc (p.86).” For example in the Figures 2.27 a, b which are van Schooten’s linkages 

(1657, cited in Masami Isoda, 1998, p.87) a tangent of a parabola is constructed by the mechanical linkage. Isoda 

(1998) argues that “[…] students should know the reason why we can draw a parabola using the linkage […as] 
the visual and manipulative feature of these devices helps student to reflect on their own experiences” (p.87). 

 

 
Figure 2.28. A Historical Root of Calculus from Ancient Greek Mathematics to the 17th Century Focused on 

Mediterranean and European Area (Isoda, 1996, cited in Isoda, 1998, p.84) (an adaptation for the current study) 

 

Figure 2.28 depicts “a historical root of calculus from Ancient Greek Mathematics to 17
th
 century focused on 

Mediterranean and Europe Area”, created by Isoda (1996) and reported in Isoda (1998, p. 84). The figure depicts 

a brief but meaningful history of the evolution of calculus since antiquity. As the evolution of calculus does not 

fall within the ambit of the current work, I shall only mention what Isoda (1998) highlights “Dynamic Geometry 
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Software enhances and realizes Descartes dream” (p.82) as DG is an evolution of ancient drawing tools, such as 

the linkages are.  

On the other hand, Isoda & Matsuzaki (1999) discussed the roles of old technology and new technology in the 

teaching of mathematical modelling. As they argue: 

“But does new technology alternate old technology?  For example if we use DGS in geometry, can we 

discard a ruler and a compass?  Of course we cannot, but we have to consider how the roles of a ruler and a 

compass should be changed” (p.268). 

Bartolini Bussi (2005) also claims that it is very difficult to build a concept only through a one-sided process, for 

example through the algebraic definition. What must be also mentioned is the instructional sequence that will a 

teacher follow in class and the activities that will be used in the learning trajectory exactly as Laborde & Laborde 

(2011) support: “learning [can] emerge from the interactions between the students and appropriate tasks to be 

done with the machine”. Laborde & Laborde highlight also the important role of the teacher in the teaching and 

learning process for the development of abstract ideas on the part of the students.  

 
 

Tall, Gray, Ali, Crowley, DeMarois, McGowen, Pitta, Pinto, Thomas, Yusof (2001) also argue that the 

development of abstract concepts “begins from the ability to perceive things, to act on them and to reflect upon 

these actions to build theories” (p.81) (Italics by the authors). They constructed sequential figures in their study 

“Symbols and the Bifurcation between Procedural and Conceptual Thinking” to illustrate that. The Figure 2.29 b 

below right (Figure 16, page 98 in Tall et al (2001)) is an evolution of the Figure 2.29a on the left (Figure 2, 

page 82 in Tall et al (2001)).  

 

 
 

Figures 2.29a, b:  From perceptual to formal mathematics and advanced mathematical thinking (Tall et al, 2001) 

 

According to Tall et al (2001)  

“The transition to advanced mathematical thinking makes a complete shift in focus from the existence of 

perceived objects and symbols representing actions on the objects to new theories based on specified 

properties of formally defined mathematical structures. Geometric experiences can be used to focus on 

certain properties (points, lines, intersections, curves, continuity, etc) to formulate new axiomatic systems 

such as non-euclidean geometry, topology and analysis. Properties of arithmetic and algebraic symbols are 

formulated and generalised to give axioms for groups, rings, fields, vector spaces, and so on. […] 



[63] 

 

However, the essential quality that makes advanced mathematical thinking different from elementary 

mathematics is the introduction of formal definitions and proof” (p.98) 

The concept of a function is a mathematical object that cannot be smoothly understood by high school students, 

especially by students who find maths difficult. Function Probe is a multi-representational software package 

which can be used to teach functions to students (Confrey & Smith, 1992). Function Probe is a Java –based, 

cross-platform software which opens with three separate but linked windows: a Table window, a Graph window 

and a Calculator window.  According to Confrey & Maloney (2008, p.183)
 “Function Probe was designed to 

support student thinking about, and exploration and understanding of families of functions, including linear, 

quadratic, exponential, polynomial, rational and trigonometric. The software was built to permit students to 

explore the contrasting and complementary appearance and behavior of these functions using different 

representations” (p. 183). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the software’s features, anyone can easily construct graphs of functions from equations, show asymptotes, 

visualize the transformations of functions or visualize the graph from inequalities --all of which were very 

extremely hard to visualize using traditional means. Transformations of functions were --and still are-- a very 

important issue in the teaching and learning process, given both the difficulty the students have in moving 

between different families of functions, and the way in which the translation from the symbolic/ tabular to 

graphic representations occurs.  

  
Figure 2.30a: Turning Graphs from equations and a 

preparation for the prediction of added ordinates 
Figure 2.30b: Showing asymptotes of the function 

y=tanx 

 

 
Figure 2.30c: Visualizing the transformation 

(translation) of the function y=x2 to generate y=x2 + 3. 72; 

the original remains on screen, while the translation 

appears on screen after being moved horizontally 3.72 

units to the right (having previously been moved vertically 

2 units). 

Figure 2.30d: Visualizing the graph of the 

inequality y> sinx 
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In the Figures 2.30 a, b, c, d I created a few graphs using Function Probe’s features, absolutely agreeing with 

what Borba & Confrey (1996) claim:  

“[…] new forms of representation change the mathematics to be taught (Confrey, 1993a, 1993b). 

Mathematics does not exist independently of its representational forms; it exists through those forms”                     

(p. 335). 

A translation between representations --that many learning environments have been designed to embody in their 

features-- helps the students to what Ainsworth (1999a) calls “dyna-linking” or “automatic translation”, through 

which  

“[if] a learner acts at one representation the effects of their actions are shown on another[…] the cognitive 
load placed on learners should be decreased and so free them to learn the relation between representations 

(e.g., Kaput, 1992; Scaife & Rogers, 1996)” (p.133). 

Artigue (1997) in their paper “Teaching and Learning elementary analysis: what can we learn from didactical 

research and curriculum evolution” mention some main categories of difficulties that students face when they 

learn functions (Artigue, 1997, p. 208-209): (a) “Difficulties in identifying what really a function is and in 

considering sequences as functions. (b) Difficulties in going beyond a process conception of functions and 

being able to link flexibly the process and the object dimension of this concept, and develop with respect to it a 

perceptual view (Tall & Thomas, 1991). (c) Difficulties in linking the different semiotic registers (Duval, 1995) 

which allow us to represent and work out functions and (d) Difficulties in going beyond numerical and algebraic 

modes of thinking” (Artigue, 1997, p. 208-209).  

Even (1998) also in her study “Factors Involved in Linking Representations of Functions” illustrated “how 

knowledge about different representations [of a function] is not independent, but is interconnected with 

knowledge about different approaches […] knowledge about the context of the presentation, and 
knowledge of underlying notions.” (p. 120). Moreover, “the ability to identify and represent the same thing 

in different representations, and flexibility in moving from one representation to another, allow one to see 

rich relationships, develop a better conceptual understanding, broaden and deepen one's understanding, and 

strengthen one's ability to solve problems” (p. 105). 

Even (1998) reports three factors involved in linking representations of functions that can be extended in other 

areas. These factors are: 

(a) “Different ways of approaching functions: An important aspect of knowledge about a mathematical 

concept is the different ways of approaching or conceiving the concept. A common distinction today is 

between an operational approach to a concept as a process, and a structural approach as an object (e.g., 

Dubinsky, 1991; Sfard, 1991). […] Flexibility in moving from one representation to another is 
intertwined with flexibility in using different approaches to functions. […] (p.108-109) 

(b) Context of the presentations: Another critical aspect that intertwines with the ways representations come 

into play in the understanding of a concept is the context of the problem presentation. […] (p.115). 

(c) Underlying notions: The quality of the knowledge of underlying notions of the functions being dealt 

with, is also intertwined with the ability to translate from one representation to another […]” (p.117). 

Students face many difficulties when they have to deal with the concept of function. I shall mention a path 

concerning the concept of function, based on my experience as a teacher of mathematics, which can scaffold 

secondary-level students learning process and allow them to gradually grasp abstract mathematical objects 

(Patsiomitou, 2019b, p. 33):  

Elementary level arithmetic and algebraic approach: “1 kg of apples costs 2 Euros, 2 kg cost 4 Euros […] 
x kg cost y Euros. What is the relationship between x and y?” The appearance of the variables x and y 

reveals a limited understanding on the part of students because x and y are symbols used as signifiers 

referring to objects; in the words of Piaget (1952/1977), they are “intentionally chosen to designate a class 

of actions or objects.” (p.191). The question is how the relationship between different kinds of objects can 

be shown? Which procedure/or procedures can we apply so that the concept of function is easily 

understandable for students? Do these procedures or processes lead to an understanding of the concept of 

function? 

1st level. The variable’s approach: I continue: 1 kg of apples costs 2 Euros, 2 kg costs 2*2 Euros etc.; […] 
the number 6 is represented /signified by the product 2*3 and the symbol y is represented /signified by the 

product 2*x. (i.e., x kg cost 2x Euros). The expression 2*3 is the same notation to represent both a process 

and the product of that process. In other words it “could be used both operationally, as denoting an 

operation, and structurally, as signifying an object (the result of an operation). The fact, however, that the 
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same signifier had to be employed in two seemingly incompatible roles, operational and structural, 

certainly aggravated the difficulty of reification” (Sfard, 2000, p.50).  

2nd level. A diagrammatic approach: The next step is the construction of Venn diagrams in which arrows 

connect the A set of numbers representing kilograms with the B set of numbers representing Euros. When 

representing objects in Venn diagrams, we use dots for objects. Constructing Venn diagrams allows 

students to think about the classification of objects, while the arrows help them to describe relations 

between objects and understand meanings such as “one to one” and “onto”. 

 

Figure 2.31:  Linking the different kinds of representation of a function (Patsiomitou, 2019b, p. 33) (modified) 

 

3rd level. A graphic and tabular approach: A function is used to describe the expressed relationships 

between variables. Replacing the numbers 1, 2, 3… that represent the kilograms with the variable “x” and 

constructing a function (y=2x) in which we determine a rule for a sequence of objects, ultimately provides 

us with a definition of the concept of function and its graph. Thus, in response to the symbol of the 

function y=2x (‘representamen’ in the words of Peirce, 1955) one can draw a line which would be the 

interpretant of the symbol y=2x (Figure 2.31).  

The prerequisite here for students is the structural knowledge of numbers which allows them to use numbers to 

build a more complex concept. In Figure 2.31, we can view both treatments and conversions (Duval, 2002, p.3) 

between the aforementioned semiotic representations:  

 “Treatments are transformations of representations which happen within the same register […] (Duval, 
2002, p.3) 

 Conversions are transformations of representation which consist of changing a register without changing 

the objects being denoted […]” (Duval, 2002, p.4). 

Duval (2002) in the Figure 2.32 clarifies what he means with the notions treatment and conversion between 

different semiotic representations.  

 

Figure 2.32. Types of transformations of semiotic representations (Duval, 2002, p.3) (an adaptation for the current study) 
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Treatments and conversions express connections or links between different modes of representation. In a short 

literature review I shall summarize in the next table how different researchers examine, and report the role of 

linking representations in learning and understanding of mathematical concepts.  

 

Table 2.4. Linking Representations 

Kaput (1989)  “The cognitive linking of representations creates a whole that is more than 

the sum of its parts.”(p.179) 

Even (1998) “Connectedness between different representations develops insights into 

understandings of the essence as well as the many facets of a concept” (p. 

105). 

Ainsworth (1999b) reports the way that linking representations affect students’ –users’ thinking. 

As she mentions: “One question facing designers of learning environments 

is whether to provide automatic (dynamic) linking between representations. 

Here, one acts in one representation and sees the results of these actions in 

another. Thus, it is hoped that the relation between the representations is 

made more explicit and hence understandable to learners than has 

traditionally been possible with static media” (p. 39). 

Ainsworth (2006) “Dynamic linking or representations is assumed to reduce the cognitive load 

upon the student –as the computer performs translation activities, students 

are freed to concentrate upon their actions on representations and their 

consequences in other representations”. (p. 194) 

Hähkiöniemi 

(2006) 

investigated how students development of understanding of the concept of 

derivative. He found that “students had two kinds of connections: they 

changed from one representation to the other or they explained one 

representation with the other” (p.18). 

Hegedus & Kaput 

(2004) 

report the importance of linking representations in Simcalc –a long time 

project—and they stated “We are confident, however, that by combining the 

two key ingredients, dynamic representations and connectivity technology, 

students can better understand fundamental, core algebra ideas by forming 

new, personal identity relationships with the mathematical objects that they 

construct individually and collaboratively with their peers”. (p. 136)  

 

The growth of digital resources that allow interaction with mathematical content has enriched the ways in which 

teachers and students engage by employing new kinds of representations: the “dynamic representations” or 

“dynamic diagrams”. Ainsworth (1999) mentions the kind of “dynamic representations as follows (p. 35): 

  “The introduction of information technology into the classroom has brought a new type of representation 

to learning situations - dynamic representations. These include animations which have been defined as a 

series of rapidly changing static displays giving the illusion of temporal and spatial movement (Scaife & 

Rogers, 1996). 

Ainsworth, & Van Labeke (2004) define dynamic representations as those which “display processes that change 

with respect to time” (p.241).  

GeoGebra (Hohenwarter, 2001, 2002) is an open source mathematics education software tool which is used by 

millions of users worldwide. It allows for experimentation even in a web browser in full HTML5 mode. (Botana, 

& Kovács, 2016) http://www.geogebratube.org/student/b128631) 

Geogebra dynamic geometry software (http://www.geogebra.org), is also a multi-representational dynamic tool, 

especially when learners use software’s CAS (Computer algebra systems) features to perform procedures in 

algebra and calculus.  

According to Hohenwarter, Hohenwarter, Kreis, and Lavicza (2008, p.1): 

“The multi-platform, open-source dynamic mathematics software GeoGebra (Hohenwarter & Preiner 

2007) tries to combine the ease-of-use of dynamic geometry software with the versatile possibilities of 

computer algebra systems. The basic idea of the software is to join geometry, algebra, and calculus, which 

other packages treat separately, into a single easy-to-use package for learning and teaching mathematics 
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from elementary through university level. GeoGebra is available free of charge on the Internet, has been 

translated to 36 languages by volunteers, and gathers a rapidly growing worldwide user community”. 

In the Figure 2.33a below, on the left we can see the symbolic expression of a polynomial, how we can turn it 

into a function; on the right, we can see the graphic representation of the function and its roots. “Through the 

Geogebra environment and also by using different kinds of instructional materials (such as worksheets on paper, 

interactive applets etc.) students can be guided towards discovering the concepts of derivative and /or integral and 

to explore, visualize and understand  basic calculus concepts” (Hohenwarter et al, 2008, p.8).  

 According to Caligaris, Schivo, Romiti (2015):  

“the incorporation of the GeoGebra Applets, and the teaching situations arising there from, is a much more 

effective teaching methodology than traditional one to facilitate the learning of the fundamental concepts 

of Calculus […]The graphics in books, as well as on the blackboard, are static and require students’ 
imagination adequately trained. When thinking about teaching strategies to discuss the fundamental 

concepts of Calculus, both its dynamic characteristics and the study of change and movement, have to be 

kept in mind. Nowadays, the existence of free programs with versatile capabilities and interactive 

representation helps to improve the presentation of content taught in this area of knowledge, allowing 

dynamic visualization” (p. 1188). 

 

 
Figure 2.33a: Symbolic and graphic representations of a function using Geogebra 

 

It is also possible to find derivatives and integrals of functions. Teachers can use Geogebra to help their students 

understand meanings: generating the graph of any function on screen from its symbolic representation makes a 

strong metacognitive visual impact on their students’ thinking.  

For the teaching of calculus, a teacher must have experience to achieve “The transition from knowledge regarded 

as a tool to be put to use, to knowledge as something to be taught and learnt, […]” what Chevallard (1988, p.6) 

has termed the didactic transposition of knowledge (see also, Chevallard, 1999, 2005). 

Botana, & Kovács (2016) also argue that “classroom demonstrations and deeper investigations of dynamic 

analytical geometry are ready to use on tablets or smartphones as well. […] The covered school topics include 

definition of a parabola and other conics in different situations like synthetic definitions or points and curves 
associated with a triangle. Despite the fact that in most secondary schools, no other than quadratic curves are 

discussed, simple generalization of some exercises, and also everyday problems, will smoothly introduce higher 

order algebraic curves” (p. 1). 
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Figure 2.33b. Creating a function on Geogebra Calculus, its definite integral and connecting their symbolic representations with 

graphic representations 

 

Definite integrals represent the exact area under a given curve, linking a graphic representation of a function with 

its symbolic representation. Riemann sums are also used to approximate those areas. GeoGebra applets also are 

embedded in HTML5 mode and sliders can help the visualization of important meanings (Figures 2.33 a, b, c, 

2.34 a, b). 

 

 
Figures 2.34a, b, c: Experimenting with definite integrals (Tim Brzezinski, Web page [37]) 

 
 

Figures 2,35a, b: Experimenting with definite integrals (Mark Willis, Web page [38]) 

 

Pre-calculus activities at a young age can help young learners to intuitively conceive concepts they will learn in 

calculus courses later. The students’ improved understanding in pre-calculus topics will enhance the gradual 

development of an understanding of concepts in calculus at any age.   
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Sinclair (2018) in her study “Time, Immersion and Articulation: Digital Technology for Early Childhood 

Mathematics” states that she has been involved in childhood research projects and  

“three novel and significant themes have emerged in this work: the temporalizing of early childhood 

mathematics (time); the exposure of young children to advanced mathematics (immersion); and, the 

relations between digital technologies and paper-and-pencil technology (articulation)” (p. 205) . 

The interactive Web Sketchpad (McGraw Hill, 2019) environment encourages students to experiment with open-

ended tasks, during the teaching and learning process, in class or out of class. Daniel Scher, Scott Steketee and 

others have built web sketches that allow anyone to experiment (Webpage [18]). According to Daniel Scher 

(personal e-mail communication on July, 23, 2019):  

“Web Sketchpad is dynamic mathematics technology from the creators of The Geometer’s Sketchpad 

software. It began as part of the NSF-funded DRK-12 funded Dynamic Number project and brings over 25 

years of Sketchpad development and innovation to the web and electronic textbooks, requiring only 

HTML5 and JavaScript. Unlike its desktop counterpart, Web Sketchpad has no default set of mathematical 

tools; instead the teacher or activity developer chooses tools to support each activity, providing the tools 

needed for the activity at hand. Thus, a geometry activity might feature the familiar Point, Straightedge, 

and Compass tools found in desktop Sketchpad’s toolbar while a calculus activity might put tools for 

exploring Reimann sums front and center. This style of tool presentation enables less-prescriptive and 

more open-ended student tasks, encouraging the student to be more self-reliant: instead of following step-

by-step worksheet directions she concentrates on how to use a small set of manageable tools to accomplish 

a mathematical task.  When a student taps a tool icon, the entire result of the tool appears onscreen.[…]”.  

Using Web Sketchpad anyone can create Web-sketches that can be linked procedurally and conceptually. 

Crucially, this permits the development of sequences of activities that can be saved and then shared with students 

using Google Drive, email etc.  

 

 
Figure 2.36. Constructing an ellipse using WebSketchpad Tool Library - Changing the visibility of the objects  

 

 

In my opinion, it is a very powerful tool for developing strong intuition with regard to mathematical concepts at 

all levels (pre-school, Primary or Secondary Education). According to Fischbein (1999) “The intuitive kind of 

knowledge has been a concept in which mainly philosophers have been interested. In the works of Descartes 

(1967) and Spinoza (1967) intuition is presented as the genuine source of true knowledge. Kant (1980) describes 

intuition as the faculty through which objects are directly known in distinction to understanding which leads to 

indirect conceptual knowledge” (p.11) 

Web Sketchpad dynamic tool has multiple components, including the Tool Library (from which you can select 

the tools you need for your construction), the viewer, and the desktop Sketchpad (the web page where you can 

construct your websketches). According to Scher “To provide a convenient starter set of tools that can be used 

across a wide variety of activities, Web Sketchpad includes a “Tool Library” with over 60 tools that can be added 

to a websketch. Accompanying the tool library is a viewer page, where one or more websketches can be uploaded 
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simultaneously for review by the teacher or for class presentations” (personal e-mail communication on July, 23, 

2019).  

Widgets also provide several benefits to users (for example, a student can change the visibility (showing or 

hidden) of any object, can drag sketch objects even when style or visibility widgets are active, etc.). Widgets also 

give the advantage of being able to change the colours of the graphs, the grid or the shapes, which affects 

students emotionally, encouraging them to “love” mathematics (Figures 2.36, 2,37a, b, c, d).  

 

 

Figure 2.37a. Constructing graphs using 

WebSketchpad Tool Library 
Figure 2.37b. Visualizing  the properties of 

reflection, using Web Sketchpad traces 

  
Figures 2.37c, d. Constructing tessellations, playing with colors and “loving” mathematics with Web 

Sketchpad (from the first years in school) 

 

The most important thing is that no one has to remember how to use the tools, which is something I love also 

about Sketchpad. In the Figures 2.36 and 2.37a, b, c, d, I constructed graphs, reflection of points through 

symmetry lines and their traces, regular polygons and tessellations. They are “easily” generated on screen. At the 

following page (Wepage [19]) Daniel Scher (2019) writes:  

“Constructing a square requires tools, and Web Sketchpad features a particularly innovative tool interface 

[…] there’s no need for the student to remember or figure out what objects to click, in what order, to use 

the tool successfully. This overview of the entire tool gives the student an opportunity to consider what 

objects the tool is going to create and plan how to integrate these tool objects into the existing sketch.[…]  
The Web Sketchpad tool interface was designed with student tasks in mind.[…]. Students can be 

encouraged to be more self-reliant and self-directed, concentrating on the mathematics of the task rather 

than following directions from a worksheet or from the teacher”. 

Researchers have investigated the way that Web Sketchpad can be used in class: 

Steketee & Scher (2018) in their study “Enacting Functions from Geometry to Algebra” argue that  

"Web Sketchpad supports a constructionist approach to students’ activities of creating, manipulating, and 

investigating mathematical objects, thus linking their sensorimotor activity to their conceptual 
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understanding. The software provides a simple interface with no menus, based on dragging and on using a 

small set of tools designed by the activity author “(p. 59).  

Using Web –based Sketchpad (Webpage [20]) for her research Sinclair (2018) argues that: 

“Web Sketchpad is multi-touch, which means that users can drag multiple objects at the same time (e.g., 

three children can each drag all the vertices of a triangle as they cooperate ..many children can interact 

simultaneously , each potentially using more than one finger. Moulti-touch dynamic geometry thus offers 

both mathematical and pedagogical opportunities that have only recently been pursued (Jackiw, 2013). 

(Sinclair, 2018, p. 209)  

What is very crucial for students of any age is to love mathematics, to enter their mathematics class without fear, 

and to have in mind that mathematics can be touched on screen, can be colored, can be understood, and can be 

built. This can be achieved if mathematics is presented to students in class through gaming in computer 

environments from their first years at school (Patsiomitou, 2016c).   
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Chapter III.  

3.1. Dynamic Geometry Software: An ‘Alive’ Microworld 

Dynamic geometry systems (DGS) are microworlds designed to facilitate the teaching and learning of Euclidean 

geometry, Algebra and Calculus. Microworlds have been described (Edwards, 1998, p. 74) “as ‘embodiments’ of 

mathematical or scientific ideas” that, in the words of Sinclair, & Jackiw (2007) “are extensible (so that the tools 

and objects of the environment can be built to create new ones), transparent (so that its inner workings are 

visible) and rich in representations.” (p.1). Dynamic geometry software has been used broadly in research 

regarding the teaching and learning process of geometry over the past several decades (see for example the 

articles written in Educational Studies in Mathematics and International Journal of Computers for Mathematical 

Learning) (Leung & Or, 2007, p. 177). 

Such research with dynamic geometry has verified that the software is useful in provoking cognitive conflicts 

(e.g, Hadas, Hershkowitz, & Schwarz, 2000; Giraldo, Belfort & Carvalho, 2004), developing students’ deductive 

reasoning (e.g, Hollebrands & Smith, 2009; Hollebrands, Connor & Smith, 2010; Patsiomitou, 2008a, 2011, 

2012a), and developing students’ geometrical thinking (e.g, Yousef, 1997; Sinclair, 2001; Patsiomitou, 2008a, 

2012a,b, 2018b), according to the theory of van Hiele. A DGS microworld can play a fruitful and crucial role in 

the process of creating and evaluating conjectures which promote student creativity, and in so doing greatly 

contribute to developing mathematical reasoning. There are 2-dimensional DGS packages, such as the 

Geometer’s Sketchpad (Jackiw, 1991/2001), Cabri II (Laborde, Baulac, & Bellemain, 1988), Geogebra 

(Hohenwarter, 2001, 2002), Cinderella (Richter-Gebert & Kortenkamp, 1999) etc. as well as 3-dimensional DGS 

packages, such as Cabri 3D (Laborde, 2004), etc.. El-Demerdash (2010, pp. 23-26) reports and clarifies many 

purposes and functions of a DGS software which are briefly reported here: (a) as a construction tool provides “an 

accurate constructor for creating geometric configurations and has the ability to automatically adjust and preserve 

the variant and invariant properties of constructed geometric configurations under dragging in a visual, efficient, 

and dynamic manner” (El-Demerdash, 2010, p. 23), (b) as a visualization tool (e.g., Straesser, 2002, 2003; 

Christou et al., 2005), (c) as a modeling tool (Oldknow, 2003), (d) as a tool for experimentation, exploration and 

discovery (e.g., Clements & Battista, 1992; Hollebrands, 2002, 2003; Kortenkamp, 2004), (e) as a tool for 

problem solving and problem posing (e.g., Christou et al., 2005), (f) as a tool for teaching geometry with the 

utilization of transformations and the construction of proof (e.g., Hollebrands, 2003, 2007; Haj-Yahya, & 

Hershkowitz, 2013).   

The diagrams that are provided to the students in a DGS environment are important spatiovisual representations 

that facilitate understanding of the problem’s information as well as the conceptualization of the problem’s 

structure. In other words the ‘dynamic’ diagrams support visual reasoning, which aids translation from visual to 

verbal representations and the construction of meaning. Finzer and Jackiw (1998, cited in Scher, 2002) propose 

three attributes related with dragging as characteristic features of any “dynamic geometry” software program 

(Scher, 2002, p.72):   

 

 
Figures 3.1 a, b, c. Visualizing the effects of dragging and tracing. 

 

1. Manipulation is direct. When users drag point A, they do not think to themselves that they are dragging 

the mouse, which in turn moves point A. Rather, they sense that they are dragging point A itself.   

2. Motion is continuous. As point A of moves (Figure 3.1a, b, c), it does so without any discernible jumps 

or gaps in its movement. Motion flows like film animation.  

3. The environment is immersive. The behavior of circles, squares, and other onscreen objects seems as 

real as their physical counterparts” (Finzer & Jackiw, 1998, cited in Scher, 2002, p.72).  
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Ruthven (2003) in her study “Linking algebraic and geometric reasoning with dynamic geometry software:  

Final report to the Qualifications and Curriculum Authority” reports the basic features of the DGS in detail, 

giving examples for classical constructions, transformational constructions, coordinate constructions, function 

graphing, measuration and calculation. She points out that “Dynamic geometry software is best known as a 

means of constructing and manipulating dynamic representations of geometrical objects in the plane. It provides 

tools supporting classical, transformational and coordinate methods of construction. Rather than creating a single 

static example of a generic geometrical object, the software makes it possible to create a dynamic construction 

which retains its defined characteristics but changes its visible form on the computer screen under manipulation” 

(p. 9). 

“Hot-spots” is a dynamic notion introduced by Hegedus (2005) in his study “Dynamic representations: a new 

perspective on instrumental genesis”. Hegedus with the notion of “hot-spots” denotes the dynamic “points” or 

“dots”, namely the dynamic objects of a DGS environment which are “actually instantiated at an infrastructural 

level and are a product of new, dynamic medium” (p.7), reporting also Kaput (2000). According to Hegedus 

(2005): 

“The “hot-spot” in our chosen software environments is not an artifact of the environment but an axiomatic 

part of the system that allows “true” mathematical figures to be built. Dragging a “hot-spot” is not the same 

as “using a hammer to try to hit a nail” – note the verb use. A hot-spot will always be used well for 

dragging, a hammer will not always be used for hitting well. A hotspot will always be dragged and a 

hammer is never hit but instead used to hit. Will they ever be the same? Well, the hammer is still as 

effective as the hitter. The hitter hits a particular point. The action is directed by the actor. The local 

environment does not help with the accuracy or efficiency of the tool use, it resides with the user and 

practice. In addition, the action of dragging a hot-spot leads to the software environment reacting in some 

way” (p.2-3)[…] “Here is the critical point: the hot spot is no longer directly owned by the user. It is an 

infrastructural piece of the environment from which the user is now receiving feedback” (p. 5). 

Hegedus concludes that dynamic representations scaffold students thinking  

“[…] grounded in the mathematical structure (axiom, definitions, rules) that are efficiently preserved when 
the representations are executed. The student as user has the support of rigorous scaffolding deep in the 

infrastructure that is extremely difficult to replicate in static, inert media. Mathematical constructions in 

algebra and geometry become more dynamic, motion based events, with explorations, conjectures and 

reasoning based around the aggregation of mathematical objects or co-actions of students and software 

environment” (Hegedus, 2005, p.9).  

Jackiw, & Sinclair (2009) in their study “Sounds and pictures: dynamism and dualism in Dynamic 

Geometry”“examine and evaluate several new mathematical representations developed by “The Geometer’s 

Sketchpad v5 (GSP5)” from the perspective of their dynamic mathematical and pedagogic utility or 

expressibility”. Jackiw, & Sinclair claim the primary contributions of Dynamic Geometry’s principle of 

dynamism to the emerging concept of ‘‘Dynamic Mathematics’’ to be twofold:  

 first, the powerful, temporalized representation of continuity and continuous change (dynamism’s 

mathematical aspect), and  

 second, the sensory immediacy of direct interaction with mathematical representations (dynamism’s 

pedagogic aspect)” (p. 413).  

Jackiw, & Sinclair characterize the new ways in which simple pictures and sounds can play /take different roles 

in the GSP5 environment by activating several new mathematical representations: “pictures as pure ornament, 

pictures as integrated illustration, pictures as modeling scaffolds, pictures as geometric objects to construct with, 

pictures as geometric objects to construct, sounds as special effects, sounds to inspire mathematical precocity, 

sounds to build with and sounds as objects to build” (p.420-423). Jackiw, & Sinclair support that “sensory 

interaction with […] novel dynamic representations in GSP5 affect mathematical modeling opportunities, student 
activity and engagement (p. 413). Üstün & Ubuz (2004) also consider that “the Geometer’s Sketchpad is an 

important vehicle of technological chance in geometry classroom. […] The shapes are first created and then they 
are explored, manipulated and transformed to ideal concept”. Olkun, Sinoplu & Deryakulu (2005) also argue that 

“the Geometer’s Sketchpad is a suitable dynamic environment in which students can explore geometry according 

to their van Hiele levels” (p.3). 

In my study “An ‘alive’ DGS tool for students’ cognitive development.” (Patsiomitou, 2018b) I report the 

following effects on students’ thinking in relation to DGS software.  
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A. A first and very important effect on students’ thinking stems from the Sketchpad software allowing the 

user to create sequential linking pages so that the whole Sketchpad file becomes an “alive book” 

(Patsiomitou, 2005a, p. 63, in Greek; Patsiomitou, 2014). The “alive digital representations” (Patsiomitou, 

2005a, p. 67) function, which makes the whole figural diagram “alive”, giving the students the potential to 

focus their attention on simultaneous modifications (and transformations) of objects on the screen 

(Patsiomitou, 2005a, p. 68), also yielded important results during my investigations. According to 

Sketchpad Help system “Over time, you may want to add additional pages to a document. For example, 

you may want to organize a series of sketches that develop an argument; you may want to present an 

activity that has several parts; or you may want to explore a conjecture in more depth than would be 

possible in a single sketch”.  

B. A second important effect on students’ thinking stems from the dynamic transformations in a DGS 

environment, a way of modifying an object on screen. We can change a figure’s orientation, a figure’s size 

or we can reconfigure it from its parts (Duval, 1995b, 1999). Translations, rotations, and reflections are the 

kind of transformations that preserve the size and shape of a figure. Any transformation (i.e. rotation, 

translation, reflection) of an object on screen produces a similar or congruent object image on screen. If we 

drag any point of the object the same transformation occurs to the image object that means that the image 

object (or reversely) follows the dragging results that refer to the object (e.g., Patsiomitou, 2009).  

C. A third important effect on students’ thinking occurs from dynamic constructions, that are the 

constructions created in a DGS environment. Daniel Scher (2002) in his study describes the characteristics 

of a traditional static construction in contradiction to a dynamic construction. The static constructions 

possess two characteristics as Scher (2002, p. 1) states: “they are static and particular”. In Scher’s (2002) 

words “the dynamic objects can be moved and reshaped interactively […and] a single on screen image 
represents a whole class of geometric objects” (p.2).   

D. A fourth important effect on students’ thinking occurs from the construction of custom tools /scripts 

(e.g., Patsiomitou, 2005, 2006 a, b, 2007, 2008d, 2012a, b, 2014). As Straesser (2001) supports: 

“Apart from practical considerations (like exactness and ease), DGS-use can be structured according to 

conceptual units by means of macro-constructions. DGS-constructions are not bound to follow the small 

units of traditional drawing practice. Offering new tools that are unavailable in paper and pencil geometry, 

DGS-use widens the range of accessible geometrical constructions and solutions. If these tools become 

everyday instruments in the hands and minds of the user” (p.332). 

          During the construction of a custom tool a user determines the order the dynamic objects have to    be 

created. This is in accordance with what Balachef & Kaput (1997) support: 

“The order in which actions take place could become arbitrary in the eyes of users, which can have 

significant consequences. [...] This demonstrates the impact of the orientation of the plan which is in 

general forgotten in elementary geometry, but is recalled to the user as a result of the sequencing of actions 

(Payan 1992)”. (p.13)  

I shall further discuss the meaning of custom tools in the next section.  

E. The fifth [and most] important effect on student’s thinking stems from the DGS software’s dragging 

facilities. Sketchpad’s dragging behavior transforms an object on screen moving that object on the screen.  

According to Laborde (1994, cited in Scher, 2000, p. 43)  

“The idea of movement in geometry is not new—the Greek geometers devised various instruments to 

describe mechanically defined curves—but the use of movement was nonetheless ‘prohibited in strict 

geometric reasoning’ for reasons that were more metaphysical than scientific. The 17th century marked a 

break with Greek tradition, and the use of movement to establish a geometric property or carry out a 

geometric construction became explicit. One can find numerous examples starting then […] This idea was 
first expressed in school geometry by the replacement of the geometry of Euclid’s Elements by the 

geometry of transformations (which continues to be the only kind of geometry taught in some countries)—
quite some time, one must point out, after the characterization of geometry as the study of the invariants of 

transformation groups, and also quite some years after a daring proposition made in France by Meray 

(Nouveaux éléments de géométrie, first edition 1874) [...] Meray’s idea was to teach geometry through 

movement: translational movement allowed for the introduction of the notion of parallelism; rotational 

movement led to perpendicularity. (pp. 61-62, French original, Scher, 2000, p. 43) 

For example, if we create a triangle on screen it can be dragged and transformed into an infinite number of 

figural-triangles that determine the concept of triangle in every change of orientation and shape. Hölzl (1996) 
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investigated how students used the heuristic of drag & link to manipulate a dynamic diagram and discover 

properties. Arzarello, Olivero, Paola & Robutti (2002) in their study “A cognitive analysis of dragging practices 

in dragging environments” introduced a hierarchy suitable for classifying the different functions of dragging in 

Cabri in order to describe some of their cognitive features in learning processes (p.66), “developing Hölzl’s 

(1995, 1996) research” (p.67). They identified five different modalities which students use according to their 

purposes during the solution process of open problems (Olivero, 2003):  

 “Wandering dragging: moving the basic points on the screen randomly, without a plan, in order to 

discover interesting configurations or regularities.  

 Bound dragging: moving a semi-dragable9 point, which is already linked to an object.  

 Guided dragging: dragging the basic points of a figure in order to give it a particular shape.  

 Lieu muet dragging: moving a basic point so that the figure keeps a discovered property; that means you 

are following a hidden path (lieu muet), even without being aware of this.  

 Line dragging: drawing new points on the ones that keep the regularity of the figure.  

 Linked dragging: linking a point to an object and moving it onto that object.   

 Dragging test: moving dragable or semi-dragable points in order to see whether the figure keeps the 

initial properties. If so, then the figure passes the test; if not, then the figure was not constructed 

according to the geometric properties you wanted it to have” (p.66) 

Students using dragging are led “to understand how a geometric construction can be defined by a system of 

dependencies” (Jackiw and Finzer, 1993). Dragging preserves the properties of geometrical objects constructed in 

the DGS environment. According to Mariotti (2000, p.36)  

“the dragging test, externally oriented at first, is aimed at testing perceptually the correctness of the 

drawing; as soon as it becomes part of interpersonal activities […] it changes its function and becomes a 
sign referring to a meaning, the meaning of the theoretical correctness of the figure.”  

Hollebrands (2007) also supports that the students in her study “used reactive or proactive strategies when 

dragging, either in response to or in anticipation of the effects on dragging” (cited in Gonzalez and Herbst, 2009, 

p.158-159). Building on the work of previous researchers regarding dragging, I introduced two main diacrises in 

dragging utilizations with regard to students actions (Patsiomitou, 2011, p. 362): (a) the theoretical dragging in 

which the student aims to transform a drawing into a figure on screen, meaning s/he intentionally transforms a 

drawing to acquire additional properties and (b) the experimental dragging in which the student investigates 

whether the figure (or drawing) has certain properties or whether the modification of the drawing in the picture 

plane through dragging leads to the construction of another figure. Dragging an object in a DGS environment 

leads to the transformation of the object.   

 The object (e.g., a rectangle constructed in a theoretical way) remains unaltered in terms of its structural 

characteristics, but the length of a side on screen is transformed due to the manner of its construction (a 

‘visual way’ transformation, in the words of Duval). The object’s orientation also can be transformed in 

what Duval (1995b) calls ‘a place way’ transformation. 

 The object is messed up as a result of the non-theoretical way in which it has been constructed (its 

construction depends on the student-user’s conceptual understanding). 

 The object is restructured, remaining an invariant construction on screen, because it has been constructed 

in a theoretical manner (a mereological way of shapes’ reconfiguration).  

 The object is unaltered as it is dragged on screen from a point. It appears as a static object, but it remains 

intrinsically dynamic due to the dependence of the aforementioned point’s parent objects. In my opinion, 

it is a hybrid object (Patsiomitou, 2019a, b), which transforms the whole diagram to a hybrid-dynamic 

representation.  

The transformation of an object on screen using dragging can be combined with other techniques to cause a 

combination of transformations on screen (e.g., Patsiomitou, 2008b, c, 2010, 2012a, b): (a) dragging and tracing 

objects (b) dragging and measuring objects (c) dragging and animating objects (d) dragging a transformed object 

or its image (by rotation, translation or reflection) or more complex such as (a) dragging, tracing and animation 

and (b) dragging, measuring and rotating etc.  

It is not within the scope of this section to discuss the dragging facilities in any more detail, but like to 

Goldenberg & Cuoco (1996) I would argue that   
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“Dynamic Geometry needs its own axiomatic foundation to define the objects and postulates of its 

environment. (In particular, such a foundation would describe and, following Poncelet, properly 

mathematize the dragging transformation)” (cited in Jackiw, & Sinclair, 2009, p.415).  

Generally speaking, a computer learning environment such the Geometer’s Sketchpad scaffolds students’ co-

building of the meanings introduced in the teaching and learning activity. The design of activities in the learning 

environment (the software) as a part of the instruction thus has a crucial role to play in the comprehension of 

mathematical meanings. Jackiw, & Sinclair (2009) also argue that:  

“[…] A Dynamic Geometry [object] is not an illustration, in other words— not an example of some more 

abstract, general, or encompassing idea—it is that idea and fully manifests its extent. At the same time, the 

dragged [object] implies a dragging intelligence. And this hidden actor, in whose hands the [object] comes 

alive, is the other focus of research attention” (p.414). 

Over the 14 years I have been using various software environments I have employed them for many different 

purposes and functions, which I have published in papers, that have been uploaded onto my ResearchGate or 

Academia profile, and which I shall briefly report here:  

 For generating and investigating accurate constructions of 2D or 3D geometrical objects (e.g., Patsiomitou, 

2005a,b, 2007b, d, 2008a, b, 2009 b, c, g); 

 For interpreting Euclid’s “Elements” (e.g., Patsiomitou, 2006f, 2007e, 2008c, e, 2009a); 

 For connecting History of Mathematics with technology (e.g., Patsiomitou, 2007c, 2008f); 

 For generating and investigating spiral constructions (e.g., Patsiomitou, 2007b, 2008g); 

 For generating a library of custom tools and their use in the research process (e.g., Patsiomitou, 2006d, 

2006g, 2008d, 2009 b, c, 2018b); 

 For constructing meanings in geometry, algebra or calculus, using Construction or Transform menu (and 

using these menus in the research process) (e.g., Patsiomitou, 2005a, b, 2006g, 2007a, 2012a, c); 

 For blending DGS with web and whiteboards as part of the teaching process (e.g., Patsiomitou, 2006b, 

2012c, 2018a); 

 For applying instructional design processes (e.g., Patsiomitou, 2006c, 2007a, 2007b, 2007c, 2007d, 2008a, 

b, 2009f, 2010, 2018a); 

 For blending DGS with CAS in order to co-construct the concept of mathematical meanings (e.g., 

Patsiomitou, 2007d, 2015d); 

 Blending several DGS software for the construction of definitions (e.g., Patsiomitou, 2006e, 2015d); 

 For developing students’ abilities at conjecturing, arguing, proving, and constructing proofs in or out of 

class (e.g., Patsiomitou, 1999; 2006e, 2008a, b, c, d, e, h, 2009e, h, 2010, 2012a, b, 2014); 

 For developing affective approaches which engender the love of mathematics (Patsiomitou, 2006e, 2007a, 

b, d, 2009d, h, 2010); 

 For investigating, verifying and discovering relations (Patsiomitou, 2006g, 2007a, b, d, 2009d, h); 

 As a modelling tool for the modelling process of real-world problems and using them in the research 

process (Patsiomitou, 2008a, b, 2012a, b, d, 2013b); 

 For the modelling process of algebraic identities, using algebra tiles as structural algebraic units and 

implementing them in the research process (Patsiomitou, 2007e, 2008c, 2009a, 2010); 

 For investigating the development of correlations between the dynamic tools use and the construction of 

meanings (Patsiomitou, 2009b,c, d, g, 2011a, b); 

 For developing visual proofs and digital proofs (Patsiomitou, 2006e, d, 2009e, 2010); 

 For generating numbers (for example, (φ) fi, (π) pi) through the development of iteration processes 

(Patsiomitou, 2006f, g, 2007c, 2016a, b, 2018a); 

 For problem solving and problem prosing (Patsiomitou, 2006c, e, f, 2008a,b, 2012a, 2019a, b); 

 For introducing and developing the notion of “Linking Visual Active Representations” and investigating 

the implementation of LVARs in the teaching process in multiple studies (Patsiomitou, 2008a, b, 

2009b,c, 2010, 2011a,b, 2012a, b, d, 2015a, 2016a, b, 2019a);  

 For introducing and developing the notion of “instrumental decoding” and investigating through several 

studies (Patsiomitou, 2011a, b, 2012a, b, 2015c); 

 For developing dynamic propositions (Patsiomitou, 2011a, b, 2016a, b); 
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 For developing the notion of dynamic hypothetical learning trajectories. progressions (Patsiomitou, 2006f, 

2007b, c, d, e, 2008a, 2012a, b, 2018a); 

 For developing the notion of Dynamic Teaching Cycle (2012a, b, 2014); 

 For developing an empirical classification model for sequential instructional problems in geometry 

(Patsiomitou, 2008a, 2019a); 

 For introducing other notions (Patsiomitou, 2006e, 2008a, b, 2011a, b, 2019a, b); 

 For enriching the mathematics curriculum by enhancing it with digital resources. (Patsiomitou, 2006b, c, d, 

e, f, 2007a, b, c, d, e, 2008a, b, c, d, e, f, 2012a, b). 

3.2.  Dynamic Objects and Instrumental Decoding 

Dynamic mathematical objects are a particular kind of mathematical objects, created in a dynamic geometry 

software (DGS). Generally speaking, microworlds have been created to support abstract thinking through visual 

representations on computer screen and their transformations. Laborde (2003) in her article “Technology used as 

a tool for mediating knowledge in the teaching of mathematics: the case of Cabri-geometry” stated that: 

“the idea of computer environments as reifying abstract objects and structures originates from the notion of 

microworld in which it is possible to explore and experiment on representations of abstract objects as if 

they were material objects” (p.6)   

Dynamic geometry environments are defined by Balachef & Kaput (1997) as: 

“(a) a set of primitive objects (point, line, segment, circle, etc.) created by the tools of the software and (b) 

of elementary actions (for example, commands to draw a perpendicular or a parallel line given a point and 

a line etc.). (p.8) 

Firstly, speaking of a DGS environment, it is important to identify the meanings of geometrical objects in such an 

environment. I introduce the following notions in my study “From Vecten’s Theorem to Gamow’s Problem: 

Building an Empirical Classification Model for Sequential Instructional Problems in Geometry” (Patsiomitou, 

2019a, p.15): 

  A dynamic geometrical object (Patsiomitou, 2019a, p. 15) is every object that has been constructed in a 

dynamic geometry software interface. This object could be a “drawing” or a “figure” which intrinsically 

has dynamic properties. This definition is complementary to what Gonzalez and Herbst (2009) argue 

regarding the dynamic diagram as “a diagram made with DGS and that has the potential to be changed in 

some way by dragging one or more of its parts” (p.154).  

 A dynamic diagram (Patsiomitou, 2019a, p. 15) is an external representation composed out of a set of 

rationally related dynamic objects in a DGS environment. A dynamic diagram can be a simulation of a 

problem modelled in the DGS environment, which includes many geometric objects and combinations of 

interaction techniques implemented in these objects.  

 A dynamic section (Patsiomitou, 2019a, p. 15) is a set of dynamic diagrams that are linked to each other 

procedurally and conceptually, even if they may differ structurally. A dynamic section contains meanings 

belonging to the same class that are united or joined into a whole, which in the concrete situation 

symbolically means they exist in one [“alive” book] section or they are dynamically linked.  

In the Geometer’s Sketchpad environment (or the Web Sketchpad) anyone can create a dynamic section by 

linking pages in the same file. In this way, a solution to a problem can be separated into sequential componential 

steps that help a student to create linking mental representations in his/her mind (Patsiomitou, 2008b, c, d, 2009 

a, b, 2010, 2011, 2012a, b, 2013, 2014, 2018a, b, 2019a, b).  

I support the following from the empirical results of my investigations (e.g., Patsiomitou, 2011, 2012a): The 

construction of a dynamic diagram in a DGS environment is a result of a complex process on the student’s part. 

The student has first to transform the verbal or written formulation (“construct a parallelogram” for example) into 

a mental image, which is to say an internal representation recalling a prototype image (e.g., Hershkovitz, 1990, 

Presmeg, 1992) that s/he has shaped from a textbook or other authority, before transforming it into an external 

representation, namely an on-screen construction. This process requires the student to decode their actions using 

software primitives, functions etc. In order to accomplish a construction in the software the student must acquire 

the competence for instrumental decoding (Patsiomitou, 2011, p. 362) meaning the competence to transform 

his/her mental images to actions in the software. Competence in the DGS environment depends on the 

competence of the cognitive analysis which students bring to bear when decoding the utilization of software 

tools, based on Duval’s (1995a, b) semiotic analysis of students’ apprehension of a geometric figure. As I 
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mentioned before, Duval has distinguished three kinds of operations, one of which is the place way, meaning an 

operation which changes a figure’s orientation. During the development of a construction, I think that the student 

has to develop three kinds of apprehension when selecting software objects which accord with the types of 

cognitive apprehension outlined by Duval (1995b, pp.145-147) namely perceptual, sequential, discursive, and 

operative apprehension. In concrete terms, the competence of instrumental decoding in the software’s 

constructions depends on: a) the sequential apprehension of the tools selection (i.e. s/he has to select point C and 

segment AB and then the command (fig. 1) meaning that s/he has to follow a predetermined order); b) the verbal 

apprehension of the tools selection which means the student has to verbalize this process, (i.e. s/he says “I am 

going to select point C and the segment AB”) and c) a  place way type of elements operation on the figure (i.e. 

when s/he transforms the orientation of the elements to apply the command selecting point B and the opposite 

side AC, for example in Figure 3.2d) due to his/her perceptual apprehension (Figure 3.2.b, c). Then s/he has 

constructed the operative apprehension of the figure’s elements for the construction, meaning the competence to 

operate the construction. The figures below (Figures 3.2 a, b, c, d) illustrate the linking visual active 

representations (e.g., Patsiomitou, 2008a) of the steps in the students’ construction of the parallelogram.  

 

 
 

  

Figures 3. 2a, b, c, d: Sequential steps fro the construction of a parallelogram 
 

In other words, the notion of instrumental decoding explains a student’s competence to transform his/her mental 

images to actions in the software, using the software’s tools and commands.  

The basic tools of a dynamic geometry environment are a) Circle (equivalent to Compass) b) Segment/Ray/Line 

(equivalent to Unmarked Straight Edge) c) Point (which simply enables us to place one of the fundamental 

'objects' of Euclidean geometry) d) Pointer (which crucially enables us to drag objects). (Lopez-Real, & Leung, 

2004, p.5) When these tools are combined with the software’s options menu, they allow the user to produce 

constructions which must conform with the principles of Euclidean geometry if they are to function and pass the 

dragging test.  

Hollebrands, Laborde and Straeser (2008, p.165) described the distinction between the three different kinds of 

points in a DGS environment: (a) a free point “can be directly dragged anywhere in the plane (degree of freedom 

2)”, (b) a point on an object “can be dragged only on this object (degree of freedom 1)” and (c) a constructed 

point “cannot be grasped and dragged (degree of freedom 0) but moves only if an element of which it is 

dependent is dragged”. 

This means that the student has to know the theory of geometry if s/he is to generate a correct geometric 

construction (or robust construction in the words of Laborde (2005)). And while we have explained that, in the 

software, the constructions can contain the same mathematical logic as the constructions on paper, there are 

substantial differences in the manner in which the tools are used. For example, we can construct a rectangle using 

(Patsiomitou, 2006c, 2019b, p, 41): 

 Segments (tools) and perpendicular or parallel lines (commands) from the Construct menu of the DGS 

environment;  

 Segments (tools) and transformational processes from the Transform menu;  

 Parameters to represent its sides and its angles from the Graph menu.  

Moreover, we can construct a custom tool/script (or macros in Cabri) to repeat a construction of a rectangle, 

which we have previously constructed. Straesser (2002, p.65) supports that “even if the DGS programs differ in 

their conceptual and ergonomic design, they share […] the ability to group a sequence of construction commands 
into a new command (macro-constructions”. Kadunz (2002) in his study “Macros and Modules in Geometry” 

also argues that “Literature from mathematics education research offers three characteristic features to make a 

certain software for elementary Euclidean geometry a "DGS":  

 "dragmode" as dynamical modeling of traditional tools from Euclidean geometry,   

 "macros" to condense a series of constructions steps into one software command,  
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 "locus of points" to show the path of one or more points when dragging another point (cf. Graumann et 

al. 1996, p. 197) (Kadunz, 2002, p. 73). 

Kadunz (2002, p. 73) considers that among other characteristic features in a DGS environment are "macros".  

According to Kadunz (2002): 

“If users and/or developers condense a sequence of commands which is often used into one unit, one 

command, they define a "macro". It will be labeled by a clear name (a signifier) and can be used by this 

throughout the whole consecutive work. Internally and hidden from the user, a "macro-expander" will 

substitute the signifier by the initial sequence of commands” (p. 73). 

Researchers in cognitive psychology (e.g., Dörfler, 1991; Dubinsky, 1988; Frick, 1989) report that chunking 

information facilitates memory and retrieval. In a chunk, knowledge is condensed “into a unit available to the 

learner as a whole” (Kadunz, 2002, p.73). Weibell (2011) also states:  

“One effective strategy that can be used to extend [or increase] the amount of information held in working 

memory is chunking (Miller, 1956). Chunking is a process of recoding multiple bits of information into a 

meaningful representation that contains the same amount of information, but takes up fewer slots in 

memory” (p.110).  

Chunking “supports and facilitates cognitive processes involved in encoding, extracting, remembering, and 

understanding information” (Winn, 1993; Gobet et al., 2001 quoted in Sedig, & Sumner, 2006). According to 

Straesser (2001, 2002, 2003) macros [/custom tools] “can help to structure a geometrical construction by 

condensing a complicated sequence of construction steps into one single command”. This is in other words “a 

chunk of knowledge”, as Simon (1980) points out: “A chunk is any perceptual configuration [...] familiar and 

recognizable” (Simon, 1980, p. 83) that helps the students to reverse their thoughts (e.g., Patsiomitou, 2012a).  

In my opinion, a custom tool is an encapsulation of a sequence of primitive objects and construction commands 

into a new tool, combining information of the construction in a consequential mode.  

The idea of scripting/constructing custom tools was to create “personal tools”, or tools that a student could use 

for his her needs. According to Scher (2000, p.45) “Jackiw viewed the scripting feature of Sketchpad as a way for 

students to start from the “atoms” and gradually build their own collection of reusable, multi-step constructions”. 

Kadunz (2002) also states that “to the user, the macro function is a black box producing defined output from 

defined input” (p. 74). 

A script /custom tool combines in a concrete and sequential order the steps that have been used to accomplish the 

construction. For example, if we construct a square, we can save the concrete construction in a custom tool which 

can repeat the construction in the concrete way used by the creator of the custom tool, meaning that is processes 

the objects in the same sequence. The dragging of the custom tool constructed on screen follows the rules that 

refer to the primitives and commands incorporated into the custom tool (i.e. if we have measured angles or 

segments, or calculated a ratio, during our construction of the tool, then the concrete measures and calculations 

are repeated any time we implement the custom tool). If we drag the tool, the measures follow the increasing or 

decreasing of the length of the segments and angles (e.g., Patsiomitou, 2005a, p.83).   

By constructing a custom tool, we can help students to extend the capacity of their working memory, since the 

knowledge the student must retain is reduced.  Nonetheless, the basic underlying notion is that a student is able to 

codify a construction and the concrete codification shape what the student can do when s/he will encounter a new 

situation related to the concrete that has been abstracted and codified with the use of custom tool.  

I shall provide an example to illustrate it: Suppose we need to construct the lines perpendicular to every side of a 

triangle in order to prove that they all coincide at the same point --the circumcentre. Then we need to construct 

the circumcenter of the triangles ABC and ADC (the triangles are formed when we draw the diagonal of the 

quadrilateral ABCD). A simple way to do this is to construct the midpoints on each of the triangle’s sides and 

then to construct the perpendiculars, repeating the process three times. Again, the same process will be repeated 

to construct the circumcentre of the triangles ABC, ADC. Another way would be to construct and implement 

sequential custom tools: (a) a custom tool for constructing a line perpendicular to a segment (“perpendicular line” 

custom tool) (b) a custom tool for constructing the circumcentre of a triangle (“circumcentre” custom tool).  

(Figures 3.3.a, b, c, d, e, f). The actions we need to accomplish the whole process are the following: (a) 

constructing the custom tool “perpendicular line” (b) implementing the custom tool to the sides of the triangle (c) 

constructing the custom tool “circumcentre”, encapsulating the previous construction (d) implementing the 

“circumcentre” custom tool to the triangles in the quadrilateral. 
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a  

b 

 
c 

 
d 

 
e 

 
f 

Figures 3.3 a, b, c, d, e, f. Construction and implementation of sequential conceptually-linked custom tools 

 

This way of construction is in a more abstract level than the previous way, as the student is pushed through the 

process to a reification of sequential nested objects.  

This action has a presupposition: the students to know in advance that a side of triangle is a segment or to 

understand the double role of the objects (van Hiele level 3). Moreover, the orientation of the sides may generate 

a cognitive obstacle, especially for students at van Hiele levels 1 or 2. This is because students very often fail to 

recognize the modification of the orientation of tools due to a lack of place way apprehension during the 

instrumental decoding process. The custom tools help them to simplify the construction process.  
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Figures 3.4 a, b, c, d. Constructing Baravelle spirals using the iteration process (Patsiomitou, 2005a, b, 2006g, 

2007b, e) 

 

As a result of the construction and application of a custom tool the direct perception of the user is attained with 

regards to the steps in the development of the construction pertaining to (see) (e.g., Patsiomitou, 2007a, 2014, 

2018a, b, 2019a): 1) the repetitions in the measurements or calculations of the areas of initial shapes 2) the 

developmental way of the construction of the figure  and 3) its orientation towards the sequential steps of the 

construction on the screen’s diagram or in successive pages of the same file. If we have constructed a custom tool 

which incorporates the use of iteration processes, in the case of Geometer’s Sketchpad the application of the 

custom tool will include the iteration at every new step during every new application of the custom tool (Figures 

3.4 a, b, c, d and Figure 3.5a, b, c). Figures 3.5a, b present the sequential steps of a construction of a Baravelle 

spiral which has been introduced by Chopin (1994). Mariotti (2000) declares that in a construction generated 

using dynamic geometry software “[…] the elements of a figure are related in a hierarchy of properties, and this 
hierarchy corresponds to a relationship of logic conditionality” (p.27). This is in accordance with what Jones 

(2000, p.56) points out that “dynamic geometry systems (DGS) would seem to have the potential to provide 

students with direct experience of geometrical theory, and thereby break down what can be an unfortunate 

separation between geometrical construction and deduction”. The following statement is something I strongly 

support as complementary to something I stated in a previous study (Patsiomitou, 2008d, Patsiomitou, 2018b, 

p.51):  

Custom tools are ‘alive’ encapsulated objects created in a DGS environment that operate as a referent 

point for organizing, retrieving and reversing information, and thus facilitating the anticipation and 

manipulation of the instrumented action schemes during an instrumental genesis process. A custom tool 

can become a medium for students’ cognitive development and to develop their abstract thought.  

In order to comprehend the advantages (and disadvantages) of the construction mode in the dynamic geometry 

software, it is necessary to examine the differences between it and the mode of construction using static means. 

This will allow us to compare the two modes. For instance, in using a straightedge with measurements, the mode 

of constructing a figure in the software (e.g a square of side a) could be different from the mode students use to 

construct it on paper.  
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Figure 3.5a. Constructing a Baravelle spiral 

(Patsiomitou, 2005a, 2007b, 2009b, in Greek) 
Figure 3.5b. Constructing a custom tool “Baravelle” 

(Patsiomitou, 2005a, 2007b, 2009b, in Greek) 

 
Figure 3.5c. Implementing the custom tool “Baravelle” to a side of the triangle ABC in order to construct a more complex 

structure (Patsiomitou, 2007b, 2009b, in Greek) 

 

Duval (1999) argues that “[…] Measures are a matter of discursive apprehension, and they put an obstacle in the 

way not only for reasoning but also for visualization.” (p.21).  By forcing students to think of ways of 

constructing an equal segment, this methodological weakness can thus provoke a cognitive conflict in students, 

and in so doing raise the level of difficulty.  

 

 

 

 

 
Figure 3.6a. Proposition 4 (Euclid’s Elements, Book 

II)(Patsiomitou, 2008c, p.198,  2009a) 
Figure 3.6b. Construction of a parametrical square and a 

parametrical rectangle custom tool)(Patsiomitou, 2008c, 

p.198,  2009a) 
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One such way would be to define side ‘a’ as an arbitrary segment on the screen and then use it as a radius of a 

circle in the construction. This construction method induces a different mental perception in the students with 

regard to construction in the software. In this way, the sides of the square cannot be modified from the vertices of 

the shape using the dragging modality. Instead, they depend on the modification of the initially defined segment 

a. The arbitrary segment ‘a’ could thus be confined as a non-collapsible compass to either the square or any shape 

whose a side is equal to ‘a’. This construction procedure depends on the students’ level of conceptual knowledge 

and cognitive abilities. As a consequence, the construction of the shapes depends either on segments a & b--both 

of which are arbitrary defined --and the relationship among them, or on the students’ geometrical knowledge of 

the relationships between and properties of shapes.  

Another important point about this construction is that students can use it to verify and to construct arguments, 

and in so doing overcome an epistemological obstacle which one frequently finds obscuring comprehension in 

students’ tests using static means (e.g., they mistakenly write that (a+b)
2
 =a

2
+b

2
) (Figures 3.6 a, b).   

During the process of learning mathematics, students face: 

1. Obstacles whose nature is cognitive and relates to the Geometry itself as a subject. For example  

 the student does not recognize the basic components of the figure, or does not know how the figure’s 

elements are defined  

 the student does not know what the sequence of actions is s/he has to follow to construct a figure  

 the student cannot formulate the sequence of actions that s/he has to follow to construct a figure 

In one way or another, the above relates to the student’s competence at translating between different kinds of 

representation (verbal, graphic, symbolic, etc). 

2. Obstacles whose nature relates to the technology used by the students. For example: 

 The student has not constructed usage schemes for the tools, namely how to use the tools  

 The student has memorized the way in which tools can be used, which leads him/her to take meaningless 

actions in the sense that their actions have no connection to logical reasoning.  

As Mesquita (1998) reports   

“[…] the nature of the illustration is the main obstacle in the problem […]. Even if children are accustomed 
to other kinds of representations, at least the ones associated with perspectives, textbooks almost 

exclusively use “objects” as external representations. In fact, the analysis of the pupils’ answers in our 

study suggested that once the obstacle created by the nature of the external representation was overcome, 

pupils made the necessary substitutions to solve the problem” […] For this reason, the nature of the 
external representation may become an obstacle to pupils understanding.” (p. 193-194). 

Obstacles can be seen as an opportunity for students to reflect on their own learning rather than allow this to be a 

barrier to achieve understanding of mathematical ideas. In my PME35 study “Theoretical dragging: a non-

linguistic warrant leading to “dynamic” propositions”, I introduced the notion of instrumental obstacle 

(Patsiomitou, 2011, p. 365): “I distinguished a few types of instrumental obstacles due to student lack of 

competence in instrumental decoding. I am going to describe two of them including snapshots of the research 

process (Patsiomitou 2011, p. 365).  

A. The students (mentioned in my study as M2, M3, M8, and M14) tried to construct a parallelogram using 

the Geometer’s Sketchpad. Most students at van Hiele level 1 were unable to understand the sequential 

apprehension of the tools selection, because they were unable to understand the logic of the sequence of actions 

or unable to link this logic with the theory of geometry. For example M14 (van Hiele level 1 at the pre-test) faced 

an instrumental obstacle which depended on her sequential apprehension of the objects to be used for the 

construction. She tried to construct a parallel line by selecting the line alone and then the menu command, which 

is to say she followed an irrational sequence of actions. At this point, she faced an instrumental obstacle and 

commended in an informal way on the non-activation of the software’s command (saying “[the command] is not 

illuminated again”). Subsequently, her interaction with the software, led to a cognitive conflict which helped her 

to apprehend the sequence of actions. Students of van Hiele level 2 developed the three kinds of apprehension 

along with the other members of the group: verbal apprehension emerged as a result of the previous action in the 

software, namely as a result of the interaction with the tools. For example, as a result of the previous action M2 

(van Hiele level 2 at the pre-test) states: “this will be a line parallel to segment AB”.  

B. The utilization of Euclidean definition of a segment presented level-2 students with instrumental 

obstacles in the DG environment. Thus: the group prompted student M8 (van Hiele level 2 at the pre-test) to 

select the segment in order to construct a perpendicular line. Among the definitions he knew was the definition of 
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a segment mentioned above. He therefore followed the definition of the textbook, decoding the verbal expression 

by selecting the segment and its endpoints. This action results in the command not being activated on screen, so 

he was unable to continue the process. This is to say a cognitive conflict occurred between what the students 

knew from the Euclidean geometry definitions they had learned and what they encountered in the DGS 

environment. Exactly the same thing happened to student M2 when she tried to select a segment to construct its 

midpoint. This action led the students to apply new rules inductively and to understand empirically something 

that we could define by answering the question “what is a ‘dynamic’ segment?” The ‘dynamic’ segment is a 

portion of a straight line which does not consist of points. Dynamic points can be placed independedly on the 

dynamic segment and move free with one degree of freedom on the path to which they belong. This means that a 

point placed on a segment has its two degrees of freedom transforming into one degree of freedom. In a second 

example, student M3 tried to select a point on the straight perpendicular line intersecting with the segment AB in 

order to construct the sides of an isosceles triangle. Trying to decode the verbal formulation “select a point on the 

straight line” in the DGS environment they were unable to do it on the dynamic line (or the dynamic segment) 

they had constructed. Student M3 thus faced a cognitive conflict which led him to understand that he had to select 

an independed point and put it on the line. This is exactly the time in which student set a new rule something we 

could define: the selection of a segment in a DGS environment occurs with the selection of its internal alone, 

which represents the set of points in the Euclidean definition”. Tools in a DGS environment can be transformed 

into psychological tools as Mariotti (2000) states:  

 “Tools have a twofold function, the former, externally oriented, is aimed at accomplishing an action; the 

latter, internally oriented, is aimed at controlling the action” […] The process of internalisation as 

described by Vygotskij may transform tools into psychological tools: when internally oriented a 

‘psychological tool’ will shape new meanings, thus functioning as semiotic mediator” (p. 35) 

3.3. Artifacts, Tools and Instruments 

Every tool used in a DGS environment is a digital artefact.  According to Cerulli (2004) “An artefact, for us, will 

be an object which has been in some way produced by humans. As a consequence every artefact for us is an 

object, but not all the objects are artefacts; for instance, a stone, in general, is an object but not an artifact” (p. 7). 

According to Norman (1991) “A cognitive artefact is an artificial device designed to maintain, display, or operate 
upon information in order to serve a representational function”. (p. 17). Kaptelinin (2003) states that cognitive 

artifacts (a) emphasize the cognitive, rational, information processing functions served by technologies used by 

human beings[…] (b)  are intended for individual, rather than collective use […] and (c) do not change 

individuals’ capabilities […] “ (p.831). Bartolini Bussi, Mariotti & Ferri (2003) in their article “Semiotic 

mediation in the primary school” discuss the primary, secondary and tertiary artefacts introduced by Wartofsky 

(1979). 

 “[…] Primary artifacts are those directly used in this production; secondary artifacts are those used in the 

preservation and transmission of the acquired skills or modes of action or praxis by which this production 

is carried out. Secondary artifacts are therefore representations of such modes of actions” (Wartofsky 1979, 

cited in Bartolini Bussi et al, 2003, p. 78)” 

Mariotti (2000) argues that “the functioning of an artefact in the development of meaning can be described taking 

into account the process of semiotic mediation which develops at different levels:  

• The pupil uses the artefact, according to certain utilisation schemes, in order to accomplish the goal 

assigned by the task; in so doing the artefact may function as a semiotic mediator where meaning 

emerges from the subject’s involvement in the activity.  

• The teacher uses the artefact according to specific utilisation schemes related to the educational motive. 
In this case, […]  the utilisation schemes may consist in particular communication strategies centred on 

the artifact” (p. 36). 

Vygotsky distinguishes between the function of mediation of technical tools and that of psychological tools                     

(or signs or tools of semiotic mediation) and offers a list of examples (Bartolini Bussi et al, 2003, p. 78): 
“language, various systems for counting, mnemonic techniques, algebraic symbol systems, works of art, writing, 

schemes, diagrams, maps, and mechanical drawings, all sorts of conventional signs and so on (Vygotsky, 1974, 

p.227, cited in Bartolini Bussi et al, 2003, p. 78) 

An ‘artefact’, or a tool with which the interaction takes place during the mathematical activity, is transformed 

into an ‘instrument’, according to the theory of instrumental genesis (Verillon & Rabardel, 1995). Many 
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researchers (Guin, & Trouche, 1999; L. Artigue, 2000, 2002; Trouche, 2003, 2004; Trouche, & Drijvers, 2014; 

Drijvers, 1999, 2003; Drijvers, & Trouche, 2008; Drijvers, Godino, Font, and Trouche, 2013; Patsiomitou, 2008a, 

2012a) have reported on the dual interactive process involved in instrumental genesis (Verillon & Rabardel, 

1995), which is a theoretical framework appropriate to describing the interactions occurring from the integration 

of technological tools into mathematics education. Firstly, it is essential to distinguish the notion of ‘artefact or 

artifact” from the notion of “instrument” (Rabardel, 1995, 2002). According to Drijvers, Godino, Font, and 

Trouche (2013): 

“An artefact is an–often but not necessarily physical–object that is used to achieve a given task. It is a 

product of human activity, incorporating both cultural and social experience. Think of a hammer, a piano, a 

calculator, or a dynamic geometry system on your PC. What exactly is the artefact in a given situation is 

not always clear: for example, in the case of dynamic geometry software, it is a matter of granularity if one 

considers the software as one single artefact, or if one sees it as a collection of artefacts, such as the 

construction artefact, the measurement artefact, the dragging artefact, and so on (Leung, 2008)”[...] 

Following Rabardel (2002), we speak of an instrument if a meaningful relationship exists between the 

artefact and the user for a specific type of task. The in many cases ongoing, nontrivial and time-consuming 

process of an artefact becoming part of an instrument in the hands of a user is called instrumental 

genesis.”(p.26)  

Instrumental genesis also takes place in a class of students who share the same objective. It is distinguished in 

two distinct processes the ‘instrumentation process’ and the ‘instrumentalization process’. Concretely Artigue 

(2000) in her study “Instrumentation issues and the integration of computer technologies into secondary 

mathematics teaching” states that instrumental genesis is directed towards: 

a) “the artefact, loading it progressively with potentialities, and eventually transforming it for specific uses” 

(it is called the instrumentalization process of the artefact) 

b) “the subject, and leads to the development or appropriation of schemes of instrumented action which 

progressively constitute into techniques which allow us to solve given tasks efficiently” (it is called the 

instrumentation process)” (p. 10) 

This dynamic active functionality of the tool presupposes the student to act on the tool (external use of the 

construction) thus the tool is shaped by the user during the instrumentalization process while the artefact 

simultaneously acts upon the subject (internal use of the structure) and the tool affects and shapes the users’ 
thought during the instrumentation process (e.g., Guin, & Trouche, 1999; Artigue, 2000; Trouche, 2004; Drijvers 

& Trouche, 2008; Patsiomitou, 2008a, b, c, d). Consequently, the student creates an accommodation of his older 

scheme about a concept while s/he accommodates a tool to investigate the concept through the use of the tool 

(Patsiomitou, 2008a, d). Rabardel (1995, 2002) calls the schemes “linked to the utilization of an artifact, 

utilization schemes” (p. 82). The need to use a tool leads the student during the instrumental genesis process to 

the development or appropriation of usage schemes and schemes of instrumented action. Rabardel defined two 

levels of schemes within utilization schemes:  

 “Usage schemes are “related to ‘secondary tasks’ […] corresponding to the specific actions and activities 
directly related to the artifact” (p.83)  

 “Instrument-mediated action schemes (or schemes of instrumented action) are related to ‘primary tasks’ 
[…] aiming at operating transformations on the objects of activity” (p.83). 

Moreover Rabardel reports the “instrument-mediated collective activity schemes, which “concern the 

specification of the types of action or activity, of the types of acceptable results etc. when the group shares a same 

instrument or works with a same class of instruments” (p.84). 

Through the instrumented action schemes, mathematical knowledge and knowledge of the tool are combined. As 

Trouche (2004, p. 286) notes: “A scheme has thus three main functions:  

 a pragmatic function (it allows the agent to do something),  

 a heuristic function (it allows the agent to anticipate and plan actions)  

 and an epistemic function (it allows the agent to understand something).” 

From Trouche’s point of view, “instrumental geneses are individual processes, developing inside and outside 

classrooms, but including of course social aspects” (Figure 3.7) (personal e-mail correspondence with Professor 

Trouche on April 4, 2008).  



  

[86] 

 

 
Figure 3.7. The schema of instrumental approach (Trouche, & Patsiomitou, cited in Patsiomitou, 2008, p. 362) 

 
In the Figure 3.7 a schema of instrumental approach is depicted which was constructed in cooperation with Prof. 

Trouche (personal e-mail correspondence with Professor Trouche on April 2, 2008, based on Trouche’s (2006) 

schema of instrumental approach) (Patsiomitou, 2008, p. 362).  Trouche supports that “an artefact is transformed 

thus through instrumental geneses, oriented by finalized actions, assisted by instrumental orchestrations, into an 

instrument”.   According to Artigue (2000),  

“An instrument is thus seen as a mixed entity, constituted on the one hand of an artefact and, on the other 

hand, of the schemes that make it an instrument for a specific person. These schemes result from personal 

constructions but also from the appropriation of socially pre-existing schemes.”(p.10)  

An instrument (Rabardel, 1995) combines both an artefactual, material structure (external result) and a 

psychological schematic structure (internal result) directly linked to the use of the artifact (e.g., Artigue, 2000; 

Trouche, 2003, 2004). This is in accordance with what Beguin & Rabardel (2000) state with regard to structures 

an instrument is made:  

“- psychological structures, which organize the activity;  

- artifact structures, which […] are the signs and symbols in the code used to think of and express 

solutions, along with the paper, pencils, erasers, and so on, that serve to produce and modify the diagrams” 

(p.179). (Figure 3.8). 

 

 

Figure 3.8. The mediating instrument (Beguin & Rabardel, 2000, p. 179) (an adaptation for the current study). 

During the learning process, students discuss their ideas and make inferences in relation to the diagrams’ 
dynamic transformations. The construction of schemes during the instrumental genesis process is what 

researchers consider when studying long-term uses of technology. According to Trouche (2003, 2004) a scheme 

of instrumented action constructed during the instrumental genesis process incorporates operational invariants 

(namely theorems-in-action and concepts-in-action) (Vergnaud, 1998). The notions of scheme, theorem-in action 

and concept-in-action are defined by Vergnaud (2009) as follows:  

 “A scheme is the invariant organization of behavior for a certain class of situations.  

 A theorem-in-action is a proposition which is held to be true; 

 A concept-in-action is an object, a predicate, or a category which is held to be relevant (‘concepts 

implicitly believed to be relevant’)” (p. 168). 
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Rabardel (2005) mentions Vergnaud (1996, 1998, 2009) and his theory of conceptual fields. A scheme comprises 

four different kinds of ingredients:  

-“anticipations of the goal to be reached, expected effects and possible intermediary stages;  

-rules of action along the lines of “if-then” which allow the sequencing of subjects’ actions to be 

generated;  

-inferences (reasoning) that allow the subject to calculate rules and anticipations based on information and 

the operational invariants system he/she disposes of;  

-operational invariants that pilot the subject’s recognition of elements pertinent to the situation and 

information gathering on the situation to be dealt with” (Rabardel, 2005, p.79).  

Docq and Daele (2001, p.200) point out, the two principles identified by Rabardel, which are linked to the 

production by the subject of his/her own using schemes for a new tool:  

 The ‘economy principle’ where the subject tends to choose the most familiar or the most available tool 

and to use it for as much actions as possible and  

 The ‘search for efficiency’ where the subject tends either to choose another tool or to use the proposed 

tool but in a way designers of the tool had not anticipated (informal use, or ‘catachreses’ according to 

Rabardel).  

This means that students many times use a tool in an economical mode or a catachresis mode. An economical 

mode of the tool is determined when a student tends to use a tool that previously has been used for a first task “to 

carry out a new task” (Rabardel, 1995, p.96). In other words s/he makes economy of the use of tools. The idea of 

‘catacresis’ in the words of Beguin & Rabardel (2000)  

“is employed in the field of instrumentation to refer to the use of one tool in place of another, or to using 

tools to carry out tasks for which they were not designed” […] catacresis [is]an indicator of the user’s 

contribution to the development and use of an instrument. The existence of catacreses reveals that the 

subject creates means more suited to the ends he or she is striving to achieve, and constructs instruments to 

be incorporated into the activity in accordance with his or her goals” (p.180).  

According to Martinez-Maldonado, Carvalho, and Goodyear (2018, p.5) “the theory of instrumental genesis 

has been built on activity theory (e.g., Leontiev, 1978; Engeström, 1987, 1990, 1999; Nardi, 1996) and the theory 

of situated cognition (Brown, Collins and Duguid, 1989, cited in Martinez-Maldonado, Carvalho, and Goodyear, 

2018, p. 5)”. Similarly, Kaptelinin (2003) states that instrumental genesis “is based on activity theory, which 

deals with purposeful interactions of active subjects with the objective world (Leontiev, 1978). These 

interactions, or activities, are understood as social, hierarchically organized, developing, and mediated by tools” 

(p. 832).  

Activity theory is a psychological theory that has been developed from the work of Soviet cognitive 

psychologists (e.g., Vygotsky, 1978; Luria, 1928; Kuutti, 1978; Leontiev, 1978). Engeström (1987, 1990, 1999) 

developed a version composed of the following interacting components: mediating artefacts or tools, subject, 

object, community, division of labour, and rules.  

 

 
A short description of these components has been given by Jonassen et al. (1999, p.161, cited in FitzSimons, 

2005, p.770): 
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 “The subject of any activity is the individual or group of actors engaged in the activity.  

 The object of the activity is the physical or mental product that is transformed.  

 Tools [or mediating artefacts] can be anything used in the transformation process. [...] The use of 

culture-specific tools shapes the way people act and think. [...] Tools alter the activity and are, in turn 
altered by the activity.  

 The activity consists of the goal-directed actions that are used to accomplish the object—the tasks, 

actions, and operations that transform the object” (Figure 3.9). 

 

 
Figure 3.9.  Engeström's model (1987) of activity theory (cited in FitzSimons, 2005, p.770) (an adaptation for the current study) 

 

Activity theory has been used in numerous papers as analytical tool. The theory focuses on how subjects 

transform objects and the mediation processes (Robutti et al, 2016, p.671). According to Nardi (1996) in her 

study “Activity Theory and Human-Computer Interaction”:  

“Activity theory proposes that activity cannot be understood without understanding the role of artifacts in 

everyday existence, especially the way artifacts are integrated into social practice (which thus contrasts 

with Gibson's notion of affordances). Cognitive science has concentrated on information, its representation 

and propagation; activity theory is concerned with practice, that is, doing and activity, which significantly 

involve ``the mastery of ... external devices and tools of labor activity'' (Zinchenko 1986)”. 

3.4. DGS Transformations in Geometry – “A Metamorphosis” 

A student can construct “dynamic” representations using the facilities offered by a DGS software. As I mentioned 

before, this means that the student can use transformation tools like rotation or reflection in addition to the 

Compass and Straightedge tool. Rotation, reflection, translation, dilation are isometries.  

“The first component of the word isometry is from the Greek word isos (isos means “equal”). The second 

is from the Greek work metron (metron means “a measure”) (Schwartzman, 1994, cited in (Webpage [21]). 

An isometry is a mathematical transformation that retains certain measurements: most importantly, it 

retains the distances between particular points. Any isometry f is a function 1-1 correspondence and, as 

such has an inverse f
 -1

, which is also an isometry” (e.g., Coxeter, 1961; Yaglom, 1962 cited in Webpage 

[21]).  

The focus on transformations is in accordance to Coxford & Usiskin (1975), who report that, “the use of different 

types of transformations in the curriculum simplifies the mathematical development (for example, the definitions 

of congruence and similarity cover all figures). Therefore, the proofs of many theorems are simpler and more 

accessible to all students” (Coxford & Usiskin, 1975, Preface, p.v). Furthermore, Coxford & Usiskin argue that 

“transformations are used because  

 They can be understood by students of widely varying abilities  

 They give a unifying concept to the geometry course  

 They provide assistance for future work in algebra and calculus” (Preface, p.vi)  

De Villiers (1997) in his study “The Future of Secondary School Geometry” discusses “Klein's famous Erlangen-

program (1872) which described geometry as the study of those geometric properties which remain invariant 

(unchanged) under the various groups of transformations” (p. 3). According to De Villiers (1996) geometry could 
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be classified according to this view as follows: “(a) isometries -[ transformations of plane figures which preserve 

all distances and angles (congruency)] (b) similarities -[transformations of plane figures where shape (similarity) 

is preserved] (c) affinities –[transformations of plane figures where parallelism is preserved] (d) projectivities – 

[transformations of plane figures which preserve the collinearity of points and the concurrency of lines] and (e) 

topologies –[ transformations of plane figures which preserve closure and orientability] “ (p.3).  

Whiteley (1999) in his study “The Decline and Rise of Geometry in 20th Century North America” argues that 

“Transformations’ are the key concept of geometry. Reasoning with transformations should be a central theme of 

our learning of geometry (Yaglom, 1968) […] Transformations and change within geometry are central to 
understanding geometry” (p.15) 

Transformations used by the students in the DGS environment can be distinguished through the following 

(Patsiomitou, 2014, p.30) (Figures 3.10a, b, c, d, e): 

 Transformation generated from the reflection, dilation, rotation, or translation of the object. Dragging on 

rotated (dilated, reflected, or translated) objects maintain the congruency and structural relationship 

between the elements of the construction. 

 Transformations generated from the utilization of the action buttons tools (for example, the hide/show 

action button, the link button, the movement button, or animation). 

 Transformations generated from the annotation of the dynamic diagram (for example, use of colours, 

formulations, and the trace tool). Moreover, the combination of transformations (e.g., the trace tool and 

dragging tool, the calculations and the dragging of the geometrical object’s points). 

 Transformations generated from the application of the custom tools. The application of custom tools 

reorganizes the external representation. The application of a custom tool (or the repetition of the 

application of a custom tool) is accomplished in a sequence of steps directly perceived by the user. 

Consequently, custom tools operate as a referent point for organizing, pursuing, and retrieving 

information.    

 Transformations generated from the synthesis of the dynamic diagram.  

 Transformations generated from the reconfiguration of the dynamic representation. 

 Combinations of transformations due to the synthesis of the software’s interaction techniques (Sedig & 

Sumner, 2006).  

 Complex transformations of the LVAR dynamic representations (Patsiomitou, 2008a, b). 

The diagrams’ reconfiguration through the complex synthesis of combinations of transformations can lead to a 

continuous interaction of discursive, visual and operational apprehension (e.g., Patsiomitou, 2008b, c, 2010, 

2011a, b, 2012a, b, 2013, 2014, 2018b). In the words of Dina van Hiele (1984) the diagram goes through a 

metamorphosis as a result of the manipulations of reconfigurations “followed by a phenomenological analysis 

and an explicating of its properties: it becomes what we call a [dynamic] geometric symbol” (Dina van Hiele in 

Fuys et al., 1984, p.221; Patsiomitou, 2018b). Transformations on prototype elements (e.g., points, line segments) 

lead the students to (1) visualize the objects that are constructed in the first phase of the process and (2) perceive 

a few properties of the figure’s symmetry initially at the visual level. It is observed that students connect, in their 

minds, representations that help them to respond to the next level, according to the theory of van Hiele. 

Therefore, dynamic geometric transformations are defined (Patsiomitou, 2014, p. 31):  

 

as the modification of the diagram on screen that result in the modification in one or more incorporated 

geometric objects. This could be an elicitation from the addition, cancelation of the diagram’s elements 

that cause the rearrangement of the diagram, its anasynthesis, its metamorphosis or even the modification 

of any object’s size or orientation. 

Moreover, a metamorphosis could be seen as we apply one or more interaction techniques, or their combination, 

on the diagram’s objects. The difficulty of students to imagine transformations on geometric figures during 

problem solving situations is based in the nature of geometrical concepts which Fischbein (1993) defined as an 

amalgam of: “abstract ideas on one hand and sensory representations reflecting some concrete operations on the 

other” (p. 14). In this point we are limited to refer the effects of the construction through rotation in a DGS 

environment. 



  

[90] 

 

 
 

Figure 3.10a. Reflection of a segment for the 

construction of an isosceles triangle (Patsiomitou, 

2009b, d, in Greek) 

Figure 3.10b. Reflection and trace of a segment for the 

construction of a rhombus (Patsiomitou, 2009b, d, in Greek) 

 
Figure 3.10c. Synthesis of more complex figures through rotation aiming to introduce similarity theorems  

(Patsiomitou, 2009b, d, g, in Greek) 

 

 
Figure 3.10d. Visual proof through reconfiguartion of the diagram (Patsiomitou, 2009b, e, in Greek) 

 

 
Figure 3.10e. Transformation as a synthesis of action buttons in the animated tesselation- a metamorphosis 

(Patsiomitou, 2009b, f, h, in Greek) 
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We follow these next steps to create a rotation of an object in Sketchpad v4 (e.g., Patsiomitou, 2008a): to begin 

with, we select the point which will act as the center for rotation and define it on the transform menu as ‘mark 

center’. Then we select the object we would like to rotate based on an angle, choosing the specified/fixed angle 

(for example 90
o
). When the command runs, a new object is created which is a rotated image of the original 

object. The rotation of the object for 90 degrees in the software leads the students to conceptually grasp the 

meaning of a) perpendicularity/a right angle; b) congruent shapes. This transformation has a significant impact: 

during the instrumental approach, the student structures a utilization scheme of the tool, and consequently a 

mental image of the functional/operational process of rotation, since any modification/ transformation of the 

initial figure (input) results in the modification/transformation of the final figure (output).  

As mentioned above, the transformation of an object on screen using dragging can be combined with other 

techniques to cause a combination of transformations on screen (e.g., Patsiomitou, 2008b, c, 2010, 2012a, b): (a) 

dragging and tracing objects (b) dragging and measuring objects (c) dragging and animating objects  (d) dragging 

a transformed object or its image (by rotation, translation or reflection) or more complex such as (a) dragging, 

tracing and animation and (b) dragging, measuring and rotating  etc. I will discuss the different kinds of 

transformations and transformational results that ensue from implementing dragging on screen (Patsiomitou, 

2019b, p. 43-44):  

 Dragging and tracing of a geometric object (for example a point, segment or line) 

Dragging a point on screen results in the transformation of its position and the simultaneous appearance of traces 

on screen tracking the path the point has followed or the tracks that a line passes due to dragging transformations. 

This action reveals in the determination of a basic property of the diagram that cannot be directly perceived from 

the diagram in its hybrid form, or a property of the diagram that remain stable and unaltered.  

 Dragging and measuring (or calculations) the geometric object. 

Dragging a point on screen leads to a change in the measurements of the object, which we have chosen to display 

and in its calculations. In this case, the measurements change, but the calculations may do one of two things: they 

may remain unchanged, indicating a stability that demonstrates the validity of a theorem or general theoretical 

approach (a proposal or a confirmed porisma--meaning a conclusion or an inference) or they may change, 

allowing the user to observe and draw conclusions from empirical results. 

 

 

• Dragging and animating, or dragging, animating and tracing objects 

A point on an object is dragged--for example, the vertex point of a triangle to which a point on one side is 

connected with motion. The animation of the diagram and the simultaneous dragging allow us to understand a 

condition which is not defined during the diagram’s structuring process. For example, it may make us aware of a 

theoretical limitation that has not been determined or established before, but which appears on the diagram when 

it is dragged. This condition leads into an investigation of the validity of a theorem or proposal.

Transformations in geometry are mentioned by many researchers as ‘geometric functions’ (e.g., Hollebrands, 

2003, p.57; Steketee & Scher, 2016, p.450; Patsiomitou, 2006c, p.1072, 2019, p.16). Hollebrands (2003) defined 

transformations as follows: 

“Transformations are special functions because they are both one-to-one and onto. Understanding that a 

transformation is one-to-one involves knowing that if you have two different elements in the domain (two 

points A and B such that A  B) then the output for A under the transformation will be different from the 

output of B under that same transformation (T(A)  T(B) where T represents a transformation). 

Understanding that a transformation is onto involves knowing that every element in the range (every point 

Q in the plane) has a corresponding element in the domain (a point P in the plane) such that T(P) = Q”. (p. 

57)

Steketee & Scher (2016) also report dependent and independent variables, denoting the geometric 

transformations of objects in a DGS as “geometric functions” and arguing that:

“Cognitive scientists tell us that students build abstract mathematical concepts by connecting those 

concepts to the physical world through conceptual metaphors (Lakoff and Núñez 2000; Radford 2012), 

such as the metaphor that numbers are points on a line. Geometric functions are based on a similar 

metaphor—that geometric variables are movable points. […] This metaphor enables students to use 

dynamic software to create a point (the independent variable), construct another point (the dependent 

variable) that depends on the first, and drag to observe the resulting covariation and relative rate of change. 

In other words, a geometric function relates the preimage point—the independent variable x—with its 

image—the dependent variable that is a function of x.” (p. 450) 
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The iteration facility in Geometer’s Sketchpad environment is a transformation process very crucial for the 

construction of recursive processes. In many previous studies, I have reported ways of constructing fractals using 

the iteration transformation. For example, for the needs of my study “DGS ‘custom tools/scripts’ as building 

blocks for the formulation of theorems-in-action, leading to the proving process” (Patsiomitou, 2006d, in Greek) 

I created two custom tools which combined “beauty” with iteration processes, using the Geometer’s Sketchpad 

software. The result on screen was “beautiful” and “alive”.  

The Ancient Greeks, particularly the Pythagoreans, believed in an affinity between mathematics and beauty, as 

described by Aristotle “the mathematical sciences particularly exhibit order, symmetry, and limitation; and these 

are the greatest forms of the beautiful” (Sinclair, 2004). According to Sinclair (2004, p.262) many 

“mathematicians (e.g., Hadamard, 1945; Penrose, 1974; Poincaré, 1913), as well as mathematics educators (e.g., 

Brown, 1973; Higginson, 2000) have drawn attention to some more process-oriented, personal, psychological, 

cognitive and even sociocultural roles that the aesthetic plays in the development of mathematical knowledge”. 

Sinclair (ibid.) declares that “they associate the aesthetic with mathematical interest, pleasure, and insight, and 

thus with important affective structures…”. 

In my ATCM study “Custom tools and the iteration process as the referent point for the construction of 

meanings in a DGS environment” (Patsiomitou, 2008d), I have done a detailed description of the design process 

of the custom tools used for the construction of activities in the linked multiple pages facilitated by Geometer’s 

Sketchpad v4 software. My aim was to increase my students’ aesthetic perception and sensibility, in parallel with 

the construction of mathematical meanings. The resulting successive pages could be compared with an alive, 

vivid, section of a textbook (Patsiomitou, 2005a, 2018b, 2019a, b). The first pupils which played with the spirals 

and investigated their properties were my children.  

 

 
a 

 
b 

  

 
c 

 
d 

Figures 3.11a, b, c, d.  Construction and implementation of the custom tools (Patsiomitou, 2006d, 

e, ;2008d, p.182, 2009) 
 

The rearrangement demonstration occurs on the right triangle whose vertical sides are proportional to the original 

right triangles’ sides in a ratio of 2:1. Rearranging the construction, students could be helped as new information 

is highlighted otherwise difficult to understand. Prior to constructing the tool, I also measured/calculated the 

areas and lengths of the sides of the initial construction. Although the final result of the two methods for 

constructing the initial right triangle including the rearrangement appear identical, they lead to ways of 

constructing a custom tool whose application provides different results in both computational and constructional 

(scheme) terms.  



  

[93] 

 

For example applying the tools three times in succession produces the results in Figures 3.11 b, d. This means 

that as we can see in the illustration, the areas of the shapes steadily decrease (Figure 3.11b) or increase                      

(Figure 3.11d). Concretely, applying the tool using the appropriate method for constructing it, we take different 

constructional, representational results:    

 In method A, the longer vertical side of the initial triangle becomes the hypotenuse of the next 

right triangle in the sequence. Meaning the sequence of the measurements and calculations that 

emerges is descending.   

 In method B, the hypotenuse of the initial triangle becomes the longer vertical side of the next 

right triangle in the sequence. Meaning the sequence of measurements and calculations that 

emerges is ascending. 

 

 
Figures 3.12a, b. The Al-Lu-The1 spiral (Patsiomitou, 2006d, e, 2008d, p.182-185) 

 

If we iterate the initial points of the construction of the tool we can take different results relating to the 

construction the measurements and the calculations. As it is well known for someone who uses the Sketchpad 

software the result of the process of iteration (Steketee, 2002, 2004; Jackiw, & Sinclair, 2004) can be 

accompanied with the construction of the tables that repeat the process of initial measurements and calculations 

in dynamic linking with the diagram, thus increasing (or decreasing) the level of the process of iteration while the 

software adds (or removes) the next level of measurements (or even calculations), whereas in the first column of 

the table, the sequence of the natural numbers is presented (e.g., Patsiomitou, 2005a, 2007a). In that way through 

this operation, the environment of the software promotes the exploration of the sequences. The iteration process 

by functioning thus has integrated or embodied the meaning of sequence while there is a direct connection 

between the user’s perception and the abstract mathematical meaning. As a result of the construction and 

application of the custom tool as much as the process of iteration the direct perception of the user is attained in 

regard to the steps in the development of the construction pertaining to (Patsiomitou, 2007a):  

 the repetitions in the measurements or calculations of the areas of initial shapes  

 the developmental way of the construction of the shape and  

 its orientation towards the sequential steps of the construction on the screen’s diagram or in 

successive pages of the same file.  

The process of animation can produce the changes in the tabulated measurements (calculations) that allow the 

user to examine the dynamic process. Figures 3.12a, b illustrate the construction of the tables that repeat the 

process of initial measurements and calculations of the ascending (or descending) sequence in dynamic 

connection with the shape. In the software, via the process of iteration we have the potential of the constructions, 

thus becoming more complex being in theory rendered inductively to infinity. This function of the software also 

constitutes a certain crucial and essential particularity, while the construction with a compass and a straightedge 

as static tools of geometry has a beginning and an end.   

 

 

                                                 
1
 “Al-Lu-The” is an abbreviation generated from the names of my children (Alexandros-Loukia-Theano)   
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3.5.  Hybrid-Dynamic Objects   

Students face difficulties when they explore mathematical objects, no matter if they are in a static or dynamic 

environment. They have to mentally operate on the abstract object, even if it is visually supported by a computing 

environment. This is what Laborde (2003) investigates, interrogates or (probably) asks herself: “but if the thought 

experiments on abstract objects are not available (as it is often the case for learners), a crucial question about 

learning is whether such environments could favour an internalization process of the external actions in the 

environment”. In my studies “From Vecten’s Theorem to Gamow’s Problem: Building an Empirical 

Classification Model for Sequential Instructional Problems in Geometry” (Patsiomitou, 2019a) and “Hybrid-

dynamic objects: DGS environments and conceptual transformations” (Patsiomitou, 2019b) I present a new kind 

of objects in DGS environments the “hybrid-dynamic objects”. 

A. To explain my thoughts I presented a few examples form Algebra, Calculus and Geometry which 

indicate how the term “hybrid” is reported in the international literature.  Many researchers use the word “hybrid” 

to denote something that does not obviously belong in a given class of objects, or a mixed entity composed of 

different elements. Kaput (1991) for example revisits the problem that Gauss phased to sum the integers from 1 

to 100, “exploiting a convention for expressing generality in mixed numerical and algebraic notation” (p.68). 

Kaput mentions a “hybrid sum” (numeric and algebraic) which is illustrated using the powerful mode of another 

“hybrid sum” (figurative and symbolic) (Figure 3.13a, b). 

 

 

 
Figure 3.13a: A convention for expressing 

generality in a “hybrid sum” (a mixed numerical and 

algebraic notation) (Kaput, 1991, p.68) 

Figure 3.13b: A convention for expressing generality in a “hybrid sum” (a 

mixed figurative and symbolic notation with an array of rods) (Kaput, 1991, p.65) 

 

Verillon & Andreucci (2006) in their study “Artefacts and cognitive development: how do psychogenetic 

theories of intelligence help in understanding the influence of technical environments on the development of 

thought?” report Rabardel (1995) who argued that during instrumental genesis “the resulted instruments are 

actually hybrid entities, on the one part are psychological and on the other part artefactual” (p.12). Morgan et al. 

also mention the representational hybrid nature of the Turtleworlds environment, because it behaves like a hybrid 

between Logo and Dynamic Manipulation systems due to the ‘variation tool’ (Morgan et al. 

https://www.itd.cnr.it/telma/docs/Rep_Del_Draft3.pdf, p.7). Cerulli (2004) also mention “a hybrid language to be 

used to bridge the natural language with the mathematical one” (p.36). As Cerulli states “the evolution of 

meanings is based on the idea of deriving, from a used instrument, hybrid signs which refer both to the practice 

with the instrument and to the sphere of theory of mathematical knowledge” (p. 142).   

B. Why did I term these objects “hybrid-dynamic”?  

If we use a parameter “a” to define a function y=ax (or the function y=ax
2
 etc.) and represent it in a Dynamic 

Geometry System (DGS), the family of representations we take as we animate the parameter could result in the 

perception of an empirical generalization of the concept of function. The traces of the object y=ax
2
 as we animate 

the parameter “a” provide the path through which the function is transformed (Figures 3.14 a, b, c, d). Then we 

can transform the parameter, but the result of the parameter’s alterations affects the linked graphic 

representations, providing a family of objects with the same properties, which can help students, achieve a deeper 

understanding.  

These traces are not a static mathematical object. They are not dynamics, as they cannot be dragged, but neither 

are they static. So what kind of object are the lines the traces leave on screen? Traces play an important role in 

helping students understand the transformations of parameters and their impact on the graphic representations. I 

have denoted them as hybrid objects (Patsiomitou, 2019a, p. 15).  

For this I introduced the meaning of 
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 hybrid object (Patsiomitou, 2019a, p. 15) to denote an on-screen geometric object that is intrinsically 

dynamic, but remains untransformed /unaltered on screen, even though dynamic dragging is applied or 

implemented on it. This situation comes about because of the hybrid object’s dependence from its parent 

objects. Briefly, a hybrid dynamic object is something that does not obviously belong to either the static or 

dynamic world. It is an object created in a DGS by means of complex transformations (or on which 

complex transformations can be performed); something between a static and a dynamic object; an object 

that is intrinsically dynamic, signifying a static behavior which is rendered dynamic by to the users’ 
actions. 

 

  

Figure 3.14a. Creating a function, also its derivative 

using parameters and plotting them 
Figure 3.14b. Tracing objects by animating 

parameters 

 
 

Figures 3.14 c, d. Snapshots of families of functions using the animation of parameters (e.g., Patsiomitou, 2009b, 

2019b, p. 34) 

 
In other words a hybrid object is the result of an effect on a dynamic object on screen. As a consequence it 

is loaded with intensive interactive features.  

 hybrid diagram (Patsiomitou, 2019a, p. 15) in the DGS environment to denote the untransformed on-

screen diagram, which has been created to stay hybrid and become dynamic if we implement a 

transformation on its parents. The diagram is intrinsically dynamic, but a user could use it as an image or a 

static diagram, if s/he does not know how to make it dynamic. It is important to point out at this point that: 

the transformation of objects in a DGS environment is dependent on whether these objects have been 

defined, as hybrid objects or not. 

C. How did I conceive the notion?  

I became aware of the notion of hybrid-dynamic objects since 2005, when I started experimenting with 

parameters and parametrical constructions in Sketchpad. For the needs of my study “Transformations on 

mathematical objects through animation and trace of their dynamic parameters” (Patsiomitou, 2006a, in Greek), 

I instrumentally decoded Vecten’s theorem (Figures 3.18 a, b) using parameters (Patsiomitou, 2006a, in Greek, 

pp. 1270-1273). I have considered Vecten’s theorem to be particularly interesting since 1985, when I investigated 

(in paper-pencil environment) all the sub-problems (reported in “Jesuit Geometry” a translation in Greek, p.774, 

published in Annales De Gergonne, 1816, vol.VII, p.322) with great interest.  
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In my study “From Vecten’s Theorem to Gamow’s Problem: Building an Empirical Classification Model for 

Sequential Instructional Problems in Geometry” I describe a few sub-problems of the Vecten’s theorem and their 

solution (Patsiomitou, 2019a, b, p.12-14) which I also report in the current study.  

Vecten’s Theorem:  Construct a triangle ABC. Construct two squares ABDE, ACIT, externally on the sides AB, 

AC of the triangle ABC respectively. Prove that  

I. If M is the midpoint of the side BC then AM= ET/2 (Figure 3.15a) 

II. AM is perpendicular to ET. (Figure 3.15a) 

III. If O is the midpoint of ET then AO=BC/2. ( Figure 3.15b) 

IV. AO is perpendicular to BC. (Figure 3.15b) 
V. If S is the fourth vertex of the parallelogram EATS then the sides CD and BI are congruent and 

perpendicular to BS and CS respectively. (Figure 3.15c) 
VI. If G is the midpoint of the segment DI, then the BGC triangle is a right and isosceles triangle. (Figure 

3.15d) 
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Figure  3.16.

 

A diagram for the Vecten’s sub-problems mentioned above (ABC is a right triangle) (Patsiomitou, 

2019a, p. 14).
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If we drag the lines AB, AC until they become perpendicular (Figure 3.16) then a student has to prove that the 

lines AE, AC belong to the same line, something that is omitted /or dismissed by the students. This part of the 

proof is highlighted in Euclid “Elements” (e.g., Proposition I.47) (see for example Fitzpatrick, 2007, p. 46). 

 
Figure 3.17. Screenshot from the Proposition I.47 (Fitzpatrick, 2007, p. 46) 

 
In the Figures 3.18 a, b, I have constructed the sides AB=a, AC=b as well as the angle <BAC=f by using 

parameters in order to investigate more deeply the properties of Vecten’s theorem (Patsiomitou, 2006, in Greek, 

pp. 1270-1273; Patsiomitou, 2019 a, b). The animation of all parameters is a direct object manipulation which 

transforms every part of the object. This leads to a kind of algebraic geometry, which takes the parametric sides 

and angles as input and provides a continuous transformation of the diagram as output (Patsiomitou, 2006a, 

pp.1270-1273, in Greek). According to Leron & Paz (2006) in their work “The slippery road from actions on 

objects to functions and variables”  

“to be specific, the metaphorical mapping would map action to function, object (or the state of the object) 

to variable, and the initial and final state of the transformed object to the function’s input and output.” 

(p. 128)  

 

 
 

Figures 3.18 a, b: Screenshots of the sequential diagrams of Vecten’s theorem in Sketchpad produced by 

animating the parameter of angle (Patsiomitou, 2006a, p. 1270-1273, in Greek; Patsiomitou, 2019a, p. 15-16) 

 

A student’s action on parameters leads to a transformation of objects. The students can also investigate a concrete 

situation of the hybrid-dynamic representations, choosing to assign concrete magnitudes to the parameters                  

(Figure 3.18 a, b). Moreover, the user can directly perceive infinite alterations of the same figure on screen 

(Patsiomitou, 2006, p. 1273, in Greek) and conceive of an abstract mathematical object. This mode of 

construction is completely different from the simple construction mode which uses dynamic tools, because the 

student consciously perceives the modification of the dynamic objects on screen. We can thus speak about 

functional geometry and through the conservation of figures’ properties about the concept of geometric function 

(Patsiomitou, 2006, p. 1273, in Greek).   

In the Figures 3.18 a, b the whole representation is a hybrid diagram, meaning it is completely determined by its 

parameters and cannot be moved if we drag any point on it. The diagram has intrinsically dynamic properties, but 

is different from a dynamic diagram created using the ‘Construct’ or ‘Transform’ menu in that. It can only be 
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altered if we animate its parameters, supporting a visualization of infinite occasions of dynamic objects which 

maintain the same structure but they are modified in a mereologic, optic and place way in the words of Duval 

(1999). 

D. Is segments’ addition a hybrid-dynamic object in DGS using parameters?  

In my study “Hybrid-dynamic objects: DGS environments and conceptual transformations” (Patsiomitou, 2019b) 

I explain through examples how the addition of segments in a DGS environment is a hybrid-dynamic object. 

Concretely I report the following:  
A segment (or a line) in the Euclidean geometry is a geometrical object. We can create segments in a DGS 
environment, then measure their length and calculate their sum. We can also use the symbol “+” to represent the 
process of segments’ addition, leading to the concept of segments’ sum in geometry, in a similar way that Davis 
et al. (1997, p.134) report its pivotal role in algebra. Davis et al. mention that  

“The symbol 4+2 occupies a pivotal role, as the process of addition (by a variety of procedures) and as the 
concept of sum. Soon the cognitive structure grows to encompass the fact that 4+2, 2+4, 3+3, 2 times 3, 
are all essentially the same mental object” (Davis et al., 1997, p.134). 

In a previous study I defined the meaning of dynamic segment as follows (Patsiomitou, 2011): 
“The ‘dynamic’ segment is a portion of a straight line which does not consist of points. Dynamic points 
can be placed independently on the dynamic segment and move free with one degree of freedom on the 
path to which they belong. This means that a point placed on a segment that intrinsically is designed with 
two degrees of freedom is transformed to a segment object with one degree of freedom” (p. 365).   

All geometrical or algebraic objects in the Geometer’s Sketchpad environment operate in “a dependency diagram, 

a directed acyclic graph” (Jackiw & Finzer, 1993, p.295): The ‘given’ objects in a construction are the ‘parents’ 
and they are free to move on the screen, in contradiction to dependent objects which are the ‘children’ of the 

objects on which they depend in some fashion, that are constrained. According to Sketchpad Help System: 

 “The objects you can create in Sketchpad fit into several general categories. Some of the objects are purely 

geometric entities—points, lines, rays, segments, circles, arcs, interiors, loci, and some iterations. Other 

objects are either numeric or algebraic entities—measurements, parameters, coordinate systems, 

calculations, and functions. And finally, some objects in Sketchpad—captions and action buttons—are 

primarily used in descriptions, explanations, and presentations”. 

One way to analyzing students’ formulations during their interaction with dynamic geometry transformations on 

dynamic or dynamic-hybrid objects is to consider those formulations through the Action-Process-Object-Schema 

(APOS) theory lenses, a theory developed from Dubinsky and his colleagues (e.g., Dubinsky, 1988, 1991a,b; 

Dubinsky & McDonald, 2001), based on the theory of reflective abstraction (Piaget, 1970). Concretely, according 

to APOS theory (Cottrill et al., 1996; Dubinsky & McDonald, 2001) when a student constructs mental Actions, 

Processes and Objects, then s/he organizes them to mental Schemas to understand a mathematical concept and 

solve the problems (APOS theory). According to APOS theory, in order to understand a mathematical concept a 

student must manipulate physically or mentally a transformation on mental or physical objects, in other words an 

“Action” on objects, as a reaction to stimuli perceived from the external environment, focusing on the way that a 

procedure thus could be used as an input to another procedure; actions on objects then can be interiorized to 

become a Process, which accordingly can be encapsulated to become Objects and then can be organized to 

become Schemas. According to Cottrill et al. (1996):   

“An action is any physical or mental transformation of objects to obtain other objects. It occurs as a 

reaction to stimuli which the individual perceives as external. It may be a single step response, such as a 

physical reflex, or an act of recalling some fact from memory. It may also be a multi-step response, by then 

it has the characteristic that at each step, the next step is triggered by what has come before. When the 

individual reflects upon an action, he or she may begin to establish conscious control over it. We would 

then say that the action is interiorized, and it becomes a process” (Cottrill, et al, 1996, p. 171, in Davis, Tall 

and Thomas, 1997, p. 133). [authors italics…] 
Making a review on the briefly reported studies it is obvious that many researchers have mentioned the meanings 

of Action-Object-Process-Schema, to describe the phenomena observed in the area of Algebra and Calculus. Can 

these meanings be implemented in the mathematical area of Euclidean or Dynamic geometry? What is their 

impact in the reification process? Hollebrands (2003) investigated the nature of students’ understandings of 

geometric transformations in the context of “The Geometer’s Sketchpad” environment and she analyzed students’ 
conceptions of transformations as functions, using APOS theory. Hollebrands (2007) also addressed the way 

students interpret objects created with the use of the dynamic program when they are learning about geometric 
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transformations. As Hollebrands argued “the nature of the abstractions that students made as they worked with 

technology seemed to be related to their understanding of transformations and the tool” (2007, p. 190).  

Generally speaking, when we solve a problem in geometry, we construct a figure in a few steps and in such a way 

that a procedure can be used as an input to the next--and almost always sequential--procedure. Students construct 

mental actions, as they engage in problem solving, performing transformations on objects either explicitly or 

from memory. The student or the teacher can perform an operation mentally and execute it on the computer 

screen. This process creates objects which “is based in a reification of mathematical objects and relations that 

students can use to act more directly on these objects […] a new experiential mathematical realism” (Balacheff & 

Kaput, 1997, p. 469-470).  

As I write in my study “Hybrid-dynamic objects: DGS environments and conceptual transformations.” 

(Patsiomitou, 2019b) “The case of the addition of two segments in geometry represented by two separate objects 

identified by two letters, one for each edge of each segment (for example segments AB, CD) is more complex, 

because it includes both a figural and an algebraic entity. The figure of the segment which represents a concrete 

real “thing” is the figural part; the number which is the measure of the segments’ length (or the distance of the 

endpoints of the segment) represents the algebraic part.  In addition, the students have to represent the addition 

of segments with a concrete segment and then represent this action by means of a symbolic representation--

namely, the way these segments are defined by letters (AB, CD etc.). The symbol “AB+CD” possesses a central 

role as the process of segment’s addition and as the concept of segments’ sum. The cognitive structure encloses 

the same mental objects (e.g. CD+AB= FG+EF if FG=CD and EF=AB). As a result, the construction, 

measurement and calculation of segments in a DGS environment differ from the same process in a static 

environment. Then, we can define an elementary geometrical procept (Figure 3.19a, b, c).  

It is thus clear that the sum of the segments as an object derived from calculations in a DGS environment is an 

algebraic, geometric and “dynamic” entity. I shall break down the process of adding two segments in the DGS 

environment into three phases:  

Phase A. If we create two segments in the Geometer’s Sketchpad and then measure and calculate their 

sum, the actions on mathematical entities at one level become mathematical objects in their own right at another 

level (Piaget, 1972a, b). 

 

Figure 3.19a. The addition of two segments in a DGS (Patsiomitou, 2019b, p. 38) 
 

The calculation of segments is a process becoming reified as an object, which includes a few procedures, in 

the words of Gray & Tall (1991, 1994) who distinguished between “the specific procedure as an explicit 

sequence of steps and the input-output process where different procedures can have the same input-output”. 

Selecting the calculation command displays the calculator with which we can sum the segments by selecting the 

measurements of each, as illustrated in Figure 8a below. 

 

 
 

Figures  3.19b, c. The concept of sum of two segments in a DGS. (Patsiomitou, 2019b, p. 39) 
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To construct objects in a DGS environment, we can use first-order parental objects, second-order child 

geometrical objects, and auxiliary objects. I shall try to list in the table below all the actions and symbols 

involved in the process of adding the segments, the sequence of actions and objects involved. I shall also report 

the theoretical construct and try to anticipate how students will understand and conceive of the process and the 

answers they will produce. Generally speaking, if we construct a segment using the tools provided by the DGS 

software, this concrete segment is the parent object and the measurement the child object. In the previous 

example, points F, G cannot be altered by dragging due to their dependence on their parent objects. Dragging 

points A, B affects the position of point F (just as dragging points C, D affects the position of point G).  Students 

can understand that “if we modify segment AB, segment EF will be modified also”.  

In the Table 3.1 I have done a description with regard to the objects and the actions. The anticipated answers of 

students during the interaction with the process lead to the following result: The transformation of all the objects 

mentioned above, leads the students to conceive the unaltered properties of the mixed entity. They can express a 

concept-in-action or theorem-in-action, through the reification of mathematical objects and the interiorization of 

the process of dynamic movement, counting and dragging the segments: this is a procept-in-action, meaning a 

process which leads to a concept-in-action or theorem-in-action. 

 

Table 3.1. Actions and symbols involved in the process of adding the segments 

(Patsiomitou, 2019b, p. 39) 

Actions Objects A 

theoretica

l view in 

Euclidean 

Geometry  

An anticipation of a 

student’s answer in 

interaction with the dynamic 

diagram 

Construction of the 

segments (a procedure 

which produces the 

figural part of the 

objects).  

Inputting two 

segments of 

unequal (or 

equal) length. 

P1 

P2 

 

-The segments can become 

almost equal if we drag them.  

-We can change segment’s 

orientation on screen.  

Definition of segments 

using letters (for example 

AB, CD) 

Symbols used to 

define the 

objects (an 

elementary 

procept to the 

concept of equal 

or unequal 

segments)  

P3 

P4 

P5 

-The distance between the 

endpoints of a segment is 

affected if we drag them. 

Construction of a line Ex  An auxiliary 

geometrical 

object (an 

elementary 

procept) 

P6 

P7 

 

-We can change the 

orientation of the line and we 

can place multiple points on it 

which can be dragged in two 

directions.  

Construction of two 

sequential segments EF, 

FG on the line Ex, by 

constructing circles (E, 

AB) and (F, CD) with 

centers E, F and radius 

AB, CD, respectively.  

 first order 

parental 

geometrical 

objects (A, B, 

C, D, AB, CD)  

 auxiliary 

geometrical 

objects (line Ex 

and the circles)  

 second order 

child 

P8 

P9 

P10 

P11 

-If we drag the endpoints of 

the segment AB, then segment 

EF will also be transformed.  

-If we drag the endpoints of 

the segment CD, then segment 

FG will also be transformed. 

-If we try to drag the point F 

(or G) it cannot be dragged. 
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geometrical 

objects (EF, 

FG, EG)  

(Figure 8b) 

Measuring the segments 

AB, CD, EF, FG, EG. 

Realizing the 

measurements 

are algebraic 

objects linked to 

the geometric 

objects 

mentioned 

above. 

 

P12 -We can measure the lengths 

of the segments 

- If we drag the segment AB, 

the measurement of the 

segment AB will be 

transformed as well as the 

measurement of the segment 

EF.   

-The measurements of the 

segments AB, EF are 

congruent.  

Calculating the sum of 

the segments EF, FG.  

A complex 

dynamic object  

  

P13 -We can calculate the sum of 

the segments using a 

calculator which results to an 

accurate calculation.  

A symbolic expression of 

the segments’ sum  

(for example 

EG=EF+FG=AB+CD=10

,27 or 11,85) 

 

A mixed entity: 

a hybrid object 

with numeric, 

algebraic, 

geometric, 

figurative, 

symbolic and 

dynamic 

characteristics. 

 

P14: 

Betweenn

ess 

theorem 

P15: 

(Addition 

theorem) 

-As we modify the parental 

objects, the segments’ length, 

measurements, and dependent 

calculations are modified, too, 

while the calculated result of 

the segments’ addition 

changes accordingly. 

 

 

The theoretical answers of Euclidean Geometry mentioned in the Table 1 are the following (Coxford & 

Usiskin, 1975): 

P1: If two distinct points are in a plane, the line determined by these points is a subset of the plane. (p. 20) 

P2: Two points determine a line. (p. 21) 

P3: To each pair of points there corresponds a unique real number called the distance between the points. (p. 22) 

P4: Suppose A and B are points, then: (a) AB≥0, (b) AB=0 if and only if A=B and (c) AB is also the distance 
between B and A, that is AB=BA. (p. 24) 

P5: The segment with endpoints  A and B is denoted by AB and is the set whose elements are distinct points  A, B 

and all points between A and B. (p.26)  

P6: A line is an infinite set of points (p. 22)  

P7: A line is a set of points and contains at least two distinct points. (p. 18) 

P8: A circle is the set of all points in a plane at a fixed distance (the radius) from a fixed point (the center). 

(p.180)  

P9: Two radiuses of the same circle are congruent segments. 

P10: Congruent radiuses determine congruent circles.   

P11: Points E, F, G are collinear since they are all on line Ex. (p.19) 

P12: The midpoint of a segment AB is the point M in AB with AM=MB (p. 30)  

P13: The length of a segment is the distance between its endpoints. (p.26) 

P14: (Betweenness theorem). If a point B is between A and C, then AB+BC=AC. (p.26)  

P15: (Addition theorem) If B is on AC, then AC=AB+BC (p.375) 
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Figure  3.20a, b. The addition of two segments in a DGS, using parameters (Patsiomitou, 2019b, p. 40) 
 

 
Figure  3.20c. Visualizing the concept of the sum of two segments in a DGS, using parameters (Patsiomitou, 

2019b, p. 40) 

 

Phase B. If we create the segments’ addition, by defining the segments AB, CD using the parameters a, b 

(meaning, by setting a corresponding parameter to each segment, the parameter “a” for the segment AB and the 

parameter “b” for the segment CD) then we have created concrete invariant objects in a DGS environment. In 

order to create the parameters we can use the “create a new parameter” command from the Menu, Graph (Figures 

3.20a). According to Sketchpad Help system “Parameters are simple given numeric values. Unlike 

measurements and calculations, they do not depend on other objects for their value. A parameter is defined by a 

single number and an optional unit”. We can choose to construct a segment for example with length equal to 

2cm, or with such a length as we wish. These parametrical segments can be transformed dynamically by 

transforming (e.g., by using animation) the parameters with which they have been created, meaning the parental 

objects in a continuous/or not process (Figure 3.20b, c).  

Firstly, the animation on parameters turns the dynamic diagram to a more detailed and complex representation 

than the one we have created using the tools (e.g. segments, lines and circles). Points B, D have only one degree 

of freedom and can be dragged only on the path they belong. The figures can become larger or narrower, but it is 

not easy to change their orientation (for example, if the circle-path to which they belong becomes hidden). We 

can change the value of the parameter or define the domain values between which the parameter takes on values, 

meaning that the geometrical object depends on the values given to an algebraic object. The parameter is allowed 

to range over whatever domain I choose to define, and the mixed entity has been transformed into a symbolic 

parametrical and dynamic one (we can see the “animate parameters” label on screen, which allows parameters to 

be altered with this action affecting the figural part of the object). Secondly, the concept of parameters belongs to 

algebra. On the other hand, when we create a figure in a static environment, we never use a parameter to create 

the figure, just as we never define a segment as a parameter for use in our construction. Moreover, animating the 

parameters transforms the synthesis of the diagram into an “infinite” number of snapshots, which the user would 

probably not consider manipulating by her/himself. For the segments’ addition I can summarize the following:  

 In general, a concrete parameter defines the particular member of a function family. As the parameter changes 

the transformations of segments, as well as the transformations of the diagram’s synthesis appear on screen.  

In the examples mentioned above the segments AB=a, CD=b under the transformation T of the dynamic 

parameters will become the corresponding elements T (a), T (b). The dynamic objects created using parameters 
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play a pivotal role in fostering/scaffolding understanding. Are these objects dynamic, or have we created “static” 

objects in a DGS environment? What is their “static” role in a DGS environment? What are the transformations 

the concrete dynamic diagram and the objects created in this representation perform? Moreover, can we make a 

“construct” that appears invariant, even if we drag its visible points on screen? Does this diagram have the same 

properties?  In this case, we have created a “different” hybrid diagram. 

 

 
Figure  3.21a. Creating a golden rectangle using a custom tool (Patsiomitou, 2006g, p. 61, in Greek; Patsiomitou, 

2019b, p. 43) 

 

 
Figure  3.21b. Dynamic linking of the tabulated measurements with the plotted points (Patsiomitou, 2019b, p. 43) 

 

 

Phase C. In the Figures 3.21a, b, I have constructed a golden rectangle using two important procedures 

(Patsiomitou, 2006g, p. 61): “creating a custom tool that repeats the ratio 1, 61803 (=number φ), and the iteration 

process that repeats the whole procedure and the measurements and calculations displayed in the table”. In this 

construction, we can view algebraic objects, diagrammatic objects and tabular representations, along with 

parametrical objects used operationally and structurally, and dynamic or hybrid objects. In the tabular 

representation, we can view the results of measurements and calculations repeated thanks to the iteration process, 

which generates final for initial objects on a one-to-one basis. According to Patsiomitou (2005a, 2006a, g, 2007a, 

2008d, 2014, 2018a, b): Through the application of the custom tool the possibility is given to the user to acquire 

an inductive way of thinking for the finite steps of the construction but the generalisation with regard to the 

constructional result can be achieved from the process of iteration which inductively renders the construction 

theoretically to infinity. This function of the software also constitutes a certain crucial and essential particularity, 

while the construction with a compass and a ruler as formal tools of static geometry has a beginning and an end. 

In the software, via the process of iteration we have the potential of the constructions thus becoming more 

complex being in theory rendered inductively to infinity. The result of the process of iteration is the construction 

of the tables that repeat the process of initial measurements and calculations in dynamic connection with the 

shape, thus increasing (or decreasing) the level of the process of iteration while the software adds (or removes) 
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the next level of measurements (or even calculations), whereas in the first column of the table the sequence of the 

natural numbers is presented. In that way through this operation, the environment of the software promotes the 

investigation of the sequences. The iteration process by functioning thus has integrated or embodied the meaning 

of sequence while there is a direct connection between the user’s perception and the abstract mathematical 

meaning. The process of animation can produce the changes in the tabulated measurements (calculations) that 

allow the user to examine the dynamic process. These changes come as result of the fluctuations in the size of an 

artefact-fractal which have the possibility of increasing (decreasing) and altering orientation”. 

 

 

Figure 3.22. A procept-in-action during instrumental genesis (Patsiomitou, 2019b, p. 44) (modified) 
 

The dynamic linking of the tabulated measurements from the first two columns results in the plotted points 

illustrated in Figure 3.21b. The plotted points are dynamically linked to both the figural object and the tabular 

representation, but cannot be moved or dragged, and are left unaffected if we drag point G (a DGS object with 

two degrees of freedom), even if the measurements in the tabular representation are affected. The plotted points 

are dynamic-hybrid objects. In other words, it is a geometric function which repeats one-to-one transformations 

on algebraic, geometric and dynamic objects. The concepts-in-action (and theorems-in-action) which occur 

during the procedure are the results of dynamic elementary procepts-in-action. They are intrinsically dynamic 

and their impact on students’ understanding of the meaning of sequence is crucial (Patsiomitou, 2005a, in Greek).  

For example, as I mentioned in previous works (e.g., Patsiomitou, 2005a, 2007a, 2019b) “The surprise was made 

by a female-student who, while passively watching and not participating in the duration of the process she 

comprehended that “as N increases (natural numbers), E (the area) is continuously reduced” a fact which she 

expressed verbally and repeated it in writing. From this, we may conclude that she momentarily overcame her 

fear of mathematics, after she had a verbal interaction with the remaining members of the team and was led 

towards the comprehension of the meaning of limit only by the representations and the reaction towards the 

computer software”.  

Building on the above, I think there is a continuous process ongoing in students’ mind as they create a concept. 

The meaning of ‘procept’ is thus dynamic in a DGS environment; adapting its meaning to a ‘procept-in-action’ 
(Figure 3.22) for the DGS environment could thus support the appearance of operational invariants (Vergnaud, 

1998, 2009) during the problem-solving situation and the students’ actions on a dynamic object or a dynamic 

representation/diagram. 
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Chapter IV.  

4.1. How do Students Learn in a Constructivist Framework? 

Students’ cognitive growth is a major aim of mathematics education. Researchers have interpreted it in different 

ways, such as that cognitive growth can occur between others, through developmental stages (e.g., Piaget, 

1937/1971; van Hiele, 1986), as development of proof schemes (e.g., Balacheff, 1987, 1988, 1991, 1998, 1999, 

2008, 2010; Harel & Sowder, 1996, 1998, 2007, 2009; Harel, 2001, 2008) or as dynamical development of 

students’ mental representations (e.g., Cifarelli, 1998) when students confront problem-solving situations. Pegg 

& Tall (2005) identify two main categories of theories to explain and predict students’ cognitive development, (or 

cognitive growth or conceptual deveopment):  

 “global theories of long-term growth of the individual, such as the stage theory of Piaget (e.g., Piaget & 

Garcia, 1983), or the van Hiele theory (e.g., van Hiele, 1986; Fuys et al., 1984);  

 local theories of conceptual growth such as the action-process-object-schema theory of Dubinsky 

(Czarnocha et al., 1999; Dubinsky, & McDonald, 2001) or the unistructural multistructural-relational-

extended abstract sequence of SOLO Model (Structure of Observed Learning Outcomes, Biggs & Collis, 

1982, 1991; Pegg, 2003)” (p.188).  

The difficulties which arise when a student studies geometry begin with the way s/he perceives a shape. The 

perceptual competence of a student to ‘see’ a figure’s properties depends on his/her development of cognitive 

structures and ability to think abstractly. The development of a student’s cognitive structures makes him/her able 

to perform the “hypothetical representation of his/her internalized organization of the concepts in long-term 

memory” (McDonald, 1989, p.426). Skemp’s view of the abstraction process is that “a concept is the end product 

of […] an activity by which we become aware of similarities […] among our experiences” (Skemp, 1986, p.21 in 

White & Mitchelmore, 2010, p.206). Moreover, Schwartz, Herschkowitz & Dreyfus (2001) argue that   

“[…] Abstraction is not an objective, universal process but depends strongly on context, on the history of the 

participants in the activity of abstraction and on artifacts available to the participants. Artifacts are outcomes 

of human activity that can be used in further activities. They include material objects and tools, such as 

computerized ones, as well as mental ones including language and procedures; in particular, they can be ideas 

or other outcomes of previous actions” (p.82).  

Stein et al. (2000) proposed a cognitive demand frame, which separates tasks into low-level and high level 

depending on the cognitive demands they place on the student. Tchoshanov, Lesser and Salazar (2008) presented 

a modified version of this cognitive demand model which includes three levels: (1) facts and procedures; (2) 

concepts and connections; and (3) models and generalizations (Tchoshanov, 2013, p. 67).  

 At the first level Tchoshanov et al. refer to level descriptors including a student’s competence at 

“recalling facts, recognizing basic terminology, stating definitions, naming properties and rules, 

conducting measurements, solving routine problems”, etc.  

 At the second level, Tchoshanov et al. refer to level descriptors including a student’s competence at 

“selecting and using appropriate representations, translating between multiple representations, 

transforming within the same representation, explaining and justifying solutions to the problems, solving 

non-routine problems”, etc. 

 At the third level Tchoshanov et al. refer to level descriptors including a student’s competence at 

“generalizing patterns, generating mathematical statements, deriving mathematical formulas, proving 

statements and theorems”, etc. 

A constructivist view of learning considers the student as an active participant and learning as an active process. 

Immanuel Kant (1965), John Dewey (e.g., 1938/1988), Jean Piaget (e.g., 1937/1971, 1970), von Glasersfeld (e.g., 

1991, 1995), Vygotsky (e.g., 1934/1962, 1978), Skemp (e.g., 1987) were important philosophers and theorists 

who gradually changed the traditional “route by memorization”, the behaviourists’ view of learning mathematics, 

to a sociocultural-constructivist view of learning mathematics. From an epistemological point of view, 

constructivism emphasizes the construction of meanings in collaboration between the instructor (or /teacher-

action researcher) and the student (e.g., Hayes & Oppenheim, 1997). According to O’Toole and Plummer (2004)  

“Taking the view that mathematics is not static but rather humanistic field that is continually growing and 

reforming, and that children construct their own knowledge (Hersch, 1997), then teaching can no longer be 

a matter of viewing students’ minds as ‘empty vessels’ ready to adopt internalise and reproduce correct 
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mathematical knowledge and applications. Rather, we have come to learn that teaching which includes 

instructional contexts where students are supported to move from their own intuitive mathematical 

understandings to those of conventional mathematics, produces more profound levels of mathematical 

understandings (Skemp, 1971)” (p. 3). 

Piaget (1937/1971) considered that students’ thinking becomes more sophisticated with biological maturity. 

Students build on their own intellectual structures as they grow up. Piaget introduced the development of 

student’s thinking in stages, based on the process of equilibration. Von Glasersfeld (1995, p.68) describes 

equilibration as the process “when a scheme, instead of producing the expected result, leads to a perturbation, 

and perturbation, in turn, to an accommodation that maintains or re-establishes equilibrium”. Consequently, 

disequilibration (Piaget, 1937) situations force students to reorganize their cognitive structures, when a 

conceptual structure does not act in line with their expectations. The reorganization of the individual’s schemata 

involves the subprocesses or the mechanisms of accommodation or assimilation (Piaget, ibid.) which correspond 

to modifying the pre-existing schemata and building new schemata in the student’s mind or interpreting the new 

information according to pre-existing schemata. Many times students face misconceptions (e.g, Nesher, 1987; 

Swedosh, & Clark, 1998) and cognitive conflicts (e.g., Moritz, 1998; Watson & Moritz, 2001). According to 

Nesher (1987) “Misconceptions are usually an outgrowth of an already acquired system of concepts and beliefs 

wrongly applied to an extended domain. They should not be treated as terrible things to be uprooted since this 

may confuse the learner and shake his confidence in his previous knowledge. Instead, the new knowledge should 

be connected to the student’s previous conceptual framework and put in the right perspective” (p. 38-39).  

 

 
Figure 4.1. The cycle of equilibration (Littlefield-Cook, & Cook, 2005, Chapter 5, p.8) 

 

In the last chapter of his work “The Construction of Reality in the Child” translated by M. Cook, Piaget 

(1937/1971) stated that: 

“[...] In their initial directions, assimilation and accommodation are obviously opposed to one another, 

since assimilation is conservative and tends to subordinate the environment to the organism as it is, 

whereas accommodation is the source of changes and bends the organism to the successive constraints of 

the environment [...] Assimilation and accommodation are therefore the two poles of an interaction 

between the organism and the environment, which is the condition for all biological and intellectual 

operation, and such an interaction presupposes from the point of departure an equilibrium between the two 

tendencies of opposite poles.”(pp.2-3) 

In other words, Piaget supports that students construct new concepts, ‘assimilating’ in a conservative way or 

‘accommodating’ in a modifying way their prior knowledge conceptions. In a constructivist approach the 

reference to schemes is essential. Littlefield-Cook, & Cook (2005) support that  

“For Piaget, the essential building block for cognition is the scheme. A scheme is an organized pattern of 

action or thought. It is a broad concept and can refer to organized patterns of physical action (such as an 
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infant reaching to grasp an object), or mental action (such as a high school student thinking about how to 

solve an algebra problem). As children interact with the environment, individual schemes become 

modified, combined, and reorganized to form more complex cognitive structures” (p.6, in Chapter 5). 

Let us look at the way students understand negative numbers and construct the scheme of the “sum of two 

numbers”. Figure 4.2 may be thought of as a spiral of equilibration, trying to illustrate how pupils understand 

and integrate the ways to subtract numbers in several different phases of their learning life, taking into account 

the “cycle of equilibration” mentioned in Figure 4.1. In my opinion this process moves like a spiral, starting in 

the first years of a child’s life and continually reiterating the process of assimilation and accommodation for 

every new concept that is learnt at increasingly abstract levels. The class in the first year of secondary education 

when teachers are obliged to introduce negative numbers to students is one of the more “difficult” parts of their 

teaching lives. Students understand how to add and subtract positive numbers and that the signs (+ -) are found 

between numbers, not in front of them. This is the first point in which “there is an imbalance between the new 

experience and the old scheme. Piaget described this imbalance as a state of cognitive disequilibrium. To resolve 

the disequilibrium, we accommodate, or adjust, our schemes to provide a better fit for the new experience. If we 

are successful, we achieve cognitive equilibrium. Equilibration therefore is the dynamic process of moving 

between states of cognitive disequilibrium and equilibrium as we assimilate new experiences and accommodate 

schemes” (Littlefield-Cook, & Cook, 2005, p.8, in Chapter 5). 

 

 
Figure 4.2. My proposal for the “spiral of equilibration” students understand the subtraction of numbers, taking into account the “cycle 

of equilibration” mentioned in Figure 4.1. 
 

A very useful method for helping students understand subtraction is the use of coloured manipulatives (Figure 

4.3). The students learn how to represent integers using color counters.  The next step is to experiment with 

integer subtraction. This is an excellent tool which helps students overcome their cognitive obstacles. 

Sommerville (2005) in her Master thesis describes the difference in learning between a calculator and an abacus. 

The second is used by Japanese students. According to Sommerville (2005) “[...] in the absence of a real soroban, 

Japanese students can perform complex arithmentic by creating a mental image of a soroban (i.e., abacus) and 

imagining the changes in the pattern of the beads in order to complete the task” (p.6)  

Since tools exert an influence over the technical and social way in which students conduct an activity, they are 

considered essential to their cognitive development (see for example, Figure 4.3). According to Vygotsky 

(1978), tools can be considered as external signs and they can become tools of semiotic mediation. He developed 

the zone of proximal development (ZPD) and defined it as “the distance between the actual development level as 

determined by independent problem solving and the level of potential development as determined through 

problem solving under adult guidance, or in collaboration with more capable peers” (p.86).  
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In Vygotsky’s theory, it is taken for granted that less advanced students can learn from their peers who have more 

competence to solve problems and can interpret a meaning between representational systems. 

 
 

Figure 4.3. The “Zero Principle” Sketchpad file for the understanding of the s subtraction of integers. (Wepages [22, 23]) 

 
Figure 4.4. An expanded Zone of Proximal Development (Leo van Lier, 2004, chapter 6, p.158) (adapted) 

 

Vygotsky also argues that “if learning can be influenced by social mediation, then conditions can be created in 

schools than can help students learn” (Vygotsky, 1978 p. 86). Vygotsky’s theory in educational research led to 

studies of how children learned through collaborative interaction with adults, and it became common to use the 

term “scaffolding” to describe the interaction between adult and child (e.g., Rogoff & Wertsch, 1984). Leo van 

Lier (2004) expanded the notion of ZPD as a multidimensional activity space within which learners learn also 

when they themselves act as ‘experts’ or ‘teachers’ to each other. According to Leo van Lier (2004)  

“In the next quadrant of the diagram (Figure 4.4), I suggest that learners learn also when they themselves 

act as ‘experts’ or ‘teachers’ to each other. By explaining or illustrating difficulties or skills to a less 

accomplished peer, students clarify and hone their own abilities in the process. Such peer teaching is a 

special case of what Swain has called pushed output (Swain, 2000). In creating a joint ZPD, both the 

instructing learner and the instructed learner make their ideas clearer, sometimes by trial and error, always 

by orienting towards mutual comprehension, and by pushing towards clarity of expression. […] In all then, 
it seems eminently justifiable to see the ZPD in an expanded sense, not just as an unequal encounter 

between expert and novice, but also as a multidimensional activity space within which a variety of 

proximal processes can emerge.” (p. 157-158) 

The language development is a central idea in the theory of Vygotsky, something that is also common to the 

theory of van Hiele (Fuys et al., 1984, 1988). Moreover, the mathematical social discourses developed in a small 

group mediated by cognitive tools enhance the social interactions in class and support the development of 

students’ mathematical communication and understanding of mathematical concepts. As Littlefield-Cook, & 

Cook (2005) support “it is the language that carries the concepts and cognitive structures to the child, and these 
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concepts become the “psychological tools” that the child will use (Vygotsky, 1962)” (p. 26). This is in 

accordance with the view that learning is an ongoing and evolving importance for students’ language 

development, as well as their development of mathematical terminology and conceptual understanding. 

Moreover, in the words of Sfard (2001) “[...] we can define learning as the process of changing one’s discursive 

ways in a certain well-defined manner.” (p. 3) (see also Sfard, Neshler, Streefland, Cobb, & Mason, 1998; 

Sinclair & Yurita, 2008; Sinclair, & Crespo, 2006).  

Steffe & Tzur (1994) in their article “Interaction and Children’s mathematics” argued that learning “occurs as a 

product of interaction [and] the teacher’s interventions is essential in children's learning. But in this, we speak in 

terms of perturbations as well as in terms of provocations, because it is the children who must experience the 

perturbations” (p. 44). Simon (1995) has developed a view of the teacher’s role that includes both the 

psychological and the social aspects. He supports that “a teacher is directed by his conceptual goals for his 

students, goals that are constantly being modified” (p.135). 

Many teachers try to apply a learning theory’s principles to their instruction (though they do not usually achieve 

the expected results). Others try a combination of theories: drill and practice (a behaviourist view of learning), 

enquiry and constructivist learning using ICT – in other words, a multiple-theories approach whose results 

depend on the teacher’s different types of knowledge [based on Schulman (1987) and Mishra and Koehler’s 

(2006) framework of Technology, Pedagogy, and Content Knowledge (TPACK)], the students’ backgrounds, 

external resources in the school environment, etc. Critics of the multiple-theories approach to teaching argue that 

moving back and forth between theories of learning reduces (or eliminates) the coherence, insights and results 

provided by a single theory, even if this interplay is between theories with complementary perspectives, such as 

constructivist and sociocultural theories (e.g., Confrey, 1995; Lerman, 1996).    

Bransford, Brown & Cocking (2000, p. 22) created an image (Figure 4.5) in which they present “how people 

learn, which teachers can choose more purposefully among techniques to accomplish specific goals”. Bransford, 

Brown & Cocking argue that “With knowledge of how people learn, teachers can choose more purposefully 

among techniques to accomplish specific goals” (p. 22). I think that learning can occur through interaction, which 

can be encouraged using a range of techniques. For this, I added arrows, to connect the “lecture based” technique 

with “skill based” the technique, etc.  

 

Figure  4.5. “Knowledge of how people learn” (Bransford, Brown & Cocking, 2000, p.22) (an adaptation for the current study) 

In my opinion, student learning does not work as a machine into which data, information and the principles of a 

learning theory are entered and the expected results come out. On the other hand, is the merging of constructivist 

and sociocultural perspectives a theory we can apply to instructional processes and the everyday teaching of 

mathematics? Can we construct learning paths to apply the principles of constructivism to student’s learning? As 

Fosnot (2003) states  
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“Although educators now commonly talk about a “constructivist-based” practice as if there is such a thing, 

in reality constructivism is not a theory of teaching; it is a theory about learning. In fact, as we shift our 

teaching towards trying to support cognitive construction, the field of education has been left without well-

articulated theories of teaching. [...] Major questions loom around what should be taught, how we should 

teach, and how best to educate teachers for this paradigmatic shift. The problem is that all of these 

pedagogical strategies can be used without the desired learning resulting.  This is because constructivism is 

a theory of learning, not a theory of teaching, and many educators who attempt to use such pedagogical 

strategies confuse discovery learning and “hands-on” approaches with constructivism”.   

Bruner (1966) developed an instructional theory. Bruner emphasized the teacher’s proper use of language when 

they introduce a meaning to children. Discovery learning was also advocated by Bruner (1961, 1966). He pointed 

out that discovery learning “increases the interest of students, creates exciting classroom atmosphere, encourages 

and increases participation, provokes enthusiasm and inquiry, and helps students learn new content” (Bayram, 

2004, p.40). Within the theory developed by Bruner (1966) cognitive conflict “occurs when there is a mismatch 

between information encoded in two of the representational systems, between [...] what one sees and how one 

says it [...]” (Bruner, Olver, & Greenfield, 1966, p. 11). According to El Rouadi & Al Husni (2014, p. 130) 

“Bruner focused on the spiral curriculum which can be explained as follows: learners acquire the basic ideas 

initially by using their intuition; and after words, the learner builds on them by revisiting these basic ideas as 

frequent as required until the meaningful understanding is fully achieved”.  

 
Figure  4.6.  My proposal for a spiral curriculum for the learning of numbers, taking into account the aforementioned notions of Piaget 

and Bruner 
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Figure 4.6 may be thought/ considered as a spiral curriculum for the learning of numbers, taking into account the 

aforementioned notions of Piaget and Bruner; how the learning of numbers occurs during the school years from 

primary to secondary and tertiary education.  

Bransford, Brown & Cocking (2000) support that “constructivists assume that all knowledge is constructed from 

previous knowledge, irrespective of how one is taught (e.g., Cobb, 1994)—even listening to a lecture involves 

active attempts to construct new knowledge” (p. 11). They point out that “Like ‘Fish is Fish’ everything the 

children hear [is] incorporated into [their] pre-existing view”. ‘Fish is Fish’ (Lionni, 1970, cited in Bransford et 

al., 2000) is a tale in which a fish tries to understand how people and cows appear/exist in the external world 

from the descriptions of a frog that has gone outside to view everything. 

 
Image: The Eric Carle Museum (Webpage [24]) 

 

“The book shows pictures of the fish’s representations of each of these descriptions: each is a fish-like 

form that is slightly adapted to accommodate the frog’s descriptions. […] This tale illustrates both the 
creative opportunities and dangers inherent in the fact that people construct new knowledge based on their 

current knowledge.” (Bransford et al., 2000, p. 11).  

In a constructivist frame, cognitive conflict is a basic component in the learning process (Karmiloff-Smith & 

Inhelder, 1974) and very important for the development of students’ geometrical thinking. If the student 

overcomes this contradiction s/he is able to mental growth. Van Hiele also developed a theoretical model for 

thought development that can be applied to students’ instruction. I shall present their model in the next section. 

Experiential Learning or learning through experience is a theory developed by David A. Kolb (1984). According 

to Kolb & Kolb (2013) “The theory, described in detail in Experiential Learning:  Experience as the Source of 

Learning and Development (Kolb, 1984), is built on six propositions that are shared by these scholars:  

1. Learning is best conceived as a process, not in terms of outcomes.[…] 

2. All learning is re-learning.[…] 

3. Learning requires the resolution of conflicts between dialectically opposed modes of adaptation to the 

world.[…] 

4. Learning is a holistic process of adaptation to the world. […] 

5. Learning results from synergetic transactions between the person and the environment. […]  
6. Learning is the process of creating knowledge. (p.6-7) 

According to Kolb & Kolb (2013) 

“The ELT model portrays two dialectically related modes of grasping experience—Concrete Experience 

(CE) and Abstract Conceptualization (AC)—and two dialectically related modes of transforming 

experience—Reflective Observation (RO) and Active Experimentation (AE). Learning arises from the 

resolution of creative tension among these four learning modes. This process is portrayed as an idealized 

learning cycle or spiral where the learner “touches all the bases”—experiencing (CE), reflecting (RO), 

thinking (AC), and acting (AE)—in a recursive process that is sensitive to the learning situation and what 

is being learned. Immediate or concrete experiences are the basis for observations and reflections. These 

reflections are assimilated and distilled into abstract concepts from which new implications for action can 

be drawn” (p. 7-8) (Figure 4.7a). 
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Figure  4.7a.  The Experiential Learning Cycle (Kolb, 1984, cited in Kolb & Kolb, 2013, p. 8) 

 

 

 
Figures 4.7b, c. The spiraling learning process applied by the New Zealand Ministry of Education (2004) (Website [25]) 

 

In the Figures 4.7b, c, Kolb & Kolb (2013) depict an amazing idea in a spiral that illustrates the spiraling 

learning process. As they state “The New Zeland Ministry of Education (2004) has used this spiraling learning 

process as the framework for the design of middle school curricula.  Figures [4.7b, c] describe how teachers use 

the learning spiral to promote higher level learning and to transfer knowledge to other contexts” (Kolb & Kolb, 

2013, p.37).  The spiraling learning "begins with activity, moves through reflection, then to generalizing and 

abstracting and finally to transfer" (Henton, 1996, page 39, cited in website [25]).  

According to The New Zeland Ministry of Education (2004) (website [25]):  
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Summarizing (Patsiomitou, 2014, p. 4-5): Cognitive constructivism is connected with the work of Piaget’s 

(1937/1971) and his views as ‘constructivist’. According to Piaget (1937/1971), students’ cognitive development 

depends on their biological maturity. That students’ cognitive development depends on the teaching process was 

argued by Dina van Hiele-Geldof and Pierre van Hiele in their dissertations in 1957 (Fuys, Geddes & Tischler, 

1988). Van Hiele theory has its roots in constructivist theories. Bruner’s (1961, 1966) proposal of discovery 

learning [as ‘constructionist”] is based on prior knowledge and the understanding of a concept, which [through 

discovery] grows and deepens. The sociocultural approach has its roots in Vygotsky (1987) who focuses on the 

acquisition of mathematical understanding as a product of social interactions. Von Glasersfeld (1995) a radical 

constructivist is differentiated from the work of Piaget as he argues that “knowledge [does not represent an 

independent world, instead] represents something that […] we can do in our experiental world” (p.6). Building on 

the concepts mentioned above, the concept of social constructivism is a complex process, while being interactive, 

constructivist and sociocultural (e.g., Yackel, Cobb, Wood, Wheatley & Merkel 1990; Cobb, Yackel & Wood, 

1989, 1992; Yackel, Rasmussen & King 2001; Yackel & Rasmussen 2002; Jaworski, 2003). According to 

sociocultural and interactive approaches, learning is a part of the culture (Steffe & Gale, 1995) in which the 

students construct knowledge through their participation in social practices (e.g social class environment) (Cobb 

& Bauersfeld, 1995, p.4). “A social-constructivist perspective sees discussion, negotiation and argumentation in 

inquiry and investigation practices to underpin knowledge growth in mathematics, in teaching mathematics and 

in mathematics teacher education” (e.g., Cobb & Bowers, 1999; Lampert, 1998; Wood, 1999 cited in Jaworski, 

2003, p. 17).   

Besides, learning is an individual constructive process while knowledge is actively constructed by the student; it 

depends on the individual’s personal work and negotiation of mathematical ideas (e.g., Jaworski, 2003). From the 

perspective of constructivist theories the process of mathematical knowledge and understanding arises as students 

try to solve math problems during the classroom (Cobb, Yackel, & Wood, 1992; Simon & Shifter, 1991) and is 

instigated when students confront problematic situations. Knowing therefore is not taken passively by students 

but in an active way. Learning thus is characterized in Bauersfeld’s interactionism view “by the subjective 

reconstruction of societal means and models through negotiation of meaning in social intervention” (Bauersfeld, 

1992, p.39; Bauersfeld, 1995).  Vygotsky (1987) argues that "the child begins to perceive the world not only 

through his eyes [visually] but also through speech” (p. 32). According to Vygotsky (1987), learning is a complex 

interplay between scientific and spontaneous use of language. For this, learning is an internalization of social 

relations and understanding is a result of common negotiation of concepts created by students while interacting 

with other students in the class (or group) during the mathematical discussions developed (Bartolini Bussi, 1996). 

“Language is important for cognitive development and learning; without it, an individual lacks [an] efficient 

system for storing certain types of information that are needed for thinking, reasoning, and concept development” 

(Westwood, 2004, p.141). 

Sfard also defines “learning as the process of changing one’s discursive ways in a certain well-defined manner” 

(Sfard, 2001, p.3). According to Sfard (2001) “thinking is a special case of the activity of communicating” […] 
“A person who thinks can be seen as communicating with himself/herself, […] whether the thinking is in words, 

in images or other form of symbols, [..] as our thinking is [an interactive] dialogical endeavour [through which] 

we argue…” (p.3); with his/her participation the student in a mathematical discussion s/he “learns to think 

mathematically” (Sfard, ibid., p. 4). Under this approach, the development of thought occurs through dialogue 

that develops the subject within himself/herself internally (intrapersonally) or in a group in which s/he 

participates. Moreover, learning is expanding the capacity for dialectical skills and solving problems that could 

not previously be solved. Furthermore “putting communication in the heart of mathematics education is likely to 

change not only the way we teach but also the way we think about learning and about what is being learned” 

(Sfard, 2001, p.1). Consequently, learning is first and foremost the modification / transformation of the ways we 

think and how we exchange this thought. Moreover, learning is the capacity of dialectical skills and of problem-

solving that could not be solved before. 

Goos and her colleagues carried out a series of studies --based on sociocultural perspective-- to investigate the 

teacher’s role, the students’ discussion in small groups and the use of technology as a tool that mediates teaching 

and learning interactions (e.g. Goos, 2004, Goos et al, 2002, 2003). If we take the role of teacher seriously as 

concerns the realisation and planning of activities then, every activity should be based on geometry exactly as 

Goldenberg (1999) purports it to be –a fundamental principle. Tools like DGS present geometric structures in an 

environment that emphasizes the continuous nature of Euclidean space, and thus serve as an excellent bridge 

between geometry and [the other field of mathematics, as well as] analysis. This is very important for the 
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teaching practice because the construction of the meaning can not only be depended or is located in the tool per 

se, nor uniquely pinpointed in the interaction of student and tool, but it lies in the schemes of use (e.g., Trouche, 

2004) of the tool itself.  

4.2. The van Hiele Model   

4.2.1. Introduction to the Problem  

In past decades researchers concluded that high school students fail at Geometry, as it is presented in class 

through instruction (e.g., Hoffer, 1981; Usiskin, 1982; Van Hiele, 1986; Burger & Shaughnessy, 1986; Crowley, 

1987; Fuys, Geddes & Tischler, 1988; Gutierrez, & Jaime, 1987, 1998; Gutierrez, Jaime & Fortuny, 1991; 

Mason, 1997; Patsiomitou, 2008a, b, 2011a, b, 2012a, b, 2013a, 2018b). They found that students had difficulty 

developing and structuring the content incorporated in the Geometry Curriculum, as presented in class through 

instruction, due to an inability to recall linguistic symbols and symbolic representations already known to them, 

to release their thinking from a concrete framework (White & Mitchelmore, 2010, p. 206), and to develop the 

requisite deductive reasoning (Peirce, 1998/1903) and abstract processes (Skemp, 1986; White & Mitchelmore, 

2010). 

Pierre van Hiele and his wife Dina van Hiele–Geldof developed a theoretical model of thought development in 

geometry. The van Hieles distinguished five different levels of thought and how the students progress through 

levels, during the instruction. Dina van Hiele-Geldof (1957/1984) in her didactic experiments investigated “the 

improvement of learning performance by a change in the learning method” (p.16). She investigated whether it 

was possible to use instruction as a way of presenting material to participated students, so that the holistic visual 

thinking of a child can be transformed into concrete abstract thinking in a continuous process, something that is 

prerequisite for the development of deductive reasoning in geometry.  

“After observing secondary school' students having great difficulty learning geometry in their classes, 

Dutch educators Pierre van Hiele and his wife, Dina van Hiele-Geldof developed a theoretical model 

involving five levels of thought development in geometry. Their work, which focuses' on the role of 

instruction in teaching geometry and the role of instruction in helping students move from one level to the 

next, was first reported in companion dissertations at the University of Utrecht in 1957.” (Fuys et al., 

1984, p.6).  

Burger & Shaughnessy (1986, p.31) report the descriptions of the five levels that have been identified by Dina 

van Hiele (1957), as modified by Hoffer (1981): 

 “Level 0 (visualization): the student reasons about basic geometric concepts, such as simple shapes, 

primarily by means of visual considerations of the concept as a whole without explicit regard to 

properties of its components. 

 Level 1 (analysis): the student reasons about geometric concepts by means of informal analysis of 

component parts and attributes. Necessary properties of the concept are established. 

 Level 2 (abstraction): the student logically orders the properties of concepts, forms abstract definitions 

and can distinguish between the necessity and sufficiency of a set of properties in determining a concept.  

 Level 3 (deduction): the student reasons formally within the context of a mathematical system, complete 

with undefined terms, axioms, an underlying logical system, definitions and theorems. 

 Level 4 (rigor): the student can compare systems based on different axioms and can study various 

geometries in the absence of concrete models”.  

A large amount of scholars have been investigated the implications of the theory for the learning of geometry as 

well as the validation of van Hiele model (e.g., Usiskin, 1982; Mayberry, 1983; Senk, 1985, 1989; Burger & 

Shaughnessy, 1986; Fuys, Geddes, & Tischler, 1988; Gutierrez, Jaime, & Fortuny, 1991; Clements & Battista, 

1992; Patsiomitou, 2008a, b, 2012a,b, 2011a, b, 2013a, b, 2018b). Research has been conducted, which has set 

out:  

 to check the validity of the van Hiele theory and its hypothesis; also to show that the van Hiele level 5 

does not appear among high school students [or to show that the incidence of van Hiele level 5 is (close 

to) zero among high school students] (e.g., Wirszup, 1976; Hoffer, 1981; Mayberry, 1983; Usiskin, 1982; 

Burger & Shaughnessy, 1986); 

 to identify the key features of every van Hiele level during the process of recognizing and defining a 

figure, reporting its basic properties and constructing proof (e.g., Hoffer, 1981; Burger & Shaughnessy, 

1986; Gutierrez, Jaime, & Fortuny, 1991); 
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 to design instruction based on the van Hiele model, in order to help students become more effective and 

acquire competence in the proving process (e.g., Fuys, Geddes, & Tischler, 1988); 

 to examine if the model can be of use in describing students’ thinking during the problem-solving process 

and their understanding of geometrical or mathematical meanings (e.g., Burger & Shaughnessy, 1986; 

Clements & Battista, 1992; Fuys, Geddes & Tischler, 1988); 

 to examine if the van Hiele model can serve as an instrument for predicting the competence of students at 

geometrical proof (e.g., Usiskin, 1982; Senk, 1989; Usiskin & Senk, 1990). 

Many researchers agree that the main reason why students fail at geometry is that they are the recipients of 

instruction that is at a higher level than they can understand (e.g., Hoffer, 1981; Usiskin, 1982; Burger & 

Shaughnessy, 1986; Van Hiele, 1986; Crowley, 1987; Fuys, Geddes & Tischler, 1988; Mason, 1997). However, 

the organization of the instruction, its content and supplementary ‘manipulatable’ materials [e.g. Dienes cubes 

(Dienes, 1960), [digital] building blocks (Clements & Sarama, 2002), DGS material as custom tools 

(Patsiomitou, 2006g, 2012a, 2018b)] have a positive effect on students’ cognitive development (e.g., (van Hiele, 

1986; Fuys, Geddes & Tischler, 1984; Crowley, 1987; Gutierrez, Jaime & Fortuny, 1991; Clements & Battista, 

1992; Patsiomitou, 2012a). 

Clements & Battista (1992) argue that the constructivist approach forms the basis of the theory underpinning the 

use of such a digital environment in the teaching and learning of geometry. Researchers also consider van Hiele’s 

theory to comprise one of the best frameworks within which to study, teach and learn geometrical processes 

(Atebe, 2008, p.3). Moreover, van Hiele’s theory provides a framework for validating the design of instructional 

sequences in school geometry, as was recognized in the NCTM's Curriculum and Evaluation Standards for 

School Mathematics (Jaime & Gutierrez, 1995, p. 592). Many teachers, educators and researchers have developed 

and applied activities in DGS software environments, in order to incorporate new technologies into the teaching 

of geometry in class, just as Cabri (Laborde, J, M., Baulac, Y., & Bellemain, F., 1988), or The Geometer’s 

Sketchpad (Jackiw, 1991) (e.g., Hölzl, 1996, 2001; Laborde, 1998; Hoyles & Healy, 1999; Clement & Battista, 

1992; De Villiers 1998; Yerushalmy & Chasan 1993; Oldknow, 1995, 2003; Sanchez & Sacristan, 2003; 

Hollebrands, 2003, 2004, 2006, 2007; Christou, Mousoulides, Pittalis and Pitta, 2004a,b, 2005; Patsiomitou,  

2008a, b, 2012a, b). 

The five levels of thinking reflect on students’ progress and increasing development in the way in which they 

are able to reason about geometrical objects and their relationships, and focus “on the role of instruction in 

teaching geometry and the role of instruction in helping students move from one level to the next” (Fuys et al, 

1984, p.6). Freudenthal (1973) argues that  

“good geometry instruction can mean much – learning to organize a subject matter and learning what is 

organizing, learning to conceptualize and what is conceptualizing, learning to define and what is a 

definition. It means leading pupils to understand why some organization, some concept, some definition is 

better than another. Traditional instruction is different… All concepts, definitions and deductions are 
preconceived by the teacher “(Freudenthal, 1973, p.418). 

Dina van Hiele-Geldof (Fuys et al., 1984) also stressed the necessity to arrive to a totally different approach at 

geometry instruction whereby the students “more adequately experience the build –up of theory” (p.17). The 

students in the gaps between levels are presented with disequilibration situations that force them to re-organize 

their schemes and cognitive structures. The notion of cognitive equilibration is borrowed from Piaget 

(1937/1954), who used it to refer to an individual re-organizing his/her schemata when his/her experience does 

not fit within a conceptual structure or does not act in line with his/her expectations. Piaget supports that, to 

equilibrate, the individual has to modify his/her conceptual structures or schemes in order to better organize 

his/her experiences. Pierre van Hiele finally, characterized his model in terms of three rather than five levels of 

thought: visual (level 1), descriptive (level 2) and theoretical (level 3) (van Hiele, 1986 cited in Teppo, 1991, p. 

210).   

 Visual (level 1): Students recognize shapes globally. ("[…] There is no why, one just sees it" (p. 83, cited 

in Teppo, 1991, p. 210). 

 Descriptive (level 2): Students distinguish shapes on the basis of their properties. (Teppo, 1991, p. 211) 

 Theoretical (level 3): Students are able to devise a formal geometric proof and to understand the process 

employed (p. 86, cited in Teppo, 1991, p. 211):  

The language of the theoretical level has a much more abstract character than that of the descriptive level 

because it is engaged with causal, logical, and other relations of a structure, which at the second level is not 
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visual. Reasoning about logical relations between theorems in geometry takes place with the language of the 

third level” (van Hiele, 1986, cited in Teppo, 1991, p.210). 

Many researchers have argued that sequencing instruction that uses consequential activities has positive 

effects on students’ success (e.g., Burger & Shaughnessy, 1986; Battista, 1998; Patsiomitou, 2012a). Battista 

(1998) developed a sequence of activities with the Shape Maker microworld aiming to encourage students to pass 

through the first three van Hiele levels. Burger & Shaughnessy (1986) claim that if initial activities are not 

interesting or are too easy, they might not attract or motivate students to focus on the topic and might not bring 

with it a sense of success. Fuys et al. (1988), Pierre van Hiele (1959/1984) and others report that progress from 

one level to the next involves five phases: information, guided orientation, explicitation, free orientation, and 

integration (Fuys et al, 1988, p. 7).  

 “Information is the phase through which the student is informed about the objects of investigation, 

“examining examples and counter-examples”.  

 Guided orientation is the phase through which the student is guided to transform the orientation of 

his/her thinking “doing tasks that involve different relations of the network that is to be formed (e.g., 

folding, measuring, looking for symmetry)” 

 Explicitation is the phase through which the student tries to give explanations using his own language. 

“S/he becomes conscious of the relations, tries to express them in words, and technical language which 

accompanies the subject matter (e.g., expresses ideas about properties of figures” 

 Free orientation is the phase through which the student releases his thought “by doing more complex 

tasks, to find his/her own way in the network of relations (e.g., knowing properties of one kind of shape, 

investigates these properties for a new shape, such as kites)”.  

 Integration is the phase through which the student integrates his knowledge. “S/he summarizes all that 

he/she has learned about the subject, then reflects on his/her actions and obtains an overview of the newly 

formed network of relations now available (e.g., properties of a figure are summarized”.   

 

4.2.2. The Characteristics/Indicators of the van Hiele levels 

 

Table 4.1 Burger & Shaugnessy’s (1986) van Hiele levels’ indicators 
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Table 4.2. Mason’s (1998) van Hiele levels’ indicators 

 
 

Many researchers elaborated on van Hiele levels and described the characteristics of every level (e.g., Burger & 

Shaugnessy, 1986; Pierre van Hiele, 1986; Crowley, 1987; Mason, 1998; Battista, 2007; 2008, 2011; 

Patsiomitou, 2012a). They applied the van Hiele model to their investigations, determining the levels of thought 

and their characteristics and modifying the prototype version introduced by Van Hieles. Fuys et al. (1988) 

consider language to be a crucial factor in moving students through the hierarchy of van Hiele levels. They 

conclude that each van Hiele level defines its own language (symbols) with their own network of relations. Only 

when students have realized the interrelations and connections between the structures can they progress up the 

levels. Mason (1998) mentions also Clements and Battista (1992) who proposed the Level 0 (pre-recognition) 

(p.5). According to them:  

“Students at this level notice only a subset of the visual characteristics of a shape, resulting in an inability 

to distinguish between figures. For example, they may distinguish between triangles and quadrilaterals, 

but may not be able to distinguish between a rhombus and a parallelogram” (cited in Mason, 1998, p.5). 

According to Battista (2011) “Some studies indicate that people exhibit behaviors indicative of different van 

Hiele levels on different subtopics of geometry, or even on different kinds of tasks (Clements & Battista, 2001)”. 

Battista (2007) “has elaborated the original van Hiele levels to carefully trace students’ progress in moving from 

informal intuitive conceptualizations of 2D geometric shapes to the formal property-based conceptual system 

used by mathematicians” (p.851).  This is a “totally different approach to assessing van Hiele levels” (Battista, 

2011, p. 523). Battista’s (2007) first three levels which are the most usual to high school students are described 

below. 

TABLE 4.3. Battista’s (2007) first three van Hiele levels’ indicators 
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Battista expands significantly on the van Hiele levels in two places: in the development of thinking based on 

properties, and in the development of inferences about those properties.  

In my opinion, van Hiele’s description of level 2 corresponds to Battista’s description of level 2.1; Battista’s 

description of level 2.3 relates to Mason’s level 3 and both relate to the development of students’ ability to define 

geometric objects. Moreover, there is no stability in the process, but this depends on the geometry activities the 

student participates in, and on the teacher’s instructions that lead to the evolution of each individual student’s 

level. According to Fuys et al. (1988, p.8) “the major characteristics of the van Hiele "levels" are the following:  

“(a) The levels are sequential.  

(b) Each level has its own language, set of symbols, and network of relations.  

(c) What is implicit at one level becomes explicit at the next level.  

(d) Material taught to students above their level is subject to reduction of level.  

(e) Progress from one level to the next is more dependent on instructional experience than on age or 

maturation. 

f) One goes through various "phases" in proceeding from one level to the next”. 

 

4.2.3. The Symbol and Signal Character in the van Hiele Model  
The meanings of symbol and signal are very important in the van Hiele model. Skemp (1987) defines a symbol as 

“a sound, or something visible, mentally connected to an idea” (p. 47). Piaget (1952/1977) in his work “The 

origins of intelligence in children” (translated by Cook, M.) also, states:  

“The "symbol" and the "sign" are the signifiers of abstract meanings, such as those which involve 

representation. A "symbol" is an image evoked mentally or a material object intentionally chosen to 

designate a class of actions or objects. So it is the mental image of a tree that symbolizes in the mind trees 

in general, a particular tree which the individual remembers, or a certain action pertaining to trees, etc. 

Hence the symbol presupposes representation […]. Symbol and sign are only the two poles, individual and 

social, of the same elaboration of meanings” (p.191).  

Dina van Hiele also supports that (Fuys et al, 1984, p.215)  

“The word 'symbol' should here be interpreted as meaning 'a mental substitute for a complex of 

undifferentiated relations that is subsequently elaborated in the pupil's mind.' The rhomb, for instance, is a 

symbol of the following characteristics: it has four equal sides, equal opposite angles, diagonals that bisect 

the angles and are perpendicular to each other”. 

What is important is the students’ competence when it occurs to identifying a figure’s properties (symbol 

character) and to gradually identifying a concrete figure from a set of properties (signal character): for example, 

when a student observes an equilateral triangle in his textbook, being able to identify the figure’s congruent sides 

and angles. The equal sides and angles are the main characteristic of a triangle; this is a symbol for the equilateral 

triangle. Then s/he can identify additional properties (for example, “every angle of an equilateral triangle is equal 

to 60 degrees”). All these properties are interrelated and can become a concept for the concrete mathematical 

object (i.e. the equilateral triangle mentioned above). Subsequently, the student can use a combination of 

properties to construct the equilateral triangle. In other words, the student now possesses the concept of the 

triangle: an abstract idea conceived in her/his mind. This is a signal for the concrete figural concept.  

Generally, in my opinion, a symbol is a mental image of a class of objects with concrete characteristics and 

properties. A sign is the social aspect of the symbol which was previously created in an individual’s mind.  

Van Hieles described periods between levels. In these periods the students have characteristics of both levels. For 

example, during the first period (between the first and the second levels) the students’ perceptual competence in 

relation to a geometrical object gradually transforms from a global perception of the object to the perception of an 

object with concrete characteristics and properties. During the second period students focus less on the symbol, 

and the figure is replaced by a list of properties which identify the symbol. The figure now gets the signal 

character. The next period connects the second and third level. This is the period in which students identify the 

common properties of a class of figures and categorize the figures as inclusions of other figures in accordance 

with their additional properties.  Pierre van Hiele writes (1986, p. 168)  

“when after some time, the concepts are sufficiently clear, pupils can begin to describe them. With this the 

properties possessed by the geometric figures that have been dealt with are successively mentioned and so 

become explicit. The figure becomes the representative of all these properties: It gets what we call the 

“symbol character”. In this stage the comprehension of the figure means the knowledge of all these 
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properties as a unity.[…].When the symbol character of many geometric figures have become sufficiently 
clear to the pupils, the possibility is born that they also get a signal character”. This means that the 

symbols can be anticipated.[…]. When this orientation has been sufficiently developed, when the figures 

sufficiently act as signals, then, for the fisrt time geometry can be practiced as a logical topic” 

Building on van Hiele’s ideas Choi-Koh (1999) supports that:  

Many symbols begin with an image onto which observed properties and relationships are temporarily 

projected. After those properties and relationships are explained by analysis or discussion, however, the 

symbol loses the characteristic of an image acquires verbal content and thus becomes more useful for 

operations of thought. That is symbols have properties that a geometric figure has and symbols are 

compared and recognized by those properties. […]When symbols influence orientation of thought they act 
as signals.[…] If the symbol and signal properties of a figure are sufficiently developed, then the implicit 

meaning of the figure is understood. After students have learned that it is possible to give relationships an 

imlicitatory character, they deduce that it is possible for that character to sometimes exist in only one 

direction” (p.302). 

Cannizzaro & Menghini (2003, p.2) have also clarified the meanings of symbol and signal, supporting that  

 “Van Hiele's symbol (1958, 1974) represents a first level of perception at which pupils condense the 

properties of a known geometrical figure.  

 Van Hiele's signal represents a second level of description or analysis at which perceptions are translated 

into descriptions, though without specific linguistic properties—of which the significant signal is most 

significant in the description.  

 At the third level--definition--the student starts to observe relations logically, assigning significance to 

implication, and therefore definition, in terms of geometrical relations. This, according to van Hiele, is 

the essence of geometry”. 

 

 
Figure 4.8. An adaptation on Teppo’s diagram (1991, p.210) taking into account Battista’s (2007) 

elaboration of the van Hiele levels (Patsiomitou, 2012a) 
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Teppo (1991) also supports that “students progress from one level to the next as the result of purposeful 

instruction organized into five phases of sequenced activities that emphasize exploration, discussion, and 

integration” (p. 212). Teppo has constructed a diagram, in which she explains the learning periods through which 

students are able to progress, given appropriate instruction, to the next van Hiele level. According to Teppo 

(1991) the first period connects the first level with the second and the second period connects the second and 

third levels. The aim of this first period is to transform the way students perceive geometric objects (for example 

Teppo, 1991; Pusey, 2003; Genz, 2006). This means transforming the visual image (Mariotti, 1997) or drawing 

(Parsysz, 1988) they perceive, into a figure with concrete properties. The figure then becomes a symbol or 

acquires the symbol character. I created an adaptation to the diagram constructed by Teppo during the writing of 

my PhD thesis, to cover the results of my study (e.g., Patsiomitou, 2012a). In Figure 4.8, I have incorporated into 

the diagram the period at which students acquire an increasing ability to construct proofs.  

The diagram takes into account Battista’s elaboration aforementioned in this section. The diagram also 

incorporates the diacrises in the meanings of drawing and figure, which are referred to by many researchers.  

Classroom studies have shown that a van Hiele’s level one (or two) student “often fails in the construction of a 

geometric configuration which is essential for the solution of the underlying geometric problem” (Schumann & 

Green, 1994, p.204). This happens because at the lower levels students are able to perceive the diagrams 

holistically, “they [also] recognize shapes in objects” (Gawlick, 2005, p.370). In Level 2, students are also 

becoming able to (or acquire an increasing ability to) “construct figures” (Gawlick, 2005, p. 370).  Students’ 
conceptual understanding has to do with their understanding of abstract ideas (Rittle-Johnson and Schneider, 

2014).  Pieron (1957, cited in Fischbein, 1993, p. 139) defines concepts as “symbolic representations (almost 

always verbal) used in the process of abstract thinking […]”.  As a student’s mind moves forward to van Hiele 

levels, s/he is able to interlink concepts to produce a meaning. As Fischbein (1993) points out:  

“What characterizes a concept is the fact that it expresses an idea, a general, ideal representation of a class 

of objects, based on their common features. (p. 139) […] When you draw a certain triangle ABC on a sheet 
of paper in order to check some of its’ properties […] you do not refer to the respective particular drawing 

but to a certain shape which may be the shape of an infinite class of objects (p. 141) […] all the 
geometrical figures represent mental constructs which possess, simultaneously, conceptual and figural 

properties” (p.142). 

 

 

Figure 4.9. An example of a diagrammatic illustration of students’ interplay between symbol and signal character (Patsiomitou, 2018b, 

p. 39) (modified) 

Dina van Hiele (Fuys et al. 1984) explains the meanings symbol-signal with the following example: “the 

parallelism of the lines implies (according to their signal character) the presence of a saw, and therefore 

(according to their symbolic character) equality of the alternate-interior angles” (p.218). 

Alternatively, the acquisition of students’ signal character can be seen as their competency to reverse reasoning 

in their thinking (Patsiomitou, 2012 a, b). My students, for example, identify the letter “Z” or “N” (a hidden 

symbol) when they try to prove the equality of the alternate–interior angles (Figure 4.9). If the students have the 

competency to reverse their reasoning, then they have also acquired the competency to form a proof, as they have 

the competency to order logically their utterances (Patsiomitou, 2012a, b).  
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According to Vygotsky (1987), learning is a complex interplay between scientific and spontaneous use of 

language. Vygotsky (1987) argues that "the child begins to perceive the world not only through his eyes 

[visually] but also through speech” (p. 32). As it is mentioned by many scholars, the students during the process 

change the way they define the objects. For this, learning is an internalization of social relations and 

understanding is a result of common negotiation of concepts created by students while interacting with other 

students in the class (or group) during the mathematical discussions developed (Bartolini Bussi, 1996). 

Subsequently, a definition that a student formulates is an indication of his/her van Hiele level. According to Dina 

van Hiele (Fuys et al., 1984)  

“On reaching this third level of thinking, which we call insight into the theory of geometry, we can start 

studying a deductive system of propositions […]. Definitions and propositions now come within the pupils' 
intellectual horizon” (p.219).   

Gutierrez and Jaime (1998) in their study “On the assessment of the van Hiele levels of reasoning” summarize 

“the main characteristics of the processes used to distinguish among students at the different van Hiele levels” 

(p.31) in the following Figure 4.10.  

 

 
Figure 4.10. The main characteristics of students belonging at different van Hiele levels (Gutierrez and Jaime, 1998, p.31) (adapted) 

 

In terms of geometrical figures “students can be thought of as having their own concept images and their personal 

concept definitions of [these] figures” (Fujita & Jones, 2007, p. 6).  

Tall and Vinner (1981, p. 152) defined a concept definition as “a form of words used to specify that concept” and 

concept image as “the total cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and process” (cited in, Fujita & Jones, 2007, p. 6). 

Govender & De Villiers (2003) argue that “definitions do not exist independently of human experience in some 

“ideal” Platonistic world, so that all we can do is to “discover” them. The fact that definitions are not discoveries, 

but human “inventions” for the main purpose of accurate mathematical communication is therefore not 

addressed” (p.42). 

Govender & De Villiers (e.g., 2003, p. 46) clarified students’ definitions as follows:  

 “Arbitrary definition: a different, alternative but correct definition for the same concept.  

 Necessary and Sufficient definition: It contains enough information […] and only those elements of the 
set we want to define.  

 Correct definitions: A description (definition) which contains conditions (properties) that are sufficient is 

said to be correct.[…] 
 Incorrect definitions: A definition is incorrect if it contains an incorrect property or if it contains 

insufficient properties.  

 Incomplete definitions: It contains insufficient and incorrect properties  
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 Economical definitions (and uneconomical definitions): It has only necessary and sufficient properties.  

For the use of my study I defined two more kinds of definitions students use (Patsiomitou, 2012a, 2013a, p.802):  

 Arbitrary and economical definition: is a definition which is a synthesis of arbitrary (a different, 

alternative but correct definition for the same concept) and simultaneously it has only necessary and 

sufficient properties.  

 Dynamic perceptual definition: refers to the term by which the student informally ‘defines’ a geometrical 

object by using the tools of the software. The use of computer software can effectively support the 

student’s progression through van Hiele levels.  

The introduction of DGS and computers generally into the teaching and learning of geometry has led researchers, 

educators and psychologists to incorporate these tools into their investigations in order to examine how they can 

support reasoning and raise a student’s van Hiele level.  

Olive (2000) emphasizes the need to use DGS in the teaching of secondary mathematics:  

 “At the secondary level dynamic geometry environments can (and should) completely transform the 

teaching and learning of mathematics. Dynamic geometry turns mathematics into a laboratory science 

rather than the game of mental gymnastics, dominated by computation and symbolic manipulation, that it 

has become in many of our secondary schools.  As a laboratory science, mathematics becomes an 

investigation of interesting phenomena, and the role of the mathematics student becomes that of the 

scientist:  observing, recording, manipulating, predicting, conjecturing and testing, and developing theory 

as explanations for the phenomena.” (p. 17) 

Gawlick (2005) similarly, argues that “there is a need to further develop these levels – and to utilize DGS for 

this.” (p. 361). Gawlick (2005) has conducted investigations using DGS. He introduced through his experiments a 

correspondence among the use of the DGS tools and the development of students’ van Hiele level. According to 

Gawlick (2005): 

1. “The drag mode is a key tool to advance from level 1 to level 2”.  

2. “Macros and loci suit to support the step from level 2 to level 3”. 

3. “Families of loci can be used to progress from level 3 to level 4”. (p. 365).  

According to Gawlick (2005) the characteristics of the five van Hiele levels are the following (p. 362): 

 

 
 

Figure 4.11a.  The characteristics of the five van 

Hiele levels (Gawlick, 2005, p.362) 
Figure 4.11b. Gawlick’s interpretation of van Hiele levels 

(2005, p.370) 
 

Gawlick depicted his reinterpretation of van Hiele levels, in which a student who receives scaffolding instruction 

moves to the next step up. He argues that “dynamic manipulations help students to transit from the first to the 

second van Hiele level” (p.361). Gawlick adopted Freudenthal’s (1973) view of geometry who “viewed 

progressive mathematization as the main goal of school mathematics. For this ongoing task, he provided a 

framework by recursively defined levels: The activity of the lower level, that is the organizing activity by the 

means of this level, becomes an object of analysis on the higher level” (p. 362). As Gawlick supports  

“Progression through these levels will not occur all by itself, but needs to be triggered by giving the 

students suitable tasks that really afford the building of new concepts” (p. 362). 

Gawlick (2005, p.370) argues that a dynamic approach is better suited to developing thinking at an advanced 

level on two counts: Firstly, tasks prepared for lower levels can be continued at higher levels, which helps 

familiarize students to the habit of ‘discovery’. Secondly, it provides a solid basis for the van Hiele phases of 

learning to come, since it allows students to explore the topic in a directed orientation phase and then use their 

existing knowledge to build the new concepts for themselves. Level 3 (deduction) is identified “as the level at 

which the students construct proofs, understand the role of axioms and definitions, and know the meaning of 

necessary and sufficient conditions” (Gawlick, 2005, p.370). 
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The reversion of thinking is developed and facilitated from the use of DGS tools (Patsiomitou, 2012a, b; 2018b). 

In order to emphasize my argument, I shall incorporate in the paragraphs that follow, an experiment that is 

described at length in my study “An ‘alive’ DGS tool for students’ cognitive development” (Patsiomitou, 2018b). 

The excerpt relates to an episode midway through the second phase, at which time students were working on 

tasks involving symmetry and transformations. What is described here lasted almost 30 minutes. I have reported 

the importance of the use of the custom tools in many previous studies (e.g., Patsiomitou, 2005a, 2006d, e, g (in 

Greek), 2007a, b, 2008a, d, 2012a, b, 2014). For my study, I used a custom tool I had previously created to help 

students visualize the meaning of central symmetry in correlation with the meaning of a segment’s midpoint. This 

was very crucial for the evolution of the construction of a parallelogram through its diagonals.  

 

 

 

Figure 4.12a. Implementing the custom tool “symmetry” 

(Patsiomitou, 2018b, p.44) 
Figure 4.12b. The “X” utilization scheme of the 

custom tool (Patsiomitou, 2018b, p.45) 

 
Figure 4.12c. Analysis of the use of the custom tool “symmetry” (Patsiomitou, 2014, p. 20)  

 

The construction of the tool is very simple (Figure 4.12a), and has crucial effect on the development of the 

students’ thinking (Patsiomitou, 2012a, b). The idea of creating the concrete custom tool occurred after creating a 

similar tool to construct the “golden ratio” (Patsiomitou, 2006g, p.61, in Greek). The problem I posed the 

students was this: Can you construct a rectangle using the properties of its diagonals?  
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Figure 4.13. A dual role: midpoint and/or symmetry by center (Patsiomitou, 2012a, b, 2018b) 

 

If my students implemented it on screen, they could view a segment with its midpoint. This tool helped them 

connect the meaning of symmetry by center with the meaning of a segment’s midpoint. If they applied it twice on 

a point F, they visualized an “X” symbol which students view when constructing the diagonals of a 

parallelogram. Figure 4.12a illustrates an implementation of the custom tool once on screen. In Figure 4.12b, I 

implemented the tool twice on point F. Figure 4.13c illustrates an analysis of the use of the custom tool 

“symmetry” for the construction of meanings.  

The modification of the angle between the segments (e.g., AA΄ and BB΄) as well as the lengths of the segments 

determines the kind of parallelogram which is produced/ generated (e.g., Patsiomitou, 2012a, b, p.72) (Figure 

4.14).  

 

 
Figure 4.14:  Structure of parallelogram’s diagonals (modified from Patsiomitou, 2012 a, b, p. 72) 

 

Firstly, a student-user assimilates the meaning incorporated in the use of the tool into his preexisting knowledge 

(for example s/he connects the meaning of the symmetry by center with the meaning of the segment’s midpoint). 

S/he may then face an obstacle (an instrumental obstacle) (Patsiomitou, 2011a, p. 362) with regard to the use of 

the tools, due to student lack of competence in instrumental decoding. For example, the tool cannot be applied on 

a segment to find its midpoint. This occurs because I created the tool with concrete properties (Figure 4.12c) to 

incorporate the meaning of rotating a point by 180 degrees. This assumption generates a cognitive conflict in the 

student. On the other hand the student discovers new ways to use the tool according to his/her thought 

development. This in accordance with what Steffe & Olive (1996), Olive (1999), Olive & Steffe (2002), Olive et 

al. (2010) state: the mathematical knowledge which children build up during their engagement in a mathematical 

activity, is distinguished among others to  
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‘children’s mathematics – the mathematics that children […] construct for themselves and is available to 
them as they engage in mathematical activity’;  
‘mathematics for children – the mathematical activities that curriculum developers/writers and teachers 

design to engage students in meaningful mathematical activity’ (Olive & Makar, 2010, p.136)  

 

4.2.4 Are Custom Tools a Means for the Development of Students’ Thinking?  
In my study “An ‘alive’ DGS tool for students’ cognitive development” (Patsiomitou, 2018b), I present the impact 

of the custom tool on students' thinking, as well as the development of their abstract thinking, the recognition of 

instrumented action schemes through the emergence of theorems and concepts-in-action and the verbalizing of 

concepts during the process. In the field notes mentioned below the investigation process is described 

(Patsiomitou, 2018b, p.45-48).   

 

Fieldnote 1: The students [M15 is a male student (van Hiele level: 2) and M16 is a female student (van Hiele 

level: 1)] constructed a parallelogram using the scaffolding effect provided by the tool.  This point in the research 

is quite similar to other situations I faced in my previous studies with different pairs of students. The students 

faced a cognitive conflict because they could not use the terminology accurately. Most of them confused the 

meaning of angle bisector (‘dichotomos’ in Greek) with the meaning of ‘diagonal’. This confusion did not help 

them when they had to solve a problem, because, while the diagonals do also dichotomize the angles of the 

vertexes in a few quadrilaterals (i.e. rhombus, square), this is not the case in other quadrilaterals (i.e. 

parallelogram, rectangle, and trapezium). This confusion grew during the construction of a figure -parallelogram. 

Moreover, the students have to differentiate the angle bisector of an angle from an angle bisector of a triangle (to 

an angle bisector of a parallelogram).  M15 can recognize and name properties of the parallelogram, but he still 

does not see relationships between these properties (Mason, 1998, level 2). In the concrete case M15 defines the 

object with a dynamic and economical definition. This is a sign that the student is moving to the van Hiele level 

3. M16 makes decision based on perception. She recalls the structure of a parallelogram’s diagonals. M16 

recognizes a property of the parallelogram from the ‘alive’ [active] representation on screen. M16’s pretest level 

was 1; this is clear from her answers, as she makes decisions based on perception. 

 
[1]M16: A parallelogram .What kind of parallelogram? M16 constructed two intersected segments using the custom 

tool. Then we shall join these. [sides] …but,… it is not a parallelogram! 
[2] Researcher:  What are the prerequisites for a quadrilateral to be a parallelogram? 

[3] M15: The opposite sides must be congruent; the diagonals must be dichotomized….. 
[4] Researcher: What can you view in the current situation? Do these segments dichotomize each other?   

[5] M15: Yes!  

[6] M16: They are congruent!  (She moves the figure using dragging.) 

[7] M16: They are congruent! It is a parallelogram! (She meant the half segments of a parallelogram’s diagonal). 

[8] Researcher: ok…it is a parallelogram …Can you construct a rectangle?  
[9] M15: Well,…an angle bisector … (pointing to a diagonal)  
[10] Researcher: Diagonal, you mean!  

[11] M15: Yes …they must be dichotomized and…. they must be congruent. 

[12] Researcher: Correct both! Can you construct it? 

 

[13] M15 constructed a segment with the custom tool trying to visualize as a 

diagonal of a rectangle …He stopped and looked at it on screen. 
[14] M15: I shall construct it as we constructed the parallelogram. 

[15] Researcher: What should the rectangle’s diagonals be?  

[16] M15: Congruent …I shall construct a segment with the tool... 
[17] Researcher: So, how can you construct a diagonal equal to this one?  
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[18] M15: I shall rotate it.   

[19] M16: Construct a point …not on the segment! …. Choose it and rotate the 
segment… 

[20] M16:  We should have 90 degrees…   
[21] M15: Yes! I got it!  

[22] M16: Let’s draw a straight line. 

[23] M15: We can construct a straight line …we shall construct its midpoint (it looks 
like he wants to apply the custom tool to find the midpoint of the segment). 

24] M15 selects the segment and its endpoints and tries to construct the midpoint from 

the menu.  

[25] M16: Why are you doing this? The tool (meaning the custom tool) can construct 

the midpoint.  

 
 

 

 

 

 

 

 
[26] M15: Eureka! I shall construct parallels from these points  

[27]M15: I shall join these two points. 

[28] M15: Then I shall construct the symmetrical triangle by 180 degrees ( Figure 

4.13 a, b, c) 

[29] M15 selected the midpoint and constructed a rotational symmetry of the triangle.  

[30] M15: Ok! It is readyyyy!  

[31] M16: Is it a rectangle? Drag this point. 

[32] M16: Choose a vertex to drag!  

[33] M16: It is a very nice parallelogram!  (laughing) …but you went to Trikala and 
back when you were constructing it (a Greek expression for when a person follows a 

less than easy and obvious path when carrying out a task).  

 
 

 
Figure 4.15. Analysis of students’ thought through the use of the tools, in a pseudo-Toulmin diagram (Patsiomitou, 2018b, p.46) 

 

Fieldnote 2:  M15 started with the construction of a segment using the custom tool. Then he constructed a 

segment AC and joined the point C with the point A΄. He tried CA΄ to seem vertical to CA. Then he rotated the 

triangle CAA΄ by 180 degrees. His construction of the parallelogram is complex (Figure 4.15). M15 knows the 
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properties of the figure “rectangle”, but cannot implement them to construct it. He cannot “instrumentally decode 

his words to a figure on screen” (Patsiomitou, 2011a, b, 2012a, b). He had to bring a perpendicular line down to 

the segment CA. He was familiar with the procedure for constructing a perpendicular line to a point on a 

segment, but he did not use it. On the other hand, he constructs a “parallelogram” figure using a reconfiguration 

of a triangle. The rotation of the triangle by 180 degrees could be the definition of a parallelogram when we use 

rotational transformation. M15 uses a combination of informal and formal descriptions of shapes (Level 2.2. 

according to Battista’s classification). He knows that the rotated segments are congruent [point of the dialogue 

18]. M15 is beginning to acquire formal conceptualizations that can be used to “see” and describe spatial 

relationships between parts of shapes. M16 is trying to use the tool in a catachresis mode, as she has extended the 

properties of the tool in her mind. The [alive] tool has affected her thoughts, as she has constructed an 

instrumented action scheme [point of the dialogue 25] (although she is trying to use the tool with catachresis of 

its use). 

 
 

 

 

 

 

  
 

 

Fieldnote 3:  M16 rotates point A through 90 degrees. She then uses the custom tool, applying it to points A΄ and 

O. She insisted that the diagonals are congruent (point [45]), but as M15 was not convinced by the dragging 

facility, she measured the segments and dragged them again using a combination of transformations. She ended 

up constructing a square when trying to construct a rectangle, as during the instrumental decoding she 

constructed a point A΄ in a concrete position (A΄O = OA and A΄O is perpendicular to AO). The most important 

conceptual event occurs ([49]) when she expresses a logical hierarchy regarding the inclusion of the rectangle and 

the square (Figures 4.16, a, b). 
[42] M16: Now I shall do it with the ease way … 

[43] M16 selects the custom tool and applies it to the point and to the midpoint.  

[44] M15: Againnnn, it is a parallelogram!  

[45] M16: Why? Its diagonals are congruent! 

[46] They select them and measure them.  

[47] M16: It is a rectangle!  

[48] Researcher: What is it? Drag all the vertexes!  

[49] M16: …may be it is a square … but the square is also a rectangle...so it is ok! I constructed it!  

[50] M15: The square is a rectangle??? What does she say?  

[51] I did not explain or mention why the square is also a rectangle, but posed one more question. 

 [52] Researcher: Can you construct a rectangle? Not a square. 

[53] M15: I can do it!  

[54] M15 constructs a segment AB. [55] M15: Now we shall construct a perpendicular to this point (point A). 

[56] M15 then constructs the midpoint of the segment. …I shall rotate only the half segment by 90 degrees… Oh, eureka!!  
M15 rotates the whole segment AB about center B by 90 degrees.  

[34] M16: Giiive me the mouse (laughing)…we shall construct a line ...we shall rotate this point by 180 degrees.

[35] M15: This is a parallelogram again.

[36] M16: But …its diagonals are congruent!

[37] M15: Why? …you can measure them ...drag them now…

[38] Researcher: How can you construct a segment congruent to this one?

[39] Both: we can rotate it …or reflect it …They will be symmetrical. 

[40] M16: Eureka! We can do it! 

[41] M16: We shall select this point (means the midpoint) …we shall select this endpoint and we shall rotate it by 90 

degrees. 

Figures 4.16a, b. Students’ gestures during the research process (capturing images from the video)

(Patsiomitou, 2018b, p.46)
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[57] M16: You have constructed a square again!  

[58] M15: No!  

[59] M16: Yesss! This segment is congruent to this segment!  

[60] M15: Ok! We shall construct a parallel line from this point (A΄). This will be a rectangle… 

[61] M16: This is a square as all its sides are congruent and perpendicular (she means to one another) (Figures 4.17a, b, c, 

d, 4.18)  

  

 

 
  

Figures 4.17a, b, c, d. Sequential steps of the construction 
 

 
Figure 4.18. An illustration of the use of the tools in a pseudo-Toulmin diagram (Patsiomitou, 2018b, p.48) 

 
Fieldnote 4: M15 tried to construct a rectangle. He has recalled a prototype image of a rectangle with its axis of 

symmetry which we constructed in a previous session. He ultimately constructed a rectangle whose side is half 

the length of the side of the square ABA΄C (Figure 4.18). He is in transition to Level 3, but still lacks the 

competency to instrumentally decode a figure. M16 did not delete all the lines. She had something in mind while 

M15 constructs his specialized kind of rectangle. She was not sure about the next step, but no one could take the 

mouse from her hand. She implied that BC΄ is a perpendicular line, as she constructed point C΄ by rotating point 

C, and she implied that CC΄΄ is perpendicular to CA. She did not prove the sequential steps using deductive 

reasoning, but the construction steps she follows is an indicative of the development of abstract thinking. M16 

developed what Simon (1996) calls transformational reasoning. What is transformational reasoning? In the 

words of Simon (1996): 

 “Transformational reasoning is the mental or physical enactment of an operation or set of operations on 

an object or set of objects that allows one to envision the transformations that these objects undergo and 

the set of results of these operations. Central to transformational reasoning is the ability to consider, not a 

static state, but a dynamic process by which a new state or a continuum of states are generate” (p. 201)  

Fieldnote 5: M16’s conception of the meaning of the rectangle [62-67 of the dialogue] and the rectangle’s 

instrumental decoding was the most incredible I have ever seen a student display when using the concrete tool 

(Figure 4.19). While a concept is an idea shared and accepted by the mathematical community, a student’s 

conception refers to a student’s explanation of a concrete concept. In other words, it relates to with the way the 

student shapes the idea in his/her mind. M16 made many transformations in her mind in order to construct the 
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rectangle. She constructed an arbitrary point C and she rotated it by 180 degrees. She implied the congruence of 

the triangles CAM, MBC΄, and subsequently the congruency of the segments C΄B, CA. In order to construct a 

segment equal to the segment C΄B, she used the tool. In other words, she constructed a conceptual object in her 

mind in which she encapsulated the properties of the tool. The implementation of the tool once again to construct 

the diagonal C΄΄C΄΄΄is a strong indication that she was absolutely sure the diagonals of the rectangle would be 

congruent. She used the tool appropriately and efficiently (not with economy or catachrese). Moreover, she 

displays sequential place-way and verbal competency when using the tools. All these are strong indications that 

she has developed abstract thinking. 

 

 

 
Figure 4.19. M16’s analysis of the construction in in a pseudo-Toulmin diagram (Patsiomitou, 2018b, p.48) 

 
Regarding my interaction with the students, I think it was the necessary for the students to move on during the 

process. As Burkhardt (1988) notes,  

“[…] the teachers must perceive the implications of the students' different approaches, whether they may 
be fruitful and, if not, what might make them so.  pedagogically [also] the teacher must decide when to 

intervene, and what suggestions will help the students while leaving the solution essentially in their hands, 

and carry this through for each student, or group of students, in the class” (Burkhardt, 1988, p. 18). 

When analyzing the students’ dialogues, I used the meanings I introduced in my description of the theoretical 

underpinning. Duval’s (1999) theory views students’ perceptual apprehension as complementary to Vergnaud’s 
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(1998) theory of operational invariants in the context of a process of instrumental genesis. This is in accordance 

with what Fou-Lai Lin & Kai-Lin Yang (2002) support:  

“While Duval’s cognitive architecture, an organization of several systems, put emphasis on multifunctional 

registers, Vergnaud’s cognitive theory of practice put emphasis on the mechanism of conceptual field. 

Their perspectives on cognition seemed complementary for analyzing how subjects developed definitions 

and propositions of geometrical figures. Duval supported us a framework of perceptual categories to 

describe conversion and coordination between different registers, and Vergnaud supported us a framework 

of mental organization to explain cognitive mechanisms” (p. 20). 

During the research process, students applied the tools and constructed what Rabardel (1995) calls utilization 

schemes of the tool/artefact. This process led to the development of schemes of instrumented action. The students 

assimilate the figures properties and are in the stage to perceive and accommodate the interrelationships between 

the properties of the figures. The next step is to use deductive processes and understand class inclusions. This 

result will occur when the students have transformed the figures’ symbol character into figures’ signal 

character—a transformation that corresponds to the third level of geometric reasoning. Moreover, the students 

used the tools efficiently or in an economical (/ catachresis) mode. They constructed schemes of instrumented 

action as a result of the efficiently use of the custom tool or its use in an economical mode. They extended its use 

in a catachresis mode to construct the midpoint of a segment. This served for the construction of meaningful 

mental schemes to solve the problem. Consequently, the ‘instrumented action’ scheme, which is based on the 

construction and use of the custom tool, led students to construct mental objects. In the sequence of mental 

activities the students followed, mathematical knowledge and knowledge of the tool were combined. They 

constructed a first order instrumented action scheme and shaped the meaning “symmetry of point by 180 

degrees”, then a second order instrumented action scheme and shaped the meaning “the diagonals of 

parallelogram are dichotomized”. According to Drijvers & Trouche (2008) 

The difference between elementary usage schemes and higher–order instrumented action schemes is not 

always obvious. Sometimes, it is merely a matter of the level of the user and the level of observation: what 

at first may seem an instrumented action scheme for a particular user, may later act as a building block in 

the genesis of a higher-order scheme. […] a utilization scheme involves an interplay between acting and 
thinking, and that it integrates machine techniques and mental concepts […] the conceptual part of 
utilization schemes, includes both mathematical objects and insight into the ‘mathematics of the 

machine’(p. 372) 

The use of a combination of transformations using dragging (and measuring or the rotating and/or 

implementing custom tools) helped them to shape the figural concept first of “the parallelogram”, then of “the 

square”, and finally of “the rectangle”. The implementation of the custom tool helped students to shape a 

schematic entity in terms of their perceptions, and then led them through various stages to more abstract levels of 

cognitive perception. This also agrees with Edelman’s viewpoint (1989/1992): “in forming concepts,...the brain 

areas responsible for concept formation contain structures that categorize, discriminate, and recombine the 

various brain activities occurring in different kinds of global mappings” (quoted in Davis & Tall, 2002).  

This means that custom tools can serve as structural units of knowledge, as conceptual objects and hence as 

‘schemes’, too, including the structure and function of the encapsulated objects (e.g., Patsiomitou, 2008d). In my 

study “An ‘alive’ DGS tool for students’ cognitive development” (Patsiomitou, 2018b), I conclude that the 

participated students M15, M16 developed efficient strategies to use the DGS tools. M15’s actions are the reverse 

of the actions he used to construct the axis of symmetry of a rectangle. He then constructed the symbol character 

of the rectangle. He did not make a rectangle with arbitrary sides, but rather a concrete rectangle. This is an 

indication that he is in transition to level 3, as he had not constructed the signal character of the rectangle. M16 

has developed the competency to reverse her thoughts through the competency to make complex use of the tools 

to instrumentally decode the properties of the figures. The symbol character of the figures reflects in her thought. 

She has constructed the interrelationship between the meanings of the “parallel line in the middle of the distance 

of two parallel lines” with the meaning of axis symmetry and the meaning of the congruency of the diagonals of a 

rectangle. She does not express her thoughts in words, but she has been sufficiently developed the rectangle’s and 

square’s signal character. In the current study, the participating students constructed: (a) the utilization scheme of 

the symmetry by center in correspondence with the midpoint of a segment; (b) the “X” utilization scheme of the 

custom tool, which was very important for the construction of a broader scheme, namely the instrumented action 

scheme of “the diagonals of a parallelogram”. In Gawlick’s opinion (2005) in a dynamic approach “the students 

can explore the topic in a directed orientation phase and then build the new concepts for themselves, drawing on 
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their previous knowledge”[...] “so students get accustomed to the tools as well as to a “discoverer’s” habit of 

mind”(p.370). As Pierre van Hiele writes (1986, p. 168) a figure gets the “symbol character” when it becomes the 

representative of its properties as a unity. In my opinion, when the student is able to reverse his/her thoughts and 

to anticipate the symbol of the figure, then the figure has received its signal character. The student can now list 

the similarities and differences between figures. S/he can also explain why a characteristic is not included in 

figures’ characteristics 

Many researchers (for example Goos, Galbraith & Renshaw, 2002; Dekker & Elshout-Mohr, 2004) recognise the 

“potential of working in small groups” (Dekker & Elshout-Mohr, 2004, p. 39). Moreover, the mathematical 

discourses developed in a small group mediated by cognitive tools such as the Geometer’s Sketchpad enhance the 

social interactions and students’ mathematical communication. According to Sfard (2001) “most of our learning 

is nothing else than a special kind of social interaction aimed at modification of other social interactions. […] 
Thus, whatever the topic of learning, the teacher’s task is to modify and exchange the existing discourse rather 

than to create a new one form scratch. If so, we can define learning as the process of changing one’s discursive 

ways in a certain well-defined manner.” (p.3) 

Sang Sook Choi-Koh (1999) investigated the development of students’ thinking, using The Geometer’s 

Sketchpad software. In his PhD thesis he identified four learning stages in terms of symbol, signal and 

“implicatory” properties.  He also used “active visualization”, meaning “the process of forming and interpreting 

geometric, dynamic representations within a computer environment” (1999, p. 302).  Figure 4.20 depicts Choi-

Koh’s van Hiele visual model of instruction.  

 

 

Figure 4.20. Choi-Koh’s (1999, p.302) van Hiele visual model of instruction 

Figure 4.21 illustrates an adaptation of the van Hiele model, which I created in relation to Choi-Koh’s (2001) and 

Battista’s (2007) levels of thinking, through the use of “active, alive tools” (Patsiomitou, 2018b). To clarify, 

when a student interacts with figural materials (for example a digital figure in a DGS environment), s/he interacts 

with the figure’s characteristics: the equality of a square’s sides and angles, the perpendicularity of a kite’s 

diagonals, etc. Now s/he has in his/her mind which of these characteristics determine the concrete figure. During 

the second period of instruction s/he acquires a gradual competency to construct figures and during the third 

period of instruction the students are able to gradually construct proofs. In other words, this will be a change in a 

student’s informal discursive way to express his or her thoughts in formal language.  

In such a discursive process the students play the role of the ‘actor’ in the activity of the mathematical discussion 

and the teacher the role of the participated ‘observer”, who frequently intervenes with crucial questions designed 

to prompt mathematical discussion. Freudenthal (1991) “criticized the constructivist epistemology from an 

observer’s point of view” [and] “saw mathematics from an actor’s point of view” (Gravemeijer & Terwel, 2000, 

p.785). Which is to say, constructing meaningful activities for the students by imagining how the students might 

interact with the instructional materials, what obstacles they had to overcome, the possible (or multiple) solutions 

they could find, how their thinking could be raised due to the evolution of mathematical discussions they 

participate in. This is in accordance with what Freudenthal argues that “doing mathematics is more important 

than mathematics as a ready-made product” (Gravemeijer & Terwel, 2000, p.780) Building on a theoretical 

perspective of learning, Bowers & Stephens (2011) support that  
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first, if learning is viewed as a socially situated practice, then (a) teaching can be seen as the practice of 

orchestrating mathematical discourses and (b) learning can be seen as the ways in which students engage 

in these discourses. In short, the role of any teacher (or teacher educator) can be seen as negotiating the 

emergence of conceptual discourse that involves the use of appropriate tools [...] The role of the student 

is also intricately related to his or her participation in the discourse with a focus on the ways in which 

tools mediate the discussions and acceptable ways of proffering and debating mathematical ideas. (p. 

287)  

 

 
Figure 4.21. An adaptation of the van Hiele model (Patsiomitou, 2018b, p.50) (modified) 

 

Building on the ideas mentioned above I think that dynamic reinvention of knowledge is the kind of 

knowledge the students could reinvent by interacting with the artefacts made in a DGS environment, “knowledge 

for which they themselves are responsible” (Gravemeijer & Terwel, ibid.)  

4.3. The Development of Student’s Mathematical Competencies 

Another point of view suggests that the development of student’s geometrical thinking results from the 

development of their skills (Hoffer, 1981) or competencies in mathematical thinking and reasoning, 

argumentation, modeling e.g., (Niss, 1999) etc. Hoffer (1981) proposed the following types of skills, reported by 

Morris (1986, p. 162-163) and Abdefatah (2010, p.46). (Figures 4.22, 4.23) 
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Figure 4.22. Hoffer’s (1981) types of skills (Morris, 1986, p. 162-163) (adapted) 

 

 
Figure 4.23. Hoffer’s (1981, p.15) matrix of geometric thinking levels and geometric skills (cited in Abdefatah, 2010, p.46)(adapted) 

 

Therefore, if the teaching process of students is aimed to develop these skills then it leads to the development of 

their geometrical thinking. Niss (1999) and his colleagues proposed the following competencies that can be 

described as an individual student’s ability to (e.g., Niss, 1999, 2003; Neubrand et al. 2001): 

Mathematical thinking and reasoning:[…] mastering mathematical modes of thought; posing questions 

characteristic of mathematics; knowing the kind of answers that mathematics offers, distinguishing among 

different kinds of statements; understanding and handling the extent and limits of mathematical concepts; 

generalizing results to larger classes of objects. 

Mathematical reasoning and argumentation: […]knowing what proofs are; knowing how proofs differ from 

other forms of mathematical reasoning; following and assessing chains of arguments; having a feel for 
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heuristics; creating and expressing mathematical arguments; devising formal and informal mathematical 

arguments, and transforming heuristic arguments to valid proofs, i.e. proving statements. 

Mathematical communication: […] being able to communicate, in, with, and about mathematics; expressing 

oneself in a variety of ways in oral, written, and other visual form; understanding someone else’s work.  

Modelling competency: […] being able to analyse and build mathematical models concerning other subjects or 
practice areas; structuring the field to be modeled; translating reality into mathematical structures; 
interpreting mathematical models in terms of context or reality; working with models; validating models; 

reflecting, analyzing, and offering critiques of models or solutions; reflecting on the modeling process; 
communicating about the model and its results; monitoring and controlling the entire modeling process. 

Problem posing and handling competency: […] problem identifying, posing, specifying; solving different kinds 

of mathematical problems. 

Representation competency: […] being able to handle different representations of mathematical entities; 
decoding, encoding, translating, distinguishing between, and interpreting different forms of representations 

of mathematical objects and situations as well as understanding the relationship among different 

representations; choosing and switching between representations. 

Symbol and formalism competency: […] decoding and interpreting symbolic and formal mathematical language, 
and understanding its relations to natural language; understanding the nature and rules of formal 

mathematical systems (both syntax and semantics); translating from natural language to formal/symbolic 

language; handling and manipulating statements and expressions containing symbols and formulae. 

Communicating in, with, and about mathematics competency: […] understanding others’ written, visual or oral 

‘texts’, in a variety of linguistic registers, about matters having a mathematical content; expressing oneself, 

at different levels of theoretical and technical precision, in oral, visual or written form, about such matters. 

Aids and tools competency: […] being able to make use of and relate to the aids and tools of mathematics, 
including technology when appropriate.  

The visualization competency and the competency of students to develop recursive processes conceptually and 

structurally (e.g., for the construction of fractal objects in a DGS) is also very important for the solution of 

problems with fractal constructions (Patsiomitou, 2005a, 2014).  

Competence in the DGS environment depends on the competence of the cognitive analysis which students bring 

to bear when decoding the utilization of software tools, namely the instrumental decoding competence 

(Patsiomitou, 2011a, b), based on Duval’s (1995a,b) semiotic analysis of students’ apprehension of a geometric 

figure.  

4.4. Proof and Proving, Argumentation and Deductive Reasoning 

The tenet of proof has been analyzed from a range of pedagogical, historical, and cognitive viewpoints. Olivero 

(2003, pp.10-11) in her remarkable PhD thesis reports the frameworks in which proof has been discussed:  

 “Historical and epistemological studies concern the evolution of the notion of proof over time (see e.g. 

Barbin, 1988; Arsac, 1999b) 

 The status of mathematical objects, properties and relations involved in the teaching and learning of 

proof (see e.g. Balacheff, 1987; Thurston, 1995; Hanna, 1996; Lolli, 1999; Rav, 1999) 

 Students’ cognitive processes when constructing or understanding proofs (see e.g. Duval, 1991; Harel & 

Sowder, 1996; Sowder & Harel, 1998; Garuti, Boero, & Lemut, 1998; Bartolini Bussi, 2000; Healy, 

2000a; 2000b; Maher & Kiczek, 2000; Simon, 2000; Küchemann & Hoyles, 2001) 

 The role of proof in the mathematics curriculum (see e.g. Hanna, 2000; Knuth, 2000) 

 Possible ways of working with proof in the teaching and learning context (see e.g. Hoyles, 1998; 

Sekigushi, 2000)” (cited in Olivero, 2003, p. 10-11). 

De Villiers (1999b) argues that one of the biggest problems identified by researchers is how to teach geometrical 

proof to students, which is an indispensable ingredient in their cognitive development.  

In recent decades, issues regarding formal proofs, argumentation, conjecturing and reasoning has been thoroughly 

investigated by the mathematical community with regard to mathematics instruction (e.g. Hanna, 1983a, b, 

1989a, b, 1995, 1996, 1998, 2000a, b, 2001; Duval, 1991, 1996; De Villiers, 1990; Mason & Pimm, 1984; 

Semadeni, 1984; Markman, 1991; Boero et al, 1995; Chazan, 1993; Pedemonte, 2001, 2002, 2007; Furinghetti et 
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al., 2001; Mariotti, Bartolini Bussi, Boero, Ferri & Garuti, 1997; Arzarello, Micheletti, Olivero, Paola & Robutti, 

1998; Balacheff, 1999; Rav, 1999; Rodd, 2000; Hanna &Janke, 1993, 1996, 1999, 2002; Forman et al, 1998a, b; 

Harel & Sowder, 1998, 2007, 2009; Harel & Tall, 1991; Hoyles & Kuchemann, 2002; Sacristán, & Sánchez, 

2002; Chi Ming, 2005; Yang, & Lin, 2008; Patsiomitou, 2012a, b). A few researchers have also suggested 

changes to the way in which geometry it taught and to the geometry curriculum (e.g., ΜcDonald, 1989, p.425). 
Others, such as Harell (2008) argue that a Geometry curriculum is neither appropriate nor convenient if its main 

aim is not to encourage students’ competence in deductive reasoning. Harell argues that instruction must lead to 

students developing ways of understanding and thinking (Harell, 2008, p. 487). Similarly, Healy & Hoyles 

(1998), state that proof lies at the heart of mathematical thinking and that it is the deductive reasoning that 

supports the process of presenting proofs, which distinguishes mathematics from the empirical sciences.  

“Proof is the heart of mathematical thinking, and deductive reasoning, which underpins the process of  

proving,  exemplifies  the  distinction  between  mathematics  and  the  empirical  sciences”  (Healy  and  

Hoyles, 1998 p.1).  

In Greek secondary-level schools, students are taught Euclidean Geometry. Jones (2002) in his study “Issues in 

the teaching and learning of geometry” states: 

“Around 300 BCE much of the accumulated knowledge of geometry was codified in a text that became 

known as Euclid's Elements. In the 13 books that comprise the Elements, and on the basis of 10 axioms 

and postulates, several hundred theorems were proved by deductive logic. The Elements came to epitomise 

the axiomaticdeductive method for many centuries. It is likely that no other works, except perhaps the 

Christian Bible and the Muslim Koran, have been more widely used, edited, or studied, and probably no 

other work has exercised a greater influence on scientific thinking. While some parchments do exist from 

the 9th century, it is said that over a thousand editions of Euclid's Elements have appeared since the first 

printed edition in 1482, and for more than two millennia this work dominated all aspects of geometry, 

including its teaching” (p.123).  

Secondary-level students in Greece face many difficulties trying to learn the definitions and theorems in the 

geometry textbook and applying them to their geometrical constructions. For example, in the early years of Greek 

secondary school, the students are taught what kinds of quadrilateral there are; the focus is firstly on the main 

properties of quadrilaterals, with regard to its sides and angles, which they memorize. As a result, students do not 

remember them in subsequent years. They only remember very basic notions regarding perpendicularity and 

parallelism of the sides of quadrilaterals. Furthermore, construction of parallel and perpendicular lines is taught in 

the first year of secondary school and is performed by the students with a ruler and a compass; nevertheless, with 

the use of static means, the students are usually satisfied with producing ‘soft constructions’ which fulfill visual 

criteria. In the first year of secondary-level school, the meanings related to quadrilaterals are introduced in class 

in a strict form, with emphasis on the relations of inclusion and categorization, which the students do not 

comprehend when these meanings are introduced in a static environment. This becomes obvious when the 

students are asked to list common and non-common properties of quadrilaterals, (e.g. the square and the 

rectangle). The notion of symmetry and relative constructions are included in the Mathematics' textbook used by 

first-year secondary-school students. However, insufficient time is devoted to understanding them, as the 

Geometry textbook includes a large number of geometrical notions which have to be taught. Jones (2002) self 

responding to his question “why include geometry in the school mathematics curriculum” gives the following 

answer:  

“The study of geometry contributes to helping students develop the skills of visualization, critical thinking, 

intuition, perspective, problem-solving, conjecturing, deductive reasoning, logical argument and proof. 

Geometric representations can be used to help students make sense of other areas of mathematics: fractions 

and multiplication in arithmetic, the relationships between the graphs of functions (of both two and three 

variables), and graphical representations of data in statistics. Spatial reasoning is important in other 

curriculum areas as well as mathematics: science, geography, art, design and technology” (p. 125). 

Usiskin, 1982, Senk, 1989 and other scholars have conducted studies using van Hiele levels as a possible 

predictor of success in proof writing. According to Usiskin (1982, p. 87)  

“about 70% of the students who studied proof could do simple proofs requiring only one deduction beyond 

those made from the given. Thus about 30% cannot do even the simplest proofs. About half of the students 

who study proof can do proofs requiring longer chains of reasoning”. 

Research also validates the difficulty of the Geometry content. Jones (2002) argues that “[…] proof had to be 
reproduced by students exactly in the form given in Euclid (including in the order the proof occurred in Euclid). 
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For very many pupils their experience of geometry was far from positive” (p. 127). The above research results 

encouraged researchers to discover ways of introducing formal proofs into geometry/maths instruction 

inductively, using computer software. For example, mathematical microworlds (e.g. Logo, DGS software) 

increase the chances of students becoming able to construct geometrical meanings, an area in which school 

textbooks have proved unsuccessful (Clements, Battista & Sarama, 2001, p.6). Govender and De Villiers (2003) 

argue:  

“[…] the dynamic nature of the rhombi constructed in Sketchpad seemed to make the acceptance of the 

hierarchical classification of a square as a special rhombus far easier than in a traditional non-dynamic 

environment, as the student teachers could easily drag the constructed rhombus until it became a 

square.[…]” (p. 57). 

The transition from the traditional teaching of Euclidean proof to new trends driven by the availability of 

microworlds for teaching mathematics has increased the interplay between, on the one hand, what is referred to as 

investigation or exploratory experimentation using computer software and, on the other, conjecturing, convincing 

with argumentation and proving.  

Researchers has studied the impact DGS software environments has had to the development of arguments and the 

construction of meanings in Geometry (e.g., Arzarello, Micheletti, Olivero & Robutti, 1998; Laborde, 1998; 

Christou, Mousoulides, Pittalis and Pitta, 2004a,b, 2005; Patsiomitou, 2008a, b, 2010, 2012a, b, 2018b). Proof 

and proving have been conducted, also using DGS environments or other software, to bridge the gap between the 

empirical–experimental and theoretical parts. As a teacher of mathematics I am constantly aware that we have to 

differentiate the teaching of proof (e.g., Ball et al., 2002) from what is the product of proof and what is the 

process used to arrive at the product of proof (Ferrando, 2005, p. 37). My thorough study on proof and proving 

was influenced by the studies of numerous researchers. In the current section, I shall try to briefly report the most 

important parts of the research studies mentioned below: 

 Toulmin’s (1958) model for the analysis of argumentation;  

 Peirce’s (1960) kinds of reasoning, for example inductive, abductive, deductive;  

 Simon’s (1996) introduction of transformational reasoning;  

 Hanna’s (2000, 2001) functions of proof;  

 Bell’s (1976) identification of students’ justifications; 

 Balacheff’s (1998) justifications of students to “pragmatic” justifications and “intellectual” justifications 

and the complexity of students’ way of proving;  

 Harel & Sowder’s (1998) proof schemes classification;  

 Duval’s (1991) structure of proof or reasoning by the triad: entry proposition or given statement, rule of 

inference, and conclusion; 

 Duval’s (1998, 1999) cognitive analysis of argumentation and mathematical proof ; 

 De Villier’s (1999b) study “Rethinking Proof with The Geometer’s Sketchpad” and his expansion on 

Bell’s work: Proof as Explanation, Proof as Discovery, Proof as Verification, Proof as Challenge, Proof 

as Systemization.  

For a teacher struggling to teach Euclidean proof in a high school geometry class, the proving process--including 

the students’ exploratory experimentation--is more important than its product, which is the rigorous-formal proof. 

In my opinion, there is some confusion, even among teachers of mathematics, about the meanings of justifying, 

conjecturing, arguing, explaining etc.  

The topic of proof is discussed extendedly in the study of Hanna (1983) “Rigorous proof in mathematics 

education” (Hanna, 1983b). Hanna (1989b) highlights the importance of distinguishing between “proofs that 

prove'' and “proofs that explain”. Hanna (2000b) also reports a list of the functions of proof and proving (Bell, 

1976b; de Villiers, 1990, 1999; Hanna and Jahnke, 1996): 

 “verification” : concerned with the truth of a statement 

 explanation : providing insight into why it is true  

 systematisation : the organisation of various results into a deductive system of axioms, major concepts 

and theorems  

 discovery: the discovery or invention of new results 

 communication: the transmission of mathematical knowledge 

 construction: of an empirical theory  

 exploration : of the meaning of a  definition or the consequences of an assumption  
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 incorporation:  of a well-known fact into a new framework and thus viewing it from a fresh 

perspective”(Hanna, 2000b, p. 8). 

De Villiers (1999b) in his study “Rethinking Proof with Geometer's Sketchpad” states that “discovery, intellectual 

challenge, verification, systematisation”, are a range of functions of proof, that have to be communicated to 

students in a meaningful way, following the sequence shown in the Figure 4.24  (Jones, 2002, p. 132).  

 

 
Figure 4.24.  A learning sequence of functions of mathematical proof (De Villiers, 1999b, cited in Jones, 2002, p. 132) 

 

De Villiers (2004b) also, in his study “The role and function of quasi-experimental methods in mathematics” 

reports the methods “that refer to all non deductive methods in mathematics involving experimental, intuitive, 

inductive or analogical reasoning” (p. 398). These are the following:  

 Conjecturing: looking for an inductive pattern, generalization etc.; 

 Verification: obtaining certainty about the truth or validity of a statement or conjecture; 

 Global refutation: disproving a false statement by generating a counter-example; 

 Heuristic refutation: reformulating, refining or polishing a true statement by means of local counter-

examples; 

 Understanding: the meaning of a proposition, concept or definition or assisting with the discovery of a 

proof;  

In my opinion, before students try to prove formally, or a teacher teaches them Euclidean proofs, it is important 

for their understanding that they are given the opportunity to discover, explain and experiment with regard to the 

correctness of a statement, proposition or theorem using a computer environment. The important thing is that 

students become able to engage in “analysis” and “synthesis”, as they interact with the software (or paper-pencil) 

environment. In general, analysis is a Greek work which has been used since antiquity to denote a process of 

breaking down an intellectual or substantial whole into its component parts; in contrast, synthesis denotes the 

combination of separate elements or components with the aim of forming a coherent whole. 

 

 
Figure 4.25. Components of the process of investigation (Bell, 1979, p. 362) (adapted) 

 

Bell (1976) distinguishes students’ justifications into two categories: “empirical justifications” (characterized by 

the use of examples to convince someone), and “deductive justifications” (characterized of the use of deduction to 

connect data with conclusions) (cited in Marrades & Gutierrez, 2000, p.90). In the Figure 4.25, Bell (1979) 

illustrates the relations among the notions of (a) investigation and problem solving, (b) Proof, and (c) 

Representation, generalisation and abstraction. As Bell (1979) states:  
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“Representation, generalisation and abstraction are certainly all important aspects of mathematical activity 

but the whole is greater than its parts, and the term 'mathematisation' has been used to denote the particular 

combination of these activities in the way we recognise as mathematics” (p. 372)[...] “If generalisation is 

the characteristic pure mathematical process, that of applied mathematics is modelling, that is the 

representation of some situation via a diagram, a symbolic expression or some other form of analogy” (p. 

376). 

Duval (1991) expressed the triad of proof or deductive reasoning with three elements:  Entry propositions (or 

given statements or data), Rules of inference, and New propositions (or conclusion) as it is pictured in the Figure 

4.26. The "inference" step is the passage from an hypothesis (or en entry proposition, or given data) to a 

Sumperasma (conclusion or a new proposition), thanks to a given rule. 

 

 
Figure 4.26. Duval’s (1991, 1996) structure of deductive reasoning (Olivero, 2003, p.36; Miyakawa, 2004, p.337) (an adaptation for the 

current study) 

 

According to Ferrando (2005) the notions of argumentation and proof are different for Duval (1991):  

“Duval (1991) makes a clear distinction between argumentation and deductive reasoning. Argumentation is 

based on the structure of the language and on the listener’s representations; therefore the semantic content 

of the propositions is fundamental. Deductive reasoning is characterized by an “operational status” (statut 

opératoire) given by: 1) Entry propositions (propositions données), which are hypotheses or conclusions of 

a previous step; 2) Rules of inference (régles d’inférence), which are axioms, theorems, and definitions; 3) 

New propositions (obtenues) which are the result of the inference. In a deductive step the propositions are 

not related to each other for their semantic value, but only by virtue of their operational status.  According 

to Duval a proof can be so defined only if it is a logical-formal derivation, there is no concern for its 

semantic value but only for the syntactic value” (p. 44) 

Pedemonte (2002) in her study “Relation between argumentation and proof in mathematics: cognitive unity or 

break?” states:  

“Differences between argumentation and proof have been deeply analysed in the work of R. Duval: despite 

the use very similar linguistic forms and propositions connectives, there is a gap between the two 

processes. According to Duval (1991), the structure of a proof may be described by a ternary diagram: 

data, claim and inference rules (axioms, theorems, or definitions). Within proofs, the steps are connected 

by a recycling process (Duval, 1992, 1993) the conclusion of a step serves as an input condition to the next 

step. On the contrary, in argumentation, inferences are based on the contents of the statement. In other 

words the connection between two propositions is an intrinsic connection (Duval, 1992-1993): the 

statement is considered and re-interpreted from different points of view. For these reasons the distance 

between proof and argumentation is not only logic but is also cognitive: in a proof, the epistemic value 

depends on the theoretical status whereas in argumentation it depends completely on the content. Then it is 

easy to observe the cognitive distance between the two processes” (p. 72-73) 

Miyakawa (2004) argues also, that “As the rule of inference connects two statements, it can be expressed in the 

form of an implication “If A then B”..[...]” (p. 337). 

In this context, a proof step means the application of a theorem the student knows. Moreover, if we investigate 

students’ competency to geometric proofs in the lower secondary level (Ufer & Heinze, 2008, p.1) we can see 

that usually it consists of one, two or three “proof steps”. As Ufer and Heinze (2008) argue, it is unusual for 

multi-step proofs to be constructed stepwise, but building a plan for the proof will require ideas for all or most of 

the steps, which must be looked at all together. To do this, the students need to be able to understand that 
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statements’ status can differ/change (e.g. the hypothesis for the first step in a proof is also the premise for a 

second step) and to be able to use this understanding to form chains of deductive arguments (Duval, 1991). 

Balacheff (1988) divides justification of students to “pragmatic” justifications and “intellectual” justifications.  

Balacheff defines as  

 “Pragmatic proofs” those proofs which rely upon action (p.2). 

 “Intellectual proofs” those proofs which use verbalizations of the properties of objects and of their 

relationships (p.2)   

Balacheff further divides the pragmatic justification into  

 Naive empiricism : justification by a few random examples, affected by prototypes (p.5) 

 Crucial experiment: justification by carefully selected examples; it identifies awareness of the problem of 

the validity of a mathematical statement, taking into account the problem of generalization (p.6). 

 Generic example: justification by an example representing salient characteristics of a whole class of cases 

(p.7).   

Balacheff further divides the intellectual justification into 

 Thought experiment: the justification is disassociated from specific examples, eliminating the particular  

 Symbolic calculations: the justification is based solely on transformations of symbols or symbolic 

expressions 

Balacheff (1988) pinpoints that  

“The passage from pragmatic proofs to intellectual proofs requires a cognitive and linguistic base. Our disr

egard of the complexity of this passage could be one of the main reasons for the failure of the teaching of 

mathematical proof, since this passage is very often considered only at the logical level” (p. 10).  

Sacristan & Sanchez (2002, p. 170) in their study “Processes of proof with the use of technology: discovery, 

generalization and validation in a computer microworld” give emphasis to the role of language for the transition 

from a pragmatic proof to an intellectual proof, as a pragmatic proof is “based on effective actions carried out on 

the representations of mathematical objects”. Rather, intellectual proof requires the use of language to formulate 

the properties of and relations between mathematical objects; intellectual proof is detached from the actions on 

objects, as these actions have been interiorized.  Language facilitates communication between the students in a 

group, allowing them to describe, clarify and discuss the structures they observe and re-conceptualize identified 

misconceptions. Students discuss how to solve problems and learning occurs in a context of collaborative, social 

interactions that leads to understanding (Roehler & Cantlon, 1997).  

Marrades & Gutierrez (2001) in their study “Proofs produced by secondary school students learning geometry in 

a dynamic computer environment” present an analytic framework to describe and analyze students’ answers to 

proof problems (p. 87).  According to Marrades & Gutierrez (ibid.) “a complete assessment of students’ 
justification skills has to take into consideration both products (i.e., justifications produced by students) and 

processes (i.e., the ways in which students produce their justifications” (p. 88). In the following Figure 4.27 

Marrades & Gutierrez (ibid.) summarize the types of justifications which have previously reported in details in 

their study.  

 

 
Figure 4.27. Types of justification (Marrades & Gutierrez, 2001, p. 94) 
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Harel & Sowder (1996) in their study “Towards Comprehensive Perspectives on the Learning and Teaching of 

Proof” (also Sowder & Harel (1998) define proving as  

“the process employed by an individual to remove or create doubts about the truth of an observation”                   

(Harel & Sowder, 1996, p.6; Harel, 2001).  

They argue that proving process is divided in two sub-processes:  

 ascertaining, is the process employed by an individual to remove /or eliminate his/her doubts about the 

truth /validity of an assertion and it is directed internally 

 persuading, is the process employed by an individual or a community to eliminate other people’s doubts 

about the truth /validity of an assertion and it is directed externally (Harel & Sowder, 1996, p. 6). 

Harel & Sowder (1996) define “proof schemes” as a combination of the following three definitions, (p. 6) 

1. Conjecture versus fact: an assertion can be conceived by an individual either as a conjecture or as a fact 

(a conjecture is an assertion made by an individual who is uncertain of its truth) [...]. 

2. Proving (as mentioned above)[...] 

3. Ascertaining versus persuading (as mentioned above). 

Harel & Sowder further consider that a taxonomy of proof schemes consists of three classes: (a) The external 

conviction proof schemes class, (b) The empirical proof schemes and (c) The deductive proof schemes class 

(Figures 4.28a, b).  

 

 
Figure 4.28a. Proof schemes (Harel & Sodwer, 1996; Harel, 2001, p. 41) (an adaptation for the current study) 

 

The external conviction proof scheme class is distinguished among three proof schemes:  

 Authoritarian proof scheme  

 Ritual proof scheme 

 Non-referential symbolic proof scheme  

The empirical proof schemes class is distinguished between two proof schemes 

 Inductive proof schemes 

 Perceptual proof schemes 

The deductive proof schemes class is distinguished between two proof schemes 

 Transformational proof schemes  

 Axiomatic proof schemes  

Harel (2001) in his study “The Development of Mathematical Induction as a Proof Scheme: A Model for DNR-

Based Instruction” offers a taxonomy of deductive proof schemes (transformational proof schemes and axiomatic 

proof schemes) consisting of more subcategories as it is illustrated in the Figure 4.28b.  

 



[142] 

 

 
Figure 4.28b. Deductive proof schemes (Harel, 2001, p.41) (adapted) 

 

Harel (2008) also in his study “A DNR Perspective on Mathematics Curriculum and Instruction Part I:  Focus on 

Proving” defines “proof” and “proof schemes” as follows:  

“A proof is the particular argument one produces to ascertain for oneself or to convince others that an 

assertion is true, whereas a proof scheme is a collective cognitive characteristic of the proofs one 

produces” (p.489).   

Harel (2008) gives several examples to explain the difference regarding his classification of proof schemes. 

Furthermore, according to Harel “A proof is a cognitive product of the proving act, and proof scheme is a 

cognitive characteristic of that act” (p.489). Moreover, “a proof is a way of understanding, whereas a proof 

scheme is a way of thinking” (p. 490) (Figures 4.28c, d). 

 
Figure 4.28c. The triad of proving, proof, and proof scheme: a proof scheme is a common characteristic of proofs—the products of 

one’s mental act of proving (Harel, 2008, p. 490). 

  

 

 
Figure 4.28d. The triad, mental act, way of understanding, and way of thinking (Harel, 2008, p.493) 

 

In the Figure 4.28d, Harel (2008) depicts “the three categories, problem-solving approaches, proof schemes, and 

beliefs about mathematics, comprising ways of thinking; and the three categories, external conviction, empirical, 

and deductive, comprising proof schemes” (p.493). 
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Furthermore, Harel (2008) suggests that 

 “[…] given the focus on proof and argumentation in current documents […] there is a need for teachers to 
understand the difference between ‘‘argumentation’’ and ‘‘mathematical proof;’’ without it, teachers 

would likely be advancing argumentation skills and little or no deductive reasoning” (p. 499).  

Proof and proving process can be achieved by a student if s/he has developed his/her thinking. The 

development of a student’s thinking has to do with the development of his/her competence on deductive 

reasoning. During the problem-solving process, students develop different kinds of reasoning including 

inductive, abductive, plausible and transformational reasoning (Harel & Sowder, 1998; Peirce, 1992; Simon, 

1996). For this reason, it is crucial to investigate how students’ reasoning at different levels develop during the 

problem-solving process--as the students shift from the particular to the general aspect of figures and become 

able to produce deductive reasoning--and what steps the students follow when they develop a proof as a product.  

Peirce (1992, p.189) classifies different types of inference thus: “[…] Deductive or Analytic, [and the] 
Synthetic [as] Induction and Hypothesis [or Abduction]”. Deduction starts with a general rule and arrives at a 

conclusion—put otherwise, it refers to conclusions that are reached on the basis of a logical chain of reasoning 

whose every step necessarily follows on from the step before (Ennis, 1969, p. 7 quoted in Simon, 1996, p.197). 

Inductive reasoning works in the other direction, starting with specifics/particulars and inferring a general rule(s).  

Peirce described the terms deduction, abduction and induction in terms of rules, cases and results as it is 

described in the Figure 4.29 below:   

 
Figure 4.29. Peirce’s (1878) descriptions od deduction, induction and abduction in terms of rules, cases and results (CP 

2.623, cited in Reid, 2003, p.2; Ferrando, 2005, p.9) 
 

Ferrando (2005) opines that “abduction is the only logical operation that introduces new ideas, deduction 

explicates and proves that something must be; induction evaluates and shows that something actually is 

operative” (p. 17). Similarly, Baccaglini-Frank, & Mariotti, (2009) argue that: “[…] abduction marks the 
transition from the conjecturing to the proving phase […]. Abduction guides the transition, in that it seems to be 
key in allowing solvers to write conjectures in a logical 'if…then' form, a statement which is now ready to be 

proved” (Baccaglini-Frank, & Mariotti, 2009, p. 233). 

 “Deductive reasoning is the process of inferring conclusions from known information (premises) based 

on formal logic rules, where conclusions are necessarily derived from the given information and there is no 

need to validate them by experiment” (Ayalon, & Even, 2008, p.235) 

 “Induction is where we generalize from a number of cases of which something is true, and infer that the 

same thing is true of the whole class. As, where we find a certain thing to be true of a certain proportion of 

cases and infer that it is true of the same proportion of the whole class”. (CP, 2.624 cited in Ferrando, 

2005, p.9). 
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 “Abduction consists in studying facts and devising a theory to explain them” (5.145); Abduction “consists 

in examining a mass of facts and in allowing these facts to suggest a theory” (CP, 8.209, cited in Ferrando, 

2005, p.15). 

 Abduction is where we find some curious circumstances, which would be explained by the supposition 

that it was a case of a certain rule, and thereupon adopt the supposition […] (CP, 2.624, cited in Ferrando, 
2005, p. 80) 

According to Simon (1996) “transformational reasoning in many cases overlaps with both inductive and 

deductive reasoning” (p.204). Simon (1996) also defines transformational reasoning as follows (p. 201):  

“Transformational reasoning is the mental or physical enactment of an operation or set of operations on 

an object or set of objects that allows one to envision the transformations that these objects undergo and 

the set of results of these operations. Central to transformational reasoning is the ability to consider, not a 

static state, but a dynamic process by which a new state or a continuum of states are generated” (Italics by 

the author) (p.201). 

With the notion of “mental enactment” Simon “refers to operations carried out in mental images” (p. 201). Also 

Simon points out that “Transformational reasoning involves not just the ability to carry out a particular mental 

or physical enactment, but also the realization of the appropriateness of that process to a particular 

mathematical situation (Italics by the author)” (p. 203).     

Toulmin’s (1958) model of argumentation is a model which relates the involved elements: claims, data, warrants, 

backings, qualifiers and rebuttals in the argument formulated by an individual (or a group of students that 

participate) (Figure 4.30a).  

 

  
Figure 4.30a. Toulmin’s (1958) model of 

argumentation (adapted). 

Figure 4.30b. Toulmin’s (1958) basic structure of 

an argument (Pedemonte, 2007, p.28). 

 

According to Inglis, Mejia-Ramos & Simpson (2007) “Toulmin’s (1958) scheme has six basic types of 

statement, each of which plays a different role in an argument.  

 The conclusion (C) is the statement of which the arguer wishes to convince their audience.  

 The data (D) is the foundations on which the argument is based […]. 
 The warrant (W) justifies the connection between data and conclusion (e.g. with a rule, a definition or a 

theorem)   

 The backing (B) supports the warrant […]   
 The modal qualifier (Q) qualifies the conclusion by expressing degrees of confidence 

 The rebuttal (R) potentially refutes the conclusion by stating the conditions under which it would not 

hold.[…].” (p.4) 

These elements are represented in the Figure 4.30a in which the relationships between them are expressed in 

sequential order. In other words, Toulmin’s model consists of the elements described above, which are explicit or 

implicit. Several times an argument does not include qualifiers and rebuttals. Krummheuer (1995) suggested and 

applied a reduced model of the original scheme, consisting of claims, data, and warrants of arguments “to 

examine the learning of mathematics in the context of collective argumentation” (p.11). As suggested by 

Krummheuer (ibid.), during a classroom activity (or during group cooperation) one or more students could be 

contributing towards the formulation of the argument, attempting to convince the other participants of the group, 

including the class teacher (or the researcher). Pedemonte (2007, p.28) has presented Toulmin’s (1958) basic 

structure of an argument constructing a figure with the three basic elements mentioned above (Figure 4.30b). 
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Pedemonte (2003) in her study “What kind of proof can be constructed following an abductive argumentation?” 

describes the basic structural elements involved in the Toulmin’s model as follows:  

“In any argumentation the first step is expressed by a standpoint (an assertion, an opinion). In Toulmin’s 

terminology the standpoint is called the claim. The second step consists of the production of data 

supporting it. It is important to provide the justification or warrant for using the data concerned as support 

for the data-claim relationships. The warrant can be expressed as a principle, a rule and the like. The 

warrant acts as a bridge between the data and the claim” (p. 3).  

For the representation of a theoretical diagram using tools and theoretical constructs I introduced a pseudo-

Toulmin’s model (Patsiomitou, 2011a, 2012a, b) --based on Toulmin’s model (1958) -- in which: (1) the data 

could be the dynamic diagram, or an object and (2) a warrant could be a tool or a command that guarantees the 

result which is the claim (or the resulted formulation). The Figure 4.31 presents a pseudo-Toulmin’s model 

through example.  

 
Figure 4.31. An example of a reduced pseudo-Toulmin’s model (Patsiomitou, 2012b, p. 57) 

In the Figure 4.31, a drawing of a parallelogram is the data (D), the theoretical dragging is the warrant (W), 

and the figure of the parallelogram is the claim (C). This means that a student can theoretically drag a point-

vertex of a drawing-parallelogram and transform it into a figure-parallelogram, trying to acquire additional 

properties.  

Also, I have expanded the pseudo-Toulmin’s model in order to express a relationship between the figures or a 

sequence of diagrams and students’ cognitive analysis as they use the tools.  

 

4.4.1. Indicative Examples of Students’ Argumentation and Proving  

Argumentation of students can be represented using Toulmin’s model. A very interesting problem which attracts 

students to investigate it, is Varignon’s problem (reported in the study of Oliver, 2001). 

Varignon (1654-1722) proved that “a parallelogram is formed when the midpoints of the sides of a convex 

quadrilateral are joined in order”. Varignon’s proof was published in 1731 in “Elemens de Mathematique” 

(Oliver, 2001, p.316). I shall report here a few indicative examples of students’ argumentation, aiming to explain 

the different kinds of reasoning. Complementary to this, a deductive system of axioms, theorems and propositions 

as well as concepts and definitions can help the student to organize the proving process. 

A. The following excerpt belongs to the third phase, when the students M7, M8 and M13 investigated 

several instances of Varignon’s theorem occurring from the use of dragging (Patsiomitou, 2012a). My aim was 

for the students to understand the hierarchy of quadrilaterals and how we can construct a classification of them. 

This is in accordance with what Dina van Hiele argues: “A classification made by the students is to be considered 

by the teacher as proof that the subject matter has been assimilated, that associations have been formed, that the 

subject matter can be handled independently” (Dina van Hiele in Fuys et al., 1984, p.170). 

 
Figure 4.32a. Implementation of 

Varignon’s theorem to a convex 

quadrilateral 

Figure 4.32b. Implementation of 

Varignon’s theorem to a non-

convex quadrilateral 
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R: You mean that “If the diagonals are vertical lines, then the shape EFGH is a rectangle”?   

M13: Is n’t this a right angle? (Pointing to angle AIB) (Figure 4.32a)  

M13: Can we prove that this small shape (he means EJIK) is a rectangle?... It has a right angle (points to 

the angle KIJ of the diagonals), and that its sides are parallel and congruent. (Points to the parallelism of 

the segments)… EJ//KI and EK//AI, therefore it is a right angle. 

This is an important point in M13's development of thinking as he recalled the midpoint-connector theorem (i.e. 

“The segment connecting the midpoints of two sides of a triangle is parallel to the third side and half the length of 

the third side” reported in Coxford & Usiskin, 1975, p. 273) as well as an economic definition of rectangles. He 

combines them both and uses deductive reasoning to support his argument. The student uses Peirce’s case, rule 

and result as follows: 

Case A: Its sides are parallel and congruent (EJ//KI and EK//AI) and [therefore] angle KIJ is a right angle.  

Rule B: If a quadrilateral has [opposite] parallel sides and one of its angles is a right angle, then […].  
Result C: The quadrilateral is a rectangle. 

In addition, investigating the case of a non-convex quadrilateral with the same group of students led to similar 

results.  An excerpt from the students’ discussion follows below:  

R: Why is it a rectangle? (Figure 4.32b) 

M13: Because GF//=BC/2, EH//=BC/2 and so is GF//=EH 

R: This is true for a parallelogram. 

M7, M13: But again they intersect vertically (and both point at ALE angle). 

M13: This is a right angle (points to ALH angle), so the vertical is right angled (points to ELD) 

R: Why are they vertically intersected? Why EH is vertical to AD? 

M8: Because in the triangle ACB, EH//=1/2 CB, and therefore EH//CB. 

M13: Then H is a right angle (LHG) because it is an alternate interior angle. 

The students “see” figures in the whole diagram and use deductive arguments to support their thinking.  For 

example M13 answers: “Because GF//=BC/2, EH//=BC/2 and so is GF//=EH”. This argument is more complex 

than it seems. For the analysis, I shall use the reduced Toulmin’s model of argumentation (e.g., Krummheuer, 

1995; Pedemonte, 2007).  M13 is absolutely right, as a student could use either A or B paths to support his 

thinking.  

 

 
B. The following illustration (Figure 4.33a) is an example I used to explain how students developed 

different kinds of reasoning, a topic I discuss in my study “Theoretical dragging: A non-linguistic warrant 

leading to ‘dynamic’ propositions” (Patsiomitou, 2011a, p.366). As I have written (Patsiomitou, 2011a, p. 366): 

“Students M9, M10, M14 (van Hiele level 1) tried to construct a parallelogram. They constructed a segment AB 

and a point C, then a parallel line j from the point C. They were unable to understand how to continue the process 

by constructing a parallel line from point B, which is to say they lacked competence in the place way operation 
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of the tools. M14 constructed a point D on line j and began with repeated experimental dragging on point D. 

Visually she understood that point D had to preserve its congruency with the opposite segment AB if the figure 

were to remain a parallelogram. So she dragged point D again, stating “the dot (i.e point D) must be almost here 

in order to become congruent to the segment AB”. She used informal language saying “it must be “the same” 

[distance]”. She then used theoretical dragging to turn her drawing into a figure of a parallelogram.  

 

 
Figure 4.33a. A cognitive analysis of the use of the tools 

 

By virtue of instrumental genesis the student has constructed an instrument which includes the utilization scheme 

of dragging and the meaning of the congruent opposite sides of a parallelogram. Seen in this light, the software’s 

primitives are non linguistic visual data and the tool is the warrant for the construction of a dynamic proposition 

which is empowered in a dynamic geometry environment. This is what I identify as an interconnection between 

language and thought in student’s mind. Moreover, the first part concerns students’ procedural knowledge and 

the second on the right students’ conceptual knowledge (Figure 4.33b). The transformation also of formulations 

is a result of the transformation of the dynamic diagram. (Figure 4.33c).   

 
Figure 4.33b. Interplay /interconnection between procedural and conceptual knowledge represented in a pseudo-Toulmin model 

 

 
Figure 4.33c. Transformations of formulations due to the transformation of the diagram  
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C. The diagram (Figure 4.34) is an adaptation of Toulmin’s model with tool use (Patsiomitou, 2011a, p. 

367). Points C, D are the data D1, D2 for the actions that follow.  

 
 

Figure 4.34. A pseudo-Toulmin model for the dynamic proposition through the use of the tools (Patsiomitou, 2011a, p. 367) 

 

The experimental dragging tool operates as non-linguistic warrant in Toulmin’s model for the students’ 
understanding of both the stability of point C and of the modification of point D and, hence, of segment CD. The 

construction of the claims C1, C2 begins with “an observed fact” (Pedemonte, 2007, p.29). Through instrumental 

genesis, the tool affects the students’ understanding that opposite sides of a concrete parallelogram should be 

congruent, making this the abductive part of the process. Theoretical dragging affects the construction of an 

intrinsic inductive rule (i.e. The dynamic segment CD can be modified when it is dragged from point D so that it 

becomes congruent or not with another segment) which leads to a generalization of the rule for any dynamic 

segment. The transformation of the position of the point through dragging leads to the transformation of the 

segment, which leads in turn to the comprehension of the dynamic proposition S1 which is the deductive claim 

(i.e. If a dynamic segment is dragged from its endpoint with one degree of freedom then it will not preserve the 

visual constraints of congruency with another segment).  

D. In the next Figure 4.35 I present an example, which shows the role of the DGS tools for the development 

of students’ deductive reasoning, during the fourth phase of the research process. The Figure 4.35 is a pseudo-

Toulmin model describing the structure of the following argument: 

M2:“IPQG is a trapezium because PI and QG are perpendiculars to IG as we concluded from the rotation for 

90
o. …we must prove that X is the midpoint of any segment that can be. ..These (pointing to PQ, HL) seem to be 

diagonals but where is the quadrilateral …If we prove that PQ and HL are the diagonals of a parallelogram then 

the diagonals are dichotomized”. M2 tried to prove that HPQL is parallelogram. 

Detailed analysis of the topic is incorporated in my study “Students learning paths as ‘dynamic encephalographs’ 
of their cognitive development” (Patsiomitou, 2013a, p. 805). 



[149] 

 

 

Figure 4.35. Students’ deductive argumentation during the fourth phase of the DHLP (Patsiomitou, 2012a, b; Patsiomitou, 2013a,                           

p. 805) 
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5.1. Problem, Problem Solving and Problem Based Learning in Mathematics 

Education 
The word “problem” is derived from the Greek word “provlema” with etymology from the verb “provalein”, 

whose meaning covers “projecting, showing, revealing, displaying, presenting”: i.e. ‘provalein’ refers to a goal 

presented in a question. (See also, https://etymonline.com).  

The word “problem” is defined as:  

• “[…] An inquiry starting from given conditions to investigate or demonstrate a fact, result, or law”. 

(Webpage [26]);  

• “[…] Something that causes difficulty […and especially a mathematics problem] is a question to be 

answered or solved by reasoning or calculations”. (Webpage [27]);  

• “[…] A question raised for inquiry, consideration or solution”. (Webpage [28]). 

Charles & Lester (1982) define a problem as a task for which “the person confronting it wants or needs to find a 

solution, has no readily available procedure for finding the solution and must make an attempt to find a solution.” 

(Charles & Lester, 1982, p. 5, in Nunokawa & Fukuzawa, 2002). Newell & Simon (1972) write that “a person is 

confronted with a problem when he wants something and does not know immediately what series of actions he 

can perform to get it” (p. 72). The definition of the word problem especially in mathematics or physics has to do 

with a proposition or an inquiry stating something to be proved. In order to answer this inquiry we must combine 

data and information, and then we can derive a solution following logical inferences and deductive reasoning. In 

my opinion, mathematical problem solving is a process which satisfies the following presuppositions: (a) ‘input’ 

in the form of the verbal description of a mathematical problem which includes general information; (b) ‘input’ in 

the form of mathematical statements that constitute the problems’ hypotheses; (c) ‘a goal’ expressed in a 

statement; (d) concrete preexisting knowledge (i.e. axioms, theorems, proofs, concepts, definitions, formulas and 

methods) and appropriate heuristic skills; (e) appropriate logical inferences and reasoning (e.g., deductive, 

inductive, abductive, transformational). According to Mayer (1983) a problem consists of givens, goals and 

obstacles, as described in the following Figure 5.1. The problem solving process derives abstractions and infers 

consequences and other findings from input data and information to produce a solution that addresses the task 

and leads to a “Sumperasma” (a Greek word whose meaning encompasses both “a logical conclusion” and “a 

summary in a few words”).  

 

 
Figure 5.1. Defining problem (Mayer, 1983, p.4 in Stoyanova, 1997, p.2) (an adaptation for the current study) 

 

Aamodt (1991) also states that “A mathematical problem may be structured [or divided] in sub-problems, in 

which case the problem solving process may be correspondingly split into sub-processes” (Aamodt, 1991, p.31). 

As a teacher of mathematics, I have often asked myself the following questions:  

• Are students able to build a reasonable and meaningful representation of a problem by means of a 

conscious and intentional process? 
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• Do students connect the process of representing the problem with preexisting knowledge that can be 

brought to bear on the problem? 

• During the problem-solving process, do students demonstrate significant, meaningful and appropriately 

organized connections between pieces of information in their statement of the problem? 

• Do students construct a logical correspondence between the structure of the verbal expression of the 

problem and the structure of its solution? 

• Can we identify different levels of investigation in problem-solving in order to enhance the abstract 

thinking of our students?  

• What conceptual considerations need to be taken into account when designing problems in a dynamic 

geometry environment? How do these conceptual considerations impact on our students’ learning and 

understanding of mathematics? 

Learning through problem solving can be addressed by both open-ended complex geometric problems and non-

open strict geometric problems, presented in a static or dynamic environment. In order to distinguish open from 

non-open problems, I will quote the following example from my introduction to the Pythagorean Theorem: 

 

Table 5.1. Examples of Open and Non-Open Problems 

Non-open problem  Open problem  

Given a right triangle 

prove that (a) a2=b2+c2 

(a is the hypotenuse of 

the right triangle) and 

(b) the concrete 

relation (Pythagorean 

theorem) is satisfied 

only in right-angled 

triangles.  

a) If the area of the square TBAB is 

equal to 1cm2, can you calculate the areas of 

the squares constructed outside the triangle 

ABC? What do you observe? Repeat your 

experiments doubling the side of the square 

TBAB in your dot paper and write down the 

new results. Continue and formulate a rule for 

this situation.  

b) Consider the squares constructed externally on the sides a, b, 

c of a right triangle. If a=5cm, b=3cm, c=4cm can you calculate the 

areas of the squares? Calculate a2, then b2+c2. What do you observe? 

Does this occur to every right triangle? Can you formulate a rule for 

this phenomenon? Does this rule holds true for all right triangle 

regardless of the lengths of their sides? Does this Pythagorean 

relation characterize only right-angled triangles? 

 

Students must be encouraged to solve their own problems that mirror real life situations. The open problem can 

be solved using different approaches and in multiple ways, encourages and stimulates discovery, prompts 

students to generate conjunctures and most students can get involved as Arsac et al. (1988) mention: “The 

statement of the problem […] fosters discovery […] creates a situation stimulating the production of 

conjectures.[…]” (Arsac, Germain & Mante, 1988 in Furinghetti & Paola, 2003, p.398).  

The solution to an open problem cannot be reduced to a routine problem that requires a technique the student has 

probably memorized; instead it provides the student with the freedom to generate conjectures. Conjectures are the 

first step for the students to formulate logical inferences and then deductive argumentation, depended on their 

level of understanding or on their van Hiele level. In his book “How to Solve It”, Polya (1957/1966) based on his 

experience as a teacher of mathematics suggested four problem-solving phases, pointing out the cognitive actions 

linked to the process of problem-solving (Figure 5.2). George Pólya (1966) addressed also the difference 

between “tasks” and “mathematical problems”. He also distinguished routine from non-routine problems, from a 

teacher’s point of view. As he states:   

“[…] The nonroutine problem demands some degree of creativity and originality from the student, the 

routine problem does not. […] I shall not explain what is a nonroutine mathematical problem: If you have 

never solved one, if you have never experienced the tension and triumph of discovery, and if, after some 

years of teaching, you have not yet observed such tension and triumph in one of your students, look for 

another job and stop teaching mathematics”. (Pólya, 1966, pp. 126–127, reported in Szabo, 2017, p.40) 
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           Figure 5.2. The four problem-solving phases (Polya, 1957) (an excerpt from the manuscript (Webpage [29]) 

The problem-solving process, including diagram construction, can be experienced using a “brainstorming 

technique” session, which is regarded as the most effective tools we know about creative problem-solving (e.g., 

Osborn, 1953). In a “brainstorming technique” session, students express/formulate what they know with the 

teacher helping them by introducing the concepts through essential questions, writing their ideas on the board and 

organizing them into a “concept map” (e.g., Novak, 1990), using also an approach inspired by history or a 

historical contextualization of the meanings included in the problem. The book “History of Mathematics” 

(Exarhakos, 1997, vol. A, in Greek) includes an extended report of problems, also incorporating the Babylonian 

writings on display in the British Museum. It is very interesting to look at the Babylonian solution to the 

following verbal problem “The area minus a side of a square is 870; find the side of the square”. Problems of this 

kind probably appeared in Babylon circa 1830 BC. An adaptation of this problem is reported in Patsiomitou 

(1999, Euclid A, p. 34, in Greek): “The area minus a side of a square is 6; find the side of the square” (the 

numbers are in base ten). First of all, the problem is translated into its symbolic form as follows:  x2-x=6. The 

coefficients used in the equation are 1, -1, and -6. The Babylonian mathematicians didn’t use minus or negative 

numbers. For this the coefficients used were 1, 1, 6. Firstly they followed the steps (Patsiomitou, 1999): 

• Calculate the half of the coefficient of x to result ½ 

• Multiply ½ by itself to get ¼ 

• Calculate the product ¼ to 6 to result 25/4 

• Calculate the square root of 25/4 to get 5/2  

• Calculate the result 5/2 to the half of the coefficient of x, ½ to get 6/2=3  

• This number is the solution to the problem 

This was a Babylonian approach that could help us to formulate a model for solving any quadratic equation of the 

form x2+bx=c (Figure 5.3) As I have noted in previous studies (e.g., Patsiomitou, 1999, 2014) quadratic 

equations in the ancient history of mathematics are reported in Babylonians and Chinese, as well as in ancient 

Greek mathematics. The ancient Egyptians, Chinese and Indians also used practical arithmetic to solve quadratic 

equations when they appeared in a real-life problem, which is to say they discovered a practical solution to meet 

their every day needs. This kind of solution was empirical in other ways, an inductive way of procedural thinking 

that helped them to proceed on to calculations (e.g., to construct something or to educate their students). 
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Figure 5.3. A generalization of the Babylonian solution to the problem (Patsiomitou, 1999) 

 

If we try to apply the formula (1) (Figure 5.3) to solve the quadratic equation x2-5x =+6, we can accept the 

positive solution, which is the number 6, but dismiss the negative solution, which is -1.  

The reported Babylonian mathematical problems include a large number in which the goal is to calculate an area 

or a dimension of a square or rectangle. There are many problems in which the area of a rectangle is given along 

with one of its dimensions, and the goal is to find the other dimension. The way ancient peoples calculated the 

solutions to these problems is of great interest (Exarhakos, 1997, p. 187, in Greek). In the following Figure 5.4, I 

present a concept mapping for the concept of quadratic equations.  

 

 
Figure 5.4. My proposal for a concept mapping for the understanding of the concept of quadratic equations 

 

A similar problem has been posed to my secondary and tertiary level students, and I found that they worked in 

groups and found solutions to problems more easily with the concept maps than without them.  According to 

Novak & Ganas (2007) “concept maps were developed in 1972. […] Out of the necessity to find a better way to 

represent children’s conceptual understanding emerged the idea of representing childern’s knowledge in the form 

of a concept map. Thus, was born a new tool not only for use in research, but also for many other uses” (p. 29).  
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Brainstorming technique depends on the students’ thinking to create connections among meanings (e.g. when a 

student hears the meaning of the Pythagorean theorem, his/her brain automatically associates it with the meaning 

of square as well as with a formula connecting the sides of the right triangle). Researchers (e.g., Iraksen, 1998) 

have found that brainstorming is an effective technique for students to develop their cognitive skills by generating 

and organizing their ideas. The whole process can enhance cooperative learning as well as encourage student 

engagement in the learning process by dealing effectively with students’ cognitive conflicts and improving their 

critical thinking skills. Many students are not able to translate the verbal representation of a geometrical problem 

into an iconic representation during the problem-solving process. And even if the students overcome this obstacle 

with the help of the teacher, many do not know how to continue the process, especially in the case of geometrical 

problems. Cognitive conflicts and cognitive obstacles, “aha” phenomena and enthusiasm occur many times over 

during the problem-solving process as a student works individually or in cooperation/interaction with other 

students and the teacher. In other words, the problem-solving process combines characteristics from the 

theoretical background of constructivist learning, of discovery learning, and of learning through social 

interaction. Mathematical problem solving process concepts can also be introduced informally and subsequently 

connected formally to the theory.  

Clements (2000) reports the characteristics that have good mathematics problems for students (adapted from 

Russell, Magdalene, & Rubin, 1989; Wheatley, 1991, cited in Clements, 2000): 

• “are meaningful to the students;  

• stimulate curiosity about a mathematical or nonmathematical domain, not just an answer;  

• engage knowledge that students already have, about mathematics or about the world, but challenges them 

to think harder or differently about what they know;  

• encourage students to devise solutions; 

• invite students to make decisions;  

• lead to mathematical theories about (a) how the real world works or (b) how mathematical relationships 

work;  

• open discussion to multiple ideas and participants; there is not a single correct response or only one thing 

to say;  

• are amenable to continuing investigation, and generation of new problems and questions.” (p. 12)  

Schmidt (1983, 1993) based on empirical studies, proposed that problem based learning (PBL) has the following 

effects on student learning (see also Tomaz , van der Molen , and Mamede, 2013, p. 12): “(a) Activation of prior 

knowledge (b) Elaboration on prior knowledge through small-group discussion (c) Restructuring of knowledge in 

order to fit the problem presented (d) Learning in context and (d) Motivation to learning” 

Schmidt (1989) in his study “The rationale behind problem –based learning” suggests a sequence of actions and 

processes that are involved in problem –based learning. These are included in the following Table 5.2:  

 

Table 5.2: Steps involved in problem-based learning (Schmidt, 1989, p. 107) 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Clarify terms and concepts not readily comprehensible.   

Define the problem.   

Analyze the problem.   

Draw a systematic inventory of the explanations inferred from step 3.   

Formulate learning goals.  

 Collect additional information outside the group.   

Synthesize and test the newly acquired information. 

 

Tomaz, van der Molen, and Mamede (2013) suggest PBL and explain how it works in the following excerpt: 

“Summarizing, PBL works as follows: from analysis and reflection of a problem situation presented, the 

participants in small groups (tutorial groups) identify their key knowledge gaps and establish what they 

need to learn (learning goals) to solve the problem (Schmidt, 1983). During the study of the problem, 

participants have to rely on literature research, personal study, consultations with specialists, if necessary, 

and other sources of information, in order to achieve the learning objectives, and at the end of cycle, solve 

the problem.[…]” (p. 12) 

Isaksen, Dorval, and Treffinger (2000) also suggest a plan for the creative problem solving, consisted of four 

components (Figure 5.5): (a) Understanding the problem/the challenge (b) Generating ideas (c) Preparing for 
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action and (d) Planning the approach, everything of which is subdivided in other stages as is reported in the figure 

above (cited in Hwang, Chen, Dung, Yang, 2007, p. 194).  

 

 
Figure 5.5. Creative problem solving (Isaksen, Dorval, and Treffinger, 2000, cited in Hwang, Chen, Dung, Yang, 2007, p. 194): (an 

adaptation for the current study) 

 

Jonassen (2004) in his monograph “Learning to solve problems” also argues that  

“Successful problem solving requires that learners actively manipulate and test their models. Thinking is 

internalized activity (Jonassen, 2002), especially when solving problems, so knowledge and activity are 

reciprocal, interdependent processes (Fishbein and others, 1990). We know what we do, and we do what 

we know. Successful problem solving requires that learners generate and try out solutions in their minds 

(mental models or problem spaces) before trying them out in the physical world” (p.7). 

Stoyanova (1997) identified (a) free situations, (b) semi-structured situations and (c) structured situations to 

improve students’ problem posing and problem solving in a range of classroom contexts. As she states (p.63-69):  

• “In free problem-posing situations, students are asked to generate a problem from a given, contrived or a 

naturalistic situation. (e.g. describe some problems which relate to the right angled triangle). 

• In semi-structured problem posing situations, students are given a situation in which they are invited to 

explore and formulate a problem which would draw on the knowledge, skills, concepts and patterns 

gained from their previous mathematical experiences. 

• In structured problem-posing situations, problem-posing activities are based on a specific problem or a 

written solution”.  

 Christou, Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman (2005) in their work “An Empirical Taxonomy of  

Problem Posing Processes” also identified a theoretical model of problem posing as follows: “editing 

quantitative information, their meanings or relationships, selecting quantitative information, comprehending and 

organizing quantitative information by giving it meaning or creating relations between provided information, and  

translating quantitative information from one form to another” (p. 149).  

A student can develop successful problem solving if s/he fulfills the following factors involved in the problem 

solving process (Stacey, 2005, p.342): Students must have as prerequisite deep mathematical knowledge and 

general reasoning abilities, as well as the ability to implement heuristic strategies for solving non-routine 

problems. It is also necessary to have “helpful beliefs (e.g. orientation to ask questions)” and “personal attributes 

(e.g., confidence, persistence, organization) for putting in order their thoughts, organizing and managing their 

actions. Also, students should develop their communication skills and the ability to work with other students 

effectively in cooperation.  

Stacey (2005) created a diagram to present all the factors involved to successful problem solving process (Figure 

5.6) 
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Figure 5.6. Factors involved to successful problem solving process (Stacey, 2005, p.342, cited in Anderson, 2008, p. 2) (an adaptation 

for the current study) 
 

In my study “From Vecten’s Theorem to Gamow’s problem: building an empirical classification model for 

sequential instructional problems in geometry” (Patsiomitou, 2019a), I present an empirical classification model 

for sequential instructional problems in geometry, concerning the importance of students building a 

representation of a problem, the role which modeling a real-world problem plays in the students’ gradual 

investigation of a problem. My work with students at the secondary and tertiary levels leads me to identify five 

types of geometrical problems (Patsiomitou, 2019a, p.3):  

• Dynamic geometrical problems with non-given answers (abbreviated as DGNA) which the students 

investigate in a DGS environment using linking visual active representations (LVARs) (e.g., Patsiomitou, 

2008a, b, 2012a, b). Such problems improve motivation and creativity through the use of “why” 

challenges and “what if” strategies; provoke students’ reflecting visual reaction (RVR) (e.g., Patsiomitou, 

2008a, b, 2012a, b), by requiring them to employ preexisting theoretical knowledge, perceptual skills, 

and deductive argumentation.  

• Dynamic geometrical problems with given answers (abbreviated as DGGA) which the students 

investigate and prove in a DGS environment. Such problems motivate students to create theoretical 

relationship between information and data which is explicitly provided; to translate this information and 

data from one form of representation to another and to employ their preexisting theoretical knowledge 

and deductive reasoning skills.  

• Dynamic geometrical problems modeled in a DGS with hybrid–dynamic geometrical representations 

(Patsiomitou, 2018b, p.42) with non-given answers (abbreviated as HGNA) which the students 

investigate in a DGS environment. Such problems require the students to interact with a sophisticated 

level of information and data which is explicitly provided in the DGS environment and to employ 

advanced theoretical knowledge and abstract thinking.  

• Real world geometrical problems with non-given answers (abbreviated as RGNA) which students 

investigate in a dynamic or static environment. Such problems relate to ‘dynamic’ methods in geometry 

and require students to ‘think in motion’ in the environment, employing higher order thinking and 

organizing phenomena by means of progressive mathematization. The benefit of working with real 

problems in a DGS incorporates the combination of transformations using Linking Visual Active 

Representations (LVARs).  

• Static geometrical problems with given answers (abbreviated as SGGA) which students solve in a paper-

pencil environment. Such problems contain certain information and questions which require students to 

apply their theoretical knowledge and perceive the structure of the problem and the principles and 

concepts that could be used to solve it. 

The investigational activity of problem solving in a DGS, prompts the students to develop more reflective ways of 

thinking and the teacher to describe the problem in a way, which might be more interesting than in traditional 



[157] 

 

approaches. Moreover, a teacher’s intention for his/her students to learn through problem solving investigational 

process is associated in the words of Tony Brown, (1994) with the “presupposition about that to be learnt and 

learning is in a sense revisiting that already presupposed” (p.148). Tall (2004) used a metaphor of a “traveler” to 

explain how “different individuals may develop substantially different paths on their own cognitive journey of 

personal mathematical growth”. As he argues: 

“As an individual travels […], various obstacles occur on the way that requires earlier ideas to be 

reconsidered and reconstructed, so that the journey is not the same for each traveler. On the contrary, 

different individuals handle the various obstacles in different ways that lead to a variety of personal 

developments, some of which allow the individual to progress through increasing sophistication in a 

meaningful way while others lead to alternative conceptions, or even failure” (Tall, 2004, p. 286). 

Battista (2011) also in his work “Conceptualizations and Issues related to Learning Progressions, Learning 

Trajectories, and Levels of Sophistication” determines differences between the use of terms “stage” and “level” 

between researchers. Moreover, he defines the theoretical construct “a level of sophistication” in the following 

paragraph, through which he characterizes students’ development of conceptualizations and reasoning:  

“Clements and Battista (1992) described the difference between researchers' use of the terms stage and 

level as follows.  A stage is a substantive period of time in which a particular type of cognition occurs 

across a variety of domains (as with Piagetian stages of cognitive development).  In contrast, a level is a 

period of time in which a distinct type of cognition occurs for a specific domain (but the size of the domain 

may be an issue). Battista defines a third construct—a level of sophistication in student reasoning as a 

qualitatively distinct type of cognition that occurs within a hierarchy of cognition levels for a specific 

domain” (Battista, 2011, p.517). 

In my opinion, the teacher’s investigational activity in relation to the problem posed has to be implemented at 

several levels of sophistication, if a teacher is to help his/her students to develop deeper understanding and 

coherent reasoning. Summarizing, I would like to present five investigational levels of a problem solving process, 

synthesizing, elaborating on and addressing conceptual and procedural understanding through feedback provided 

at every intermediate step in the problem’s solution which is designed in the light of the cognitive processes 

elicited at each level. My aim is to construct a didactic sequence in which the next problem will become the next 

level in the development of the students’ reasoning. Thus, constitutes a cognitive trajectory through problem 

solving for the students’ cognitive development (Patsiomitou, 2019, p. 19):  

• The first level of sophistication is that of open problems using materials (e.g., squared papers, dot papers, 

or several means, including DGS). This phase can be extended by means of DGNA problems using 

sequential dynamic LVAR representations. When a student is engaged with the activity of solving a 

problem modeled by dynamic LVARepresentations s/he connects that activity with both the product and 

the thought process during investigational process. LVARs scaffold students’ mental processes such as 

perception, information recall and reasoning. Students can also discover the solution through active 

experimentation.  

• The second level comes after the introduction of “big ideas” or “core ideas” (Battista, 2011). During this 

phase, the teacher can use DGGA problems posed for investigation and proof in a DGS environment. The 

students can mentally combine structural properties of conceived cognitive processes. 

• The third level is that of real world HGNA problems which are modeled in a DGS environment using 

dynamic or hybrid-dynamic representations. A teacher can support students’ reasoning by giving them 

other immediate problems which will scaffold the theoretical background required by the problem as they 

investigate all the possible or multiple solutions to the problem. They can also investigate a concrete 

situation of the hybrid-dynamic representations, choosing to give to the parameters concrete magnitudes.  

• The forth level will be that of RGNA problems, accepting a challenge and trying to reinvent the solution. 

The students at this level must have the conceptual and procedural competence to investigate the problem. 

At this level, the problem cannot be solved by some routine procedures.  

• The fifth level will be that of the problem in a SGGA problem in a static environment. This is the level 

with the higher degree of difficulty. This is why students are not able to solve static geometry problems, 

when they belong at the lower van Hiele levels.  

The emerging theoretical construct provides both a methodology for building up the problem-solving process and 

an approach to addressing difficulties students face in learning geometrical concepts, which uses anticipatory 
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thought experiments in which we envision how we can construct an organizational structure and a learning 

trajectory through problem solving as the students engage with the process. 

5.2. Proof and Proving in the Problem Solving Process 

Freudenthal (1971) in his study “Geometry between the devil and the deep sea” responding to his own questions, 

writes: 

“[…] the first piece of education in history we know about, is a lesson of geometry, the Socratic lesson 

Menon's slave was taught on doubling the square. Socrates taught the slave not the solution of the problem 

nor solving the problem, but finding the solution by trial and error. He did not teach a readymade solution 

but the way of reinventing the solution. Two millenia later Comenius said: ‘The best way to teach an 

activity is to show it.’[…]”(p. 414). 

This piece of knowledge made me consider a mixed method which my students could use to solve a problem; 

such a method would require me to design a way for the students to reinvent the solution or discover it using a 

trial and error method. From a lack of competence my students (13-14 years-old) to composing geometric shapes 

the “guided” reinvention of doubling the square mentioned in the Socratic lesson, stimulated the use of materials 

-digital or not- in my class, with which my students could support their reasoning by transforming the shapes, 

using a trial and error method.  

 

 
 

The discussion mentioned above is one I have with my high school students (aged 13-14 years-old) almost every 

year in class. Only a few students have the competence to answer the last question. This was/is difficult for them, 

as they did/do not have the competence to transform the right and isosceles triangle in their mind; in other words, 

they could not generate mental transformations. Many students do not have the ability to dynamically visualize 

and mentally manipulate geometric objects, which is an important skill for solving problems in geometry. 

Without it, they cannot reflect on or anticipate a possible solution to the problem. 

Moreover, according to the van Hiele theory (Fuys et al., 1984) students are not able to formulate deductive 

argumentations as this kind of argumentation occurs when the students have developed their thinking. 

Freudenthal (1971) supports that  

“In which order, if not in a deductive one, should mathematics be taught? The answer is simple: in that one 

in which it can be learned, which means, the order in which it could be invented by the student. This is not 

at all a revolutionary idea. It is the Socratic lesson. In a thought experiment the teacher has been 
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reinventing the subject matter as though he himself was the student, and this is what he teaches. […] This 

is a modern reinforcement of the socratic idea” (p.416). 

 
Figure 5.7a. Transforming the shapes using a mixed ‘trial and error’ and ‘guided reinvention” method in my class 

(Patsiomitou, 2019a, p. 4). 
 

The teachers’ task is to design a course “of action that fits anticipated student reactions. More precisely, the idea 

is that teaching matter is re-invented by students in such interaction” (Gravemeijer & Terwel, 2000, p.786). With 

regard to the problem mentioned above, firstly, I usually ask my students to experiment using transformations 

(e,g,. a dot.gsp file or a squared paper) this will help them understand that if they double the side of the square, 

the area of the square this creates is quadrupled. (Figure 5.7a). Freudenthal (1971) supports that  

 “[…] transformations in geometry were long ago advocated by F. Klein as a consequence of his so-called 

Erlanger Programm. The breakthrough of transformations in geometry is of a rather recent date. How to 

explain this delay, […], where Klein had been the venerated master of a generation of teachers?”. 

[Moreover], “there is not any textbook based on the transformation idea” (p. 433).  

Manipulatives constructed from cardboard are an easy and effective way for students to understand a theorem 

empirically (in a collaborative learning process). For example, a student of mine constructed the Pythagorean 

Theorem using cardboards in two different colours to illustrate it (Figures 5.7b). 

 

   
Figures 5.7b. Transforming the shapes using manipulatives (student’s construction, in Patsiomitou, 2012, p.61, in Greek) 

 

The meanings of collaborative learning and cooperative learning has been clarified by Kaufman, Sutow, & 

Dunn (1997) who argue that  

“Collaborative learning is a spectrum of instruction that involves small groups of students who have been 

assigned an academic goal. At one end of the spectrum are transient groups that may be formed to quickly 

generate some ideas for immediate in-class discussion (e.g., "buzz" groups). Cooperative learning is at the 

other end of the collaborative learning spectrum, since it is a carefully planned learning strategy that 

involves forming appropriate, sustained learning groups of interdependent members who have been 

assigned a specific learning goal. Emphasis is placed on student involvement in active learning and the 

development of social skills. Since the outcomes of cooperative learning are strongly dependent on detailed 

planning and implementation, cooperative learning has become the most operationally well-defined and 

procedurally structured form of collaborative learning” (p.38)  

The use of material figures helped my students gain competence in composing geometric shapes, initially through 

trial and error and then purposefully find that four congruent isosceles and right triangles can be composed into a 

square and, ultimately, to intentionally synthesize combinations of shapes into new shapes with a view to 

reinventing a rule or a theorem. This concrete experimentation on the part of my students is also an excellent 

mean of incorporating worthwhile ideas and introducing theorems and definitions into my lessons (for example, 

the Pythagorean Theorem and irrational numbers). Many researchers, mathematicians and mathematics educators 

(e.g., Bell, 1976b; Hanna, 1983; de Villiers, 1990, 1999; Hanna & Jahnke, 1996; Marrades & Gutierrez, 2000; 

Varghese, 2017) have recognized different functions of proof and proving as: verification, justification, 

explanation, discovery, systemization etc. because the proving process can provide insight and discovery, justify 
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or verify why a statement is true. Generally speaking, geometric figures or diagrams constitute a unique 

framework for communicating mathematical ideas, very important for students’ development of thinking, 

especially when technology is incorporated to their construction (Figure 5.7c).  

 

 
Figure 5.7c. Guiding my students to construct figures in different representational environments  

 

Complementary to this, a deductive system of axioms, theorems and propositions as well as concepts and 

definitions can help the students to organize the proving process.  

“Proving was born as a social act aimed at convincing the listener (Barbin, 1988). The first step consisted 

of admitting the existence of some initial points, which in Euclid’s Elements are named postulates; these 

are self evident and as such are considered to be true. Proofs for Euclid are chains of propositions derived 

deductively from initial propositions about primitive objects (postulates). Since the postulates are true, also 

the other derived propositions are true.” (Olivero, 2003, p. 12). 

The postulates determined by Euclid in his “Elements” regulate geometrical deductive reasoning, formulating the 

"rules” by which a person can synthesize a proposition in a meaningful and logical manner. According to 

historians and scholars Euclid’s “Elements”, was considered to be the most influential textbook. It has been 

posited that the “Elements” is the second most printed book after the Bible. In the words of Dionysius Lardner 

(1855) in the preface of his book “The first six books of the Elements of Euclid”: 

“Two thousand years have now rolled away since Euclid's Elements were first used in the school of 

Alexandria, and to this day they continue to be esteemed the best introduction to mathematical science. 

They have been adopted as the basis of geometrical instruction […and] has been adopted as a universal 

standard”.  

Evaggelos Stamatis (1957) concretely reports:  

“The first Book of “Elements” includes 23 definitions, 5 postulates, 9 Common Notions and 48 

Propositions and problems […]. The first 26 Propositions concern triangles in general […]. The proving 

methods in “Elements” are four: synthetic, analytic, proof by contradiction, and proof by induction […]. 

Using the synthesis method, when we try to prove a geometric proposition, we proceed from well-known 

proposals based on definitions and axioms and arrive at the truth of the proposed proposal through a series 

of appropriate reasoning.” (p.17) (my translation of Evaggelos Stamatis’ Greek-language manuscript). 

The synthetic method synthesizes basic objects of Euclidean Geometry (e.g. points, lines) in a formal way using 

definitions, axioms and propositions. Speaking of logical inferences and deductive argumentation, for me the 

propositions regarding triangle congruence in Euclid “Elements” are crucial for students to understand and 
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implement in the problem-solving process. Can these fundamental propositions of plane geometry in which 

triangles are congruent, (included in Book 1 of Euclid’s Elements) be transformed in a DGS software? I shall 

explain their instrumental decoding in Sketchpad in the light of having in mind the following excerpt written by 

Dina van Hiele (Fuys et al, 1984) 

“[…] the deductive system of Euclid from which a few things have been omitted cannot produce an 

elementary geometry. In order to be elementary, one will have to start from the world as perceived and as 

already partially globally known by the children. The objective should be to analyze these phenomena and 

to establish a logical relationship. Only through an approach modified in that way can geometry evolve that 

may be called elementary according to psychological principles” (p.24) 

This is in accordance with what Furinghetti & Paola (2003) support:  

[…] When [Greek geometers] made proofs they were not inside a theory in which axioms were explicitly 

declared. Initially antique geometry developed in an empirical way, through a naïve phase of trials and 

errors: it started from a body of conjectures, after there were mental experiments of control and proving 

experiments (mainly analysis) without any sure axiomatic system. According to Szabo, this is the original 

concept of proof held by Greeks, called deiknimi. The deiknimi may be developed in two ways, which 

correspond to analysis and synthesis” (p.398) 

 
Figure 5.8a. A diagram for Euclid’s 

Proposition I.4 in Sketchpad. 

(Patsiomitou, 2019a, p. 10). 

Figure 5.8b. A diagram for Euclid’s 

Proposition I.8 in Sketchpad. 

(Patsiomitou, 2019a, p. 10). 

Figure 5.8c. A diagram for Euclid’s 

Proposition I.26 in Sketchpad. 

(Patsiomitou, 2019a, p. 10). 

 

The three cases in which triangles are congruent are illustrated in the Figure 5.8a, b, and c. “Deiknymi” or 

“apodeiknio” in Greek (translated as “proving” in English) can be represented visually in a dynamic geometry 

system (DGS) using Linking Visual Active Representations (LVARs) (e.g., Patsiomitou, 2008c, 2009a, b, c). In 

other words, “deiknimi” can be visualized using Sketchpad’ interaction techniques (for example, custom tools, 

“animating” tools, ‘tracing” tools, “hiding and showing” action buttons, and “linking” or “presenting” action 

buttons, or a combination of interaction techniques in Sketchpad) (e.g., Patsiomitou, 2008a, b; 2010; 2012a, b). 

The interaction with LVARs has two aspects similar to what Sedig, Rowhani, & Liang (2005, p.422) support 

regarding VMRs: “the action upon a representation by the user through the intermediary of a human-computer 

interface, and the representation communicating back through some form of reaction or response.” Lopez-Real 

and Leung (2006) state that DGS including dragging “[…] as a fundamental geometrical object (like that of point, 

circle),” determines “new ‘rules of the game,’ or even a new game for geometry’’ (p. 676).  

“There is no other scientific or analytical discipline that uses proof as readily and routinely as does 

mathematics. This is the device that makes theoretical mathematics special: the tightly knit chain of 

reasoning, following strict logical rules, that leads inexorably to a particular conclusion. It is proof that is 

our device for establishing the absolute and irrevocable truth of statements in our subject. This is the reason 

that we can depend on mathematics that was done by Euclid 2300 years ago as readily as we believe in the 

mathematics that is done today. No other discipline can make such an assertion” (Krantz, 2007, p.1) 

 
Figure 5.9. Screenshot of an excerpt included in Euclid’ Elements (Fitzpatrick, 2007, p.10) 
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Proposition I.4 (known with the abbreviation SAS): If two triangles have two corresponding sides congruent and 

the angles enclosed by the equal sides congruent the two triangles are congruent (SAS) (Figure 5.9). We can take 

it as given that two segments are congruent if they have the same “length” and, similarly, that two angles are 

congruent if they have the same “angle measure”. The method used by Euclid to prove proposition I.4, regarding 

triangle congruence is a combination of: the method of superposition and the method of proof by contradiction. 

Initially, the first part of the proposition is proved by moving one of the two triangles so that one of its sides 

coincides with the other triangle's equal side; it is then proved that the other sides coincide as well. (Figure 5.10) 

(Webpage [30]) 

 
Figure 5.10. Screenshot of an excerpt of the proof used by Euclid to prove proposition I.4, mentioned in Euclid “Elements” 

(Mourmouras, 1999) (See Website [31]). 
 

The paragraph mentioned above in Ancient Greek is translated as follows (Fitzpatrick, 2007, p.10): 

“[…] Let the triangle ABC be applied to the triangle A΄B΄C΄, the point A being placed on the point Α΄, and 

the straight-line AB on A΄B΄. The point B will also coincide with B΄, on account of AB being equal to 

Α΄B΄ […]. For, if B coincides with B΄, and C with C΄ and the base BC does not coincide with B΄C΄, then 

two straight lines will encompass an area. The very thing is impossible. Thus, the base BC will coincide 

with B΄C΄[…]”.  

According to Krantz (2007)  

“One of the most important proof techniques in mathematics is “proof by contradiction”. With this 

methodology, one assumes in advance that the desired result is false and shows that that leads to an 

untenable position. But in fact proof by contradiction is nothing other than a reformulation of modus 

ponendo ponens” (p.6)  

Moreover, in the words of Lardner (1855)  

“Superposition is the process by which one magnitude may be conceived to be placed upon another, so as 

exactly to cover it, or so that every part of each shall exactly coincide with every part of the other” (p.5). 

[…] In the superposition of the triangles in this proposition, three things are to be attended to: (a) The 

vertices of the equal angles are to be placed one on the other. (b) Two equal sides to be placed one on the 

other. (c) The other two equal sides are to be placed on the same side of those which are laid one upon the 

other. From this arrangement the coincidence of the triangles is inferred (p. 18).  

In the Sketchpad software, this method could be instrumentally decoded (Patsiomitou, 2011a, b) by a user using 

translation transformation, a digital method of “superposition”, in which a figure is transferred to another point in 

space, using a dynamic vector. Concretely, the triangle on the right (A΄B΄C΄) can be produced using the 

translation transformation, on the triangle ABC (Figure 5.11a). A combination of transformations (translation & 

dragging) also indicates the triangles’ congruency by a superposition method. The students can also drag the 

vector and apply the triangle ABC on the triangle A΄B΄C΄ and justify why this is the case. We can also use 

predesigned movement action buttons to move the triangle ABC onto the triangle A΄B΄C΄ so the two can be 

superposed confirming the triangles’ congruency. We can use Sketchpad’s customized ‘appearance tools’ to 

indicate the congruent angles, and we can also highlight or color the triangles’ corresponding congruent sides in 

order to point out the congruency. These are the signs that can be visualized by a student during the investigation 

of the concrete theorem and which indicate congruency. The students can also measure the angles and the sides, 

and investigate the congruency of the triangles through experimental dragging (e.g., Patsiomitou, 2011a, b; 

2012a, b, 2019a) the congruency of the triangles and the power of the theorem. In other words, the experimental 

dragging leads to a theoretical observation.  
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Figure 5.11a. Proposition I.47 using LVARs (Mode 3): A visual proof in three linking diagrams (Patsiomitou, 2019a, p.11) (modified) 

 

Triangles’ congruence is used in many proofs. For the Euclidean proof of the Pythagoras’ Theorem I have created 

the three consequential visual representations using the translation transformation (Figures 5.11a, b). Every 

object of the first construction on the left has been translated by the vector j to an image object on the right and 

the outline figure can be superposed on it. Every representation on the right is more complex and supports the 

next consequential step on the problem’s solution. Nunokawa & Fukuzawa (2002), report Sohma (1997) who 

stated that “he wanted his students to experience a feeling of ‘why?’ so that they would be motivated to solve 

[geometry] problems” (p.31). As Nunokawa & Fukuzawa (2002) argue “the students’ feeling of ‘why?’ was 

influenced by their understanding of a problem situation” (p. 41). In the current situation the students ask 

themselves “why is this happening?” at every sequential step. For example, they might ask: why does triangle 

EFL has an area congruent to the area of the triangle E΄L΄M΄? (: they have the same base EL and the heights of 

the triangles to the base EL are equal magnitudes). Thiele (2003) explains the meaning of magnitude as follows: 

“There is no definition of the concept of magnitude (Greek megathos) because there is no superior concept for 

this fundamental concept. Nevertheless, Euclid is dealing with magnitudes throughout the Elements; […] 

Magnitudes are generally characterized by the property of being able to increase and decrease” (Thiele, 2003, p. 

6). The following questions could also support the structure of the Euclidean proof:  
• Why does triangle E΄L΄M΄ has an area congruent to the area of the triangle K΄L΄J? (: they are congruent 

triangles, so they have congruent areas). 
• Why triangle K΄L΄J has an area congruent to the area of the triangle L΄΄J΄΄N΄΄(: the base and the height of 

the triangles are equal magnitudes).  
If we drag any point of the LVARepresentation, the image-points follow the movement also, turning the whole 
dynamic diagram to an active alive one in which we can view sequential transformations that indicate a path for 
the rigorous proof of the Pythagorean Theorem. The triangle EFL is visually transformed to the triangle E΄L΄M΄, 
then to the triangle K΄L΄J, and finally to the triangle L΄΄J΄΄N΄΄ (Figure 5.11a). Similarly, the triangle ZHM is 
visually transformed to the triangle L΄M΄H΄, then to the triangle K΄M΄I and finally to the triangle M΄΄N΄΄I΄΄ 
(Figure 5.11a). Consequently, the area of the square FKLE plus the area of the square ZHMK is transformed into 
the area of the square LMIJ. We can also create an LVARepresentation using more sequential steps, every object 
on the right side occurs as a translation image of the object on the left side (Figure 5.11b). The whole process 
scaffolds students thinking, given that they cannot visualize / hold all the intermediate steps in their heads for the 
solution.  
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Figure 5.11b. Proposition I.47 using LVARs (Mode 3): A visual proof in four linking diagrams (Patsiomitou, 2019a, p.12) (modified) 

 

If the vector’s length is tending to zero, then the vectors’ endpoints coincide. This result to the following 

representation illustrated in Figure 5.11c in which we can view the initial triangle EFL transformed to the final 

triangle LJN, as well as the auxiliary triangles for the visual proof in blue and yellow (i.e., the sequential 

diagrams have been superposed to the first diagram on the left).  

 
Figure 5.11c. Proposition I.47 using LVAR (Patsiomitou, 2019a, p.12) 

 

 5.3. Modeling a real-world problem in a DGS environment 

Many researchers (e.g, Burkhardt, 1981; Pierce & Stacey, 2009) have highlighted the idea of solving problems in 

the real world as essential to understanding and learning mathematics, as well as “a key ability for citizens [who 

are prepared to make] judgments and decisions” (Stacey, 2012, p.3).  

According to De Corte, Verschaffel & Greer (2000), the implementation of the mathematics to solve real world 

problems can be useful “as a complex process involving a number of phases:  

• understanding the situation described;  

• constructing a mathematical model that describes the essence of those elements and relations embedded in 

the situation that are relevant;  
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• working through the mathematical model to identify what follows from it;  

• interpreting the outcome of the computational work to arrive at a solution to the practical situation that 

gave rise to the mathematical model;  

• evaluating that interpreted outcome in relation to the original situation;  

• and communicating the interpreted results” (p.1) (Figure 5.12). 

 

 
Figure 5.12. Solving real-world problems (De Corte, Verschaffel & Greer, 2000, p.71) (adapted) 

 

De Corte, Verschaffel & Greer (2000) support also that “the […] process of modeling constitutes the bridge 

between mathematics as a set of tools for describing aspects of the real world, on the one hand, and mathematics 

as the analysis of abstract structures, on the other” (p.71). If the teaching and learning is based on real –world 

problem solving modeled in a DGS environment the teacher  

“[…] apart from the aspect of anticipating the mental activities of the students, [...] has to investigate 

whether the thinking of the students actually evolves as conjectured, and he or she has to revise or adjust 

the learning trajectory on the basis of his or her findings. In relation to this, Simon (1995) speaks of a 

mathematical teaching cycle. In a similar manner, Freudenthal (1973) speaks of thought experiments that 

are followed by instructional experiments in a cyclic process of trial and adjustment.” (Gravemejer, 2004, 

p.9). 

A real-world word-problem (or an oral mathematical problem) can be illustrated in various types as an image in 

textbooks or on the board in class (e.g., a picture, a diagram, a table, etc). In this way, a teacher, educator or 

student can translate a problem’s verbal representation into a visual mathematical representation in an effort to 

convey information and translate from one form of representation to another. In this way, a bridge can be created 

between the real-world environment, the symbolic representations and the abstract world of a student’s thinking, 

just as Goldin & Janvier (1998) describe/interpret or define the term “representation” and “system of 

representation”, in connection with mathematics teaching and learning (Goldin & Janvier, 1998, p.1). Most 

scholars around the world concur in the view that translation and links between mathematical representations are 

fundamental to understanding how students construct mathematical concepts and solve problems (e.g., Duval, 

1993; Eisenberg & Dreyfus, 1990; Janvier, 1987; Kaput, 1994; Presmeg, 1986; Vergnaud, 1987). Kaput et al. 

(2002) in their paper “Developing New Notations for a Learnable Mathematics in the Computational Era” 

analysed the ways “we use to present and re-present our thoughts to ourselves and to others, (in order) to create 

and communicate records across space and time, and to support reasoning and computation” (p. 2) namely “how 

in the evolution of the new representational infrastructures, and the associated artifacts and technologies have, 

over long periods of time, gradually externalized aspects of knowledge and transformational skill that previously 

existed only in the minds and practices” (p.33). 

Real world images (or digital images) “are potential representations […and] offer the heuristic part of learning” 

as they “denote something” (Kadunz & Straesser, 2004, p.241, 242). What is important is how the students 

perceive these potential representations of the environment (natural images or digital), how they use and 

communicate with each other and how they manage their mental mathematical structures in order to represent the 

objects in a static or dynamic environment. Mogeta, Olivero & Jones (1999) in their report “Providing the 

Motivation to Prove in a Dynamic Geometry Environment” argue that “setting problem solving within these 
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environments requires a careful design of activities, which need to take into account the interaction between three 

elements: the dynamic software, as an instance of the milieu, a problem, and a situation, through which the 

devolution of the problem takes place (Brousseau, 1986)”. Most importantly, the diagrams that the students are 

obliged to translate and the relations that link the objects in the diagram will provide researchers and teachers 

insights to see their abilities and their weaknesses with respect to the mathematical knowledge that they have 

structured as a result of the teaching process in class. For this, the verification of students’ mistakes and cognitive 

obstacles during the construction of diagrams will lead us to the reinforcement of the teaching of mathematics in 

the context of real-world problems.  

Goldin (2008) in his study “Perspectives on representation in mathematical learning and problem solving” 

describes what a model is, as well as what is modeling. 

“a model is a specific structure of some kind that embodies features of an object, a situation, or a class of 

situations or phenomena-that which the model represents. The term modeling refers to the construction of 

models-of meaningful structures, within one or more representational systems (possibly mathematical, 

possibly physical or iconic, possibly digitally-encoded and dynamic). When appropriately interpreted, the 

model describes some but not other aspects of the relevant situations or phenomena; hence the central 

importance of the meaningfulness of the representations within which the model has been constructed “(p.  

186).  

Doerr & Pratt (2008) also in their article “The Learning of Mathematics and Mathematical Modeling” state that:   

“A model is a system of objects, relationships, and rules whose behavior resembles that of some other 

system. Modeling is the activity of mapping from one system to another. This activity is driven by the need 

to describe, predict, or explain some particular phenomena of interest to the modeler. Elements from the 

real world of the experienced phenomena are selected, organized, and structured in such a way that they 

can be mapped onto a model world. This model world necessarily simplifies and distorts some aspects of 

the real world while maintaining other features and allowing for manipulations of these features (or 

objects) in accordance with the rules of the model world”. (p.261) (Figure 5.13) 

If the students are engaged in solving a real world problem this process is underlied by the characteristics of the 

philosophy of Realistic Mathematics Education (abbreviated as RME), developed at the Freudenthal Institute and 

restricted here to the aspect that mathematics should be learned as an activity of progressive mathematization, 

distinguished to horizontal mathematization and vertical mathematization (e.g., Treffers,1987; Gravemeijer, 

1994; Van den Heuvel-Panhuizen, 1996; Drijvers, 2003). Horizontal mathematization in real world situations 

refers to the process of modeling from the real world to the model world using mathematical representations. In 

other words, horizontal mathematization is a process through which a real problem is transformed to a model. 

Vertical mathematization concerns the mathematical abstract process in a higher level of abstraction, connecting 

concepts and strategies.  

Graumann (2005) in his study “Investigating and ordering quadrilaterals and their analogies in space-problem 

field with various aspects” introduces the notion of “a problem field”. According to Graumann (ibid.) “a problem 

field is a set of problems which are related to each other and have a generating problem (see e.g. Pehkonen 2001). 

This means that we do not work only with isolated problems (like in mathematical Olympiads) but with a 

mathematical field or a situation of everyday life where the students besides solving problems also can make 

investigations, pose problems and find connections, new insights or even mathematical theorems as well as 

discuss the ways and the limitations of modelling” (p.190). 

As I mention in many papers (e.g. Patsiomitou, 2008a, 2014), my further aims, were/are the student’s 

mathematical literacy and problem-solving literacy. The latter PISA (Programme for International Student 

Assessment) definition of mathematical literacy is as follows (OECD, 2010):  

“Mathematical literacy is an individual’s capacity to formulate, employ, and interpret mathematics in a 

variety of contexts. It includes reasoning mathematically and using mathematical concepts, procedures, 

facts, and tools to describe, explain, and predict phenomena. It assists individuals to recognise the role that 

mathematics plays in the world and to make the well-founded judgments and decisions needed by 

constructive, engaged and reflective citizens.” (p. 4) 

It is very important for students to develop their modeling competency in order to transform real-world problems 

from the three-dimensional world to the two-dimensional world of the paper and pencil [or DG] environment. 

Additionally, it is important for them to be able to process in an abstract way. Epigrammatically, the students, 

through the real world problems can be evaluated with regard to the development of the competencies (OECD, 

2006), that have been analyzed from Niss (1999) and his colleagues but similar formulations can be found in the 
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work of many others (e.g., Neubrand et al. 2001) (see Chapter IV, section 4.3). Through the solution of the real 

world problems, students can be also evaluated regarding their competency for horizontal and vertical 

mathematization (Jupri, Drijvers, & van den Heuvel-Panhuizen, 2012). 

 

 
Figure 5.13. Modeling as a cyclic process (Doerr & Pratt , 2008, p. 262) (an adaptation for the current study) 

 

It is difficult for students to move from the real world to the abstract world (or the world of symbols and signs). 

This difficulty concerns horizontal mathematization.  Students also face difficulties to deal with the symbols 

during vertical mathematization process (e.g., Treffers, 1987). As Jonassen (2004, p.60) points out:  

“If we want students to be better problem solvers (regardless of problem type), we must teach them to 

construct problem representations that integrate with domain knowledge. These internal problem 

representations must be coherent (internally consistent) and should integrate different kinds of 

representations (qualitative and quantitative, abstract and concrete, visual and verbal)”. 

When a student understands the problem s/he can creates meaningful representations or can create accurate 

models, interpreting the real problem to a mathematical problem. Children have difficulty to perceive the signs of 

the meanings in the images of the real world. They perceive them as a whole image especially at the lower van 

Hiele levels. For most researchers, representations can help students to reorganize and translate their ideas using 

symbols. They are also useful as communication tools (Kaput, 1991) and can function as tools for understanding 

of concepts, since they help with the communication of ideas and provide a social environment for the 

development of mathematical discussion. The knowledge of supporting instruments, which are external 

representational systems for planning activities, allows us to choose between technological tools. The [external] 

representations facilitate the provision of information about the problem, capture the structure of the problem, 

and support visual reasoning. On the other hand, the external representations (e.g., formulations or figures) that 

students construct serve as an indicator of their internal representations, constituting their level of understanding 

and the developmental level of their geometric thinking. Chinnappan (2006) describes the process of the 

construction of a representation as a cyclic event:  

“The construction of representations is a cyclic event where students continue to refine one representation 

or change to a different one until the correct match is found between schemas that have been accessed and 

the goal. The goal could be unknown value that has to be determined or a mathematical result that has to be 

proved via a chain of reasoning. The above model suggests that instructional methods that would help 

students decompose problems into sub-problems would benefit them in three ways. Firstly, students might 

be expected to access previously acquired schemas from their memory by examining what is given in the 

problem. Secondly, the accessed schemas could be deployed in solution of sub-problems. Thirdly, students 

could relate the subproblems in ways that would help them reach the problem goal. (p.100) 

How does it occur? Information-processing models have been developed to explain inter alia the problem-solving 

process (e.g., Newell and Simon, 1972; Bower, 1975):“[…] since external stimuli cannot get inside an organism, 

the representation of them […] and their interaction is what we call “information” […].’ (Bower, 1975, p.33). 

Massaro & Cowan (1993) report that “information refers to representations derived by a person from 
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environmental stimulation […]” (p. 384). Wertheimer (1985) also supports that “a students’ representation is 

appropriate and satisfactory when  

• the representation corresponds to the actual structure of the problem […];  

• the representation is well-integrated in the sense that all of its components are appropriately 

interconnected […];  

• the representation is well integrated with the problem solver's other knowledge […]” (p. 22, cited in 

Simon, 1986, p.249).  

Moreover, cognitive researchers are investigating how these activities are processed from a psychological point 

of view and concretely in terms of how the students perceive the information on the computer screen, what parts 

of their brain are stimulated as they explore using different interaction techniques, and how they integrate and 

embody this information to their pre-existing knowledge. The questions posed here relate to the external 

stimulation delivered by new representational infrastructures. When a student reads a mathematical problem, 

information relating to the problem transits through the sensory register into their working memory. Sensory 

register is the unit where a stimulus is registered (Atkinson & Shiffrin, 1968). Working memory is the unit of the 

brain-memory “where the information is temporarily stored and processed” (Karadag, 2009, p.31). The use of a 

computing environment as dynamic geometry (DGS) facilitates the "dyna-linking"(Ainsworth, 1999a, p. 133). 

Furthermore, mental representations are stimulated in response to the problem and retrieved from their long-term 

memory, along with components of interrelated information from student’s pre-existing knowledge. Johnson-

Laird (1983) argues: “to understand a physical system or a natural phenomenon one needs to have a mental 

model of this system that will allow […] the person who will build it to explain it and to predict about it” (p. 

430).  

The next step is the incorporation of new information into the pre-existing structural units in the student’s mind. 

In the words of Lester & Kehle (2003):  

“Successful problem solving in mathematics involves coordinating previous experiences, knowledge, 

familiar representations and patterns of inference, and intuition in an effort to generate new representations 

and related patterns of inference that resolve the tension or ambiguity (i.e. lack of meaningful 

representations and supporting inferential moves) that prompted the original problem-solving activity. (p. 

510) 

Schumann (2004) in his study “Reconstructive Modelling inside Dynamic Geometry Systems” developed a 

method for geometrical modelling on the basis of DGS. As he writes “Technically, tools must be capable of 

importing image files of such elements into DGS.  The imported images can then be reconstructed by modelling 

making use of the adequate characteristics of DGS, which offer far wider options than conventional modelling 

tools” (p. 5).  

To produce a mathematical model from a word problem in a DGS, you can combine a picture of reality with a 

diagram with concrete conceptual properties, to drawing the students’ attention through interaction techniques to 

important properties which are essential for an investigation of the problem.  This serves to reveal the theoretical 

object.  

Schumann (2004) describes guidelines for creating a model in a DGS environment as follows (p.7):  

• “Look for a moving object in your environment, in printed media or on the web which you think can be 

analyzed, reconstructed and simulated using the tools of geometry in the plane. 

• Make a picture of that object using a digital camera, a camcorder, by scanning or by making a digital 

copy, and load the image files or the digitized video into your DGS.  

• Analyze the picture/s of the moving object by drawing and measuring. Look for geometrical figures and 

rules.  Observe the function of the moving object, or get information on its function.  Attempt to find 

arguments for the rules and functions.  

• Reconstruct a functioning model using the tools of DGS.  

• Verify your reconstruction by means of simulations.  Check whether the functionality of the 

reconstruction is sufficiently similar to the functionality of the original.  

Publish your verified dynamic model, together with a description and the picture of the original object, e.g. 

on the web”. (Figure 5.14) 
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Figure 5.14. Schuman’s (2004, p. 7) modelling process using LVARs (an adaptation for the current study) 

 

In essence, the image conversion of the natural environment in the dynamic environment is a result of a complex 

process on the student’s part. The student has first to transform the verbal or written formulation (“a triangular 

island” for example) into a mental image, which is to say an internal representation recalling a prototype image 

(e.g., Hershkovitz, 1990) that s/he has shaped from a textbook or other authority, before transforming it into an 

external representation, namely an on-screen construction. The student needs to explore the shape of the natural 

environment (e.g., properties of shapes such as its symmetry lines, etc.) and then construct the scale model. The 

digital image plays a supporting role in understanding the properties of shape but also can bring to the surface 

students’ cognitive obstacles and, consequently, lead to errors. These errors are mainly due to their van Hiele 

level. As a result, students may not have the capacity to recognize the figure’s properties, and, generally, to 

develop the solution with deductive reasoning. 

For the design of activities and the modelling process in a DGS environment I always have in mind: “What 

would the individual have to know in order to be capable of doing this task without undertaking any learning, but 

given only some instructions?” (Battista, 2011, p. 515). For this I distinguish between real world problems 

modelled / simulated or not as follows (Patsiomitou, 2014):  

• Case A: The problem is modelled in the dynamic environment. In the modeled dynamic representation, 

emphasis is given to the features associated with mathematics (e.g., the modeling of a kite can be done by 

constructing a rhomboid that emphasizes the verticality of the diagonals, etc.), rather than to other 

characteristics (e.g., the material, color, etc.). The students are able to experiment with the software tools 

on the digital image and to visualize the properties of the shapes that they are not able to perceive in the 

environment.  

• Case B: The problem is not modelled in the dynamic environment, but the students are prompted to 

manage the image as if it was perceived in the natural environment. The students have to construct a 

simulation of the problem in a static, digital, or other physical means as a model of the natural 

environment. They also have to manage the (digital or not) image to gain intuition about the properties of 

the shape. According to Johnson-Laird (1983) the human beings understand the world through the 

representations of the world they create in their minds.  

According to Schumann & Green (2000) “computer-aided teaching of mathematics, particularly in secondary 

education, plays a marginal role due to dissonance with the curriculum. This prevents a fruitful competition of 

old and new protocols in the treatment of mathematical problems” (p.338). 

5.4. Learning Progression, Learning Trajectory and Teaching Cycle  

5.4.1. Hypothetical Learning Trajectories or Hypothetical Learning Paths 

Simon (1995) defined hypothetical learning trajectories as "the learning goal, the learning activities, and the 

thinking and learning in which the students might engage" (p. 133). A hypothetical learning trajectory is 
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hypothetical “because […it] “is not knowable in advance” (Simon, 1995, p. 135).  He used the metaphor of a 

sailor to explain the difference between a trajectory and a hypothetical learning trajectory: 

 “You may initially plan the whole journey or only part of it. You set out sailing according to your plan.  

However, you must constantly adjust because of the conditions that you encounter.  You continue to 

acquire knowledge about sailing, about the current conditions, and about the areas that you wish to visit.  

You change your plans with respect to the order of your destinations. You modify the length and nature of 

your visits as a result of interactions with people along the way.  You add destinations that prior to the trip 

were unknown to you.  The path that you travel is your [actual] trajectory.  The path that you anticipate at 

any point is your ‘hypothetical trajectory’.” (pp. 136-137) 

In this thoughtful paragraph, I recognized my own experiences with my every year students in class. The way that 

my students interacted with the pre-prepared material (digital and otherwise) which I had planned for them, 

changed the whole path we followed, as I added paths to explain something that was not understood or helped 

students overcome their misconceptions by using a different path. This was the same feeling I had when I read 

how Clements & Sarama (2004) defined learning trajectories as “descriptions of children's thinking and learning 

in a specific mathematical domain, and a related, conjectured route through a set of instructional tasks designed 

to engender those mental processes or actions hypothesized to move children through a developmental 

progression of levels of thinking, created with the intent of supporting children's achievement of specific goals in 

that mathematical domain” (p. 83). 

Simon & Tzur (2004) define a learning trajectory as a way to describe in a constructivist framework “mechanism, 

reflection on task-effect relation, that is an elaboration of Piaget’s (2001) reflective abstraction and the ways such 

a mechanism can structure the use of each of several components of the hypothetical learning trajectory” (cited in 

Clements & Sarama, 2004, p.86). 

Clements & Sarama (2004) in their article “Learning Trajectories in Mathematics Education” argue that 

“learning trajectories can have significance beyond curriculum development. There is evidence that superior 

teachers use a related conceptual structure. For example, in one study of a reform –based curriculum, the few 

teachers that had worth-while, in-depth discussions saw themselves not as moving through a curriculum but as 

helping students move through a progression or range of solution methods (Fuson, Carol & Drueck, 2000); that 

is, simultaneously using and modifying a type of hypothetical learning trajectory.” (p. 82) […] We believe that 

the notion of hypothetical learning trajectories is a unique and substantive contribution to the field. The construct 

differs from other models in that it involves self-reflexive constructivism and included the simultaneous 

consideration of mathematics, goals, models of children’s’ thinking, teachers’ and researchers’ models of 

children’s thinking sequences of instructional tasks, and the interaction of these at a detailed level of analyses of 

processes.” (p.87) 

Clements & Sarama (2009) argue that a learning trajectory has three basic components:  

• “The first part of a learning trajectory is a mathematical goal. Our goals are the big ideas of 

mathematics—clusters of concepts and skills that are mathematically central and coherent, consistent 

with children’s thinking, and generative of future learning” (p. 1).  

The core of “key” or “big” mathematical ideas is incorporated into the formulation of the trajectory. Big ideas 

are “the central, organizing ideas of mathematics—principles that define mathematical order (Schifter & Fosnot, 

1993, p. 35).” 

• The second are the levels of thought through which a student passes during the experimental process, in 

order to develop understanding and skills. “Each [level is] more sophisticated than the last, which lead to 

achieving the mathematical goal.  That is, the developmental progression describes a typical path children 

follow in developing understanding and skill about that mathematical topic” (p.2). 

• The third part “consists of set of instructional tasks matched to each of the levels of thinking in the 

developmental progression” (p.2). Also, consist of the mathematical activities, the mathematical 

problems, the software files that mediate in the empirical construction of the understanding of meanings. 

Fosnot (2003) in her article “Teaching and Learning in the 21th Century” gives examples of big ideas (p.9): (a) 

Unitizing requires that children use number to count not only objects, but also groups—and to count these both 

simultaneously […] (b) Hierarchical inclusion: Understanding that number nests like “russian dolls” […]”. 

Fosnot (2003) argues:  

“Through the centuries and across cultures as mathematical big ideas developed, the advances were often 

characterized by paradigmatic shifts in reasoning. That is because these structural shifts in thought 
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characterize the learning process in general. Thus, these ideas are “big” because they are critical ideas in 

mathematics itself and because they are big leaps in the development of the structure of children’s 

reasoning” (p.9).    

For example, number pi (π) is a mathematical abstract object but it can also be perceived as a result of a process 

(e.g., Patsiomitou, 2006f, 2007c, 2018a, pp.225-248) (Figures 5.15a, b). Specific examples from my 

experimental research using dynamic active representations have been analyzed in the methodology section of 

my study “A dynamic active learning trajectory for the construction of number pi (π): transforming mathematics 

education” (Patsiomitou, 2018a): (a) the construction of number pi as an approximation process (Patsiomitou, 

2006c, 2007a, 2009). For this, I created in the Geometer’s Sketchpad software the process of an inscribed or 

circumscribed n-gon in a circle with a view to using the tabularized measurements and calculations of a ratio in 

combination with the software’s iteration process to lead the students to visualize the approximation process of 

number pi; (b) the construction of number pi through Riemann sums in a DGS environment (Patsiomitou, 2006c); 

(c) the construction of number pi by means of a real world problem (Patsiomitou, 2013b, 2016a, b). For this, I 

combined a digital visit to the Guggenheim museum in New York using the Google Earth software with dynamic 

representations of the Geometer’s Sketchpad software (Patsiomitou, 2016a, b) and other digital web resources. 

My aim was the students to conceive the meaning of number pi as a limit using the iteration process of the 

Geometer’s Sketchpad dynamic geometry software. Finally, the role the active representations play in the 

learning trajectory made me think of a way to define what a ‘dynamic active learning trajectory’ is . 

  

 
Figure 5.15a. Generating number pi through active representations (Patsiomitou, 2006f, 2007c, 2018a, p. 232) 

 

As a mathematics teacher, I design instructional materials for my students (e.g., Patsiomitou, 2005a, 2006a, b, c, 

2007a, 20008a, b, c, d), endeavouring to predict students thinking, or “imagining a route by which [the student] 

could have arrived (or could arrive) at a personal solution” (Gravemeijer & Terwel, 2000, p.780). This is in 

accordance to the “reinvention principle” (Freudenthal, 1973) or working in a DGS environment in accordance to 

the ‘dynamic reinvention of knowledge’ principle (Patsiomitou, 2012a, b). Furthermore, “an individual’s learning 

has some similarity to [the learning] that many of the students in the same class can benefit from the same 

mathematical task” (Simon, 1995, p. 135). 

Furthermore these learning paths are dynamic, when instructional DG (Dynamic Geometry) activities are 

incorporated. Therefore, they could be defined as Dynamic Hypothetical Learning Paths (DHLPs) (see 

Patsiomitou, 2012b, 2014).  

A Dynamic Hypothetical Learning Path (DHLP) can incorporate real-world problems or simulations of problems 

in the DGS environment that had been analyzed and designed in terms of (a) the students’ van Hiele (vH) levels 

of thinking, starting from the lower vH levels to elicit higher vH levels, (b) their sequential conceptual content, 

and (c) the student’s comprehension of the links between representations and mathematical meanings 

conceptually and procedurally. I have been designed and modified hypothetical learning trajectories /paths using 

DGS software (or combinations of software’ environments), as a result of interactions with the students that 

participated, “adding the destinations that prior to [their] trip were unknown” (Simon, 1995, p.137). My study “A 
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dynamic active learning trajectory for the construction of number pi (π): transforming mathematics education” 

(Patsiomitou, 2018a), reiterates the DHLPs I created since 2005 and use in class instruction for the construction 

of number pi (π) (indicative Figures 5.15a, b). 

 

 
Figure 5.15b. Generating number pi through active representations (Patsiomitou, 2006f, 2007c, 2018a, p.238)  

 

Points of departure for the anticipation of the instrumental approach though the dynamic trajectories were the 

questions (Patsiomitou, 2018a, p.227): 

• How could a math lesson acquire interest for all students? Can external linking multiple representations 

captured by digital medium help students to link concepts and meanings across different disciplines such 

as geography, mathematics and history of mathematics? 

• Do students understand the mathematical components of a mathematical meaning when they see real-

world images? 

• Can these linking images help students to recall important information which it is difficult to recall 

under other circumstances? 

• What mathematical activities are most reflective of, and appropriate for, the essential development of 

students’ logico-mathematical structures? 

• How important is the role of a dynamic geometry software in reorganizing students’ mental 

representations? 

• How effective is the teaching and learning process that uses linking visual active representations to 

overcome cognitive or instrumental obstacles and develop students’ understanding of mathematical 

concepts? 

• How does instruction conducted through technological tools and explorations within a laboratory 

environment help high school math students to discover mathematics? 

The learning trajectory was hypothetical at the beginning, as I had hypothesized “if and how [the students] would 

construct new interpretations, ideas, and strategies” (Fosnot, 2003, p. 10) and the path would follow as they 

worked on the problem. Moreover, the instructional design process was a synthesis of constructivism and 

discovery learning, as it was my intention: (a) the students to build on their previous knowledge, (b) the teaching 

and learning process would be supported through mathematical discourse and conceptual understanding and (c) 

the learning included students’ discovery (“aha” expressions) and their dynamic reinvention of knowledge under 

investigation.  

A hypothetical learning trajectory (HLT) is a cognitive tool based in social constructivism. Fosnot and Perry 

(1996/2005) in their study “Constructivism: A Psychological Theory of Learning” report some general principles 

of learning derived from constructivism, which as they stress “is a theory about learning, not a description of 

teaching”. These principles are mentioned here briefly (Fosnot & Perry, 1996/2005)  

• Learning is not the result of development; learning is development.[…] 
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• Disequilibrium facilitates learning. "Errors" need to be perceived as a result of learners' conceptions, and 

therefore not minimized or avoided.[…] 

• Reflective abstraction is the driving force of learning.  As meaning makers, humans seek to organize and 

generalize across experiences in a representational form. […] 

• Dialogue within a community engenders further thinking.  The classroom needs to be seen as a 

"community of discourse engaged in activity, reflection, and conversation" (Fosnot, 1989).[…] 

• Learning is the result of activity and self-organization and proceeds towards the development of 

structures. As learners struggle to make meaning, progressive structural shifts in perspective are 

constructed—in a sense "big ideas" (Schifter & Fosnot, 1993.)  These "big ideas" are learner constructed, 

central organizing principles that can be generalized across experiences, and that often require the 

undoing, or re-organizing of earlier conceptions. This process continues throughout development” (p. 

22).  

The teacher, however, “expects the children to solve a problem in certain ways; in fact, expectations are different 

for different children” (Fosnot, 2003, p. 10). Each new situation in class requires one or more decisions to be 

reconsidered in order to bring all the students closer to the predesigned goals. The focal point of interest, and 

subject under analysis, are the students’ answers and the way in which they verbally formulate abstract meanings 

during the solution of a problem situation.  

The instructional design process is designed in phases: what I did towards preparing the lesson before the 

instruction was delivered; what the organized topics were of the learning trajectory; what I predicted regarding 

the external stimulation delivered by new representational infrastructures in order to create successive stages in 

the transformation of previously learned material retrieved from the learner’s memory etc. To design instruction, 

I have to establish a rationale for what has to be learned in order to be successful.  

 

 
Figure 5.16. A learning hierarchy for the addition of integers (Gagné, Mayor, Garstens & Paradise, 1962 cited in Gagné, 1968, p. 65) 

 

I speak of instruction rather than teaching, because “instruction may include events that are generated by a page 

of print, by a picture, by a television program, or by a combination of physical objects, among other things” 

(Gagne, Briggs & Wager, 1992, p.3), including instructional technology in an orchestration process, while the 

teacher plays an essential in selecting the events and sources as well as their subsequent planning and 

demonstration. On the other hand, instructional technology, as a “systematic application of theory and other 

organized knowledge to the task of instructional design” (Gagne, Briggs & Wager, 1992, p.20), has opened a 

window for students, teachers and researchers to discover and investigate mathematical meanings. In the Figure 

5.16 a learning hierarchy is presented on the addition of integers (Gagné, Mayor, Garstens & Paradise, 1962 cited 
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in Gagné, 1968, p. 65). Gagné (1962) “used the term “learning hierarchy” to refer to a set of specified 

intellectual capabilities having, according to theoretical considerations, an ordered relationship to each other” 

(cited in Gagné, 1968, p.64).  

Moreover, in their article “Learning Trajectories: Foundations for Effective, Research –Based Education” in 

section “What, if anything, is “new” in the learning trajectories construct?”, Clements & Sarama (2014) discuss 

what is new in learning trajectories, reporting the common characteristics the learning trajectories have with 

psychological and educational theories “for example, Bloom's taxonomy of educational objectives and Robert 

Gagne's conditions of learning and principles of instructional design, information-processing theories, 

information- processing models, developmental and cognitive science theories” (p.8-9).  Among other things, the 

same authors support the following: 

• “Learning trajectories include hierarchies of goals and competencies but do not limit them solely to 

sequences of skills as many of the earlier constructs did;  

• They are not lists of everything students need to learn; 

• They describe students level of thinking, not just their ability to carefully respond to a mathematics 

question; 

• They have an interactionalist view of pedagogy; 

• A single problem may be solved differently by students at different levels” (Clements & Sarama, 2014, 

p.9) 

 
Figure 5.17. Events of Instruction and their relation to the learning process (Gagné, Briggs & Wager, 1992. p.190) (adapted) 

 

Gagné, Briggs & Wager (1992) proposed a systematic instructional design process “The Events of Instruction and 

their relation to processes of learning” (Figure 5.17), following a behaviorist approach for the learning process.  

Even though I am a constructivist teacher, I find the “gaining attention” principle to be relevant to every moment 

of my teaching life. In class, there is nothing more important than gaining the attention of the students who think 

that mathematics is hard and not “nice”. By giving them “beautiful mathematics” to construct, I “gain” their 

attention for what follows: constructing meanings.  

Merill (2002) provides a conceptual framework for stating and relating the first principles of instruction. 

According to Merill (ibid.) learning is promoted when “(a) learners are engaged in solving real-world problems; 

(b) learners pre-existing knowledge is activated as a foundation for new knowledge; (c) new knowledge is 

demonstrated, applied and integrated into the learner’s world” (pp.44-45). He created the following diagram 

(Figure 5.18) to represent his considerations regarding learning; I have adapted it for the needs of my study. 

 

 

Figure 5.18. An adaptation for the current study of Merill’s (2002, p. 45) phases for effective instruction  
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Wiggins and McTighe (2005, p.22) also provide a template for design questions addressed to teachers. For 

example: “What are the big ideas included in the activities? What misunderstandings can be predictable? What 

learning experiences and instruction will enable students to achieve the desired results?” Also, how will the 

instructional design help the students to reach the goals and the subgoals of the activity, hold their interest during 

the process, and provide opportunities to rethink and reflect on their understanding? The main problem in all 

design principles is according to Gravemeijer (2004) that  

“they take as their point of departure the sophisticated knowledge and strategies of experts to construe 

learning hierarchies. […] What is needed for reform mathematics education is a form of instructional 

design supporting instruction that helps students to develop their current ways of reasoning into more 

sophisticated ways of mathematical reasoning. For the instructional designer this implies a change in 

perspective from decomposing ready-made expert knowledge as the starting point for design to imagining 

students elaborating, refining, and adjusting their current ways of knowing” (p.106). 

Learning trajectories support the guided reinvention instruction. The teachers’ task is to design a course “of 

action that fits anticipated student reactions” (Gravemeijer and Terwel, 2000, p.786). More precisely, the idea is 

this: the teaching material can be re-invented by students through continuous interaction with their schoolmates 

and the teacher in class.  In this way the curriculum material can be reformed and the teachers can play a 

“substantial role [...] in shaping the curriculum experienced by students” (Remillard, 1999), whereas the teaching 

materials are “the primary vehicles used […] to stimulate curricular change [and] to change the nature of 

students’ mathematics learning opportunities”. The students “construct meaning for the mathematical concepts 

and procedures they are investigating and engage in meaningful problem-solving activities” (Fuson, Carrol and 

Drueck, 2000, p.277). Each new situation in class requires one or more decisions to be reconsidered in order to 

bring all the students closer to the predesigned goals. Freudenthal (1991) discussed of ‘guided reinvention’ to 

mention the kind of knowledge the students could acquire “as their own, personal knowledge, knowledge for 

which they themselves are responsible” (Gravemeijer & Terwel, 2000, p.786). On the other hand “the teachers 

should be given the opportunity [to their students to] build their own mathematical knowledge-store on the basis 

of such a learning process” (Gravemeijer & Terwel, 2000, p.786). Many researchers argue that working in a 

dynamic geometry environment allows students to reinvent their personal knowledge by interacting with the 

other members of the group or with the teacher (or the participating researcher). For example, Furringhetti & 

Paola (2003) support that “in this case, the reinvention is guided, […] by the use of the [dynamic geometry] 

environment”.  As I have investigated in previous studies the DGS environment affected students’ dynamic 

reinvention of knowledge (Patsiomitou 2012a, b; 2014).  

Papert (1984) in his study “Microworlds: Transforming Education” describes the experience of a little girl who 

discovered number “zero” as she played with a microworld. This was a crucial point for her understanding, as she 

understood that the command “S0” made the microworld stop moving. As Papert argues (1984, p. 81) 

“I think she was excited because she had discovered zero. They tell us in school that the Greek 

mathematicians, Pythagoras and Euclid and others, these incredibly inventive people, didn't know about 

zero. […] The fact that not every child discovers zero this way reflects an essential property of the learning 

process. No two people follow the same path of learnings, discoveries, and revelations. You learn in the 

deepest way when something happens that makes you fall in love with a particular piece of knowledge.” 

These words of Papert made me think of my own process with my students over the years teaching in class. My 

students loved particular pieces of knowledge with its active representations that made different students discover 

concepts in several different ways, at different times over the years. I also fell in love with the particular 

incidents, which have played an important role in my thinking process since then. The role the active 

representations play in a learning trajectory which, though it may take several different routes to reach it, has the 

same learning goal, made me think of a way to define what a dynamic active learning trajectory is, based on the 

previous definitions of  Simon (1995) and Clement & Sarama (2004, 2014): Dynamic Active Leaning trajectories 

(Patsiomitou, 2018a, p. 244) are sequential instructional tasks and activities engaged in [with] a learning goal and 

designed [with dynamic active representations] to engender mental linking representations which help students 

develop their thinking in the specific math domain.  

For me, a hypothetical learning trajectory which incorporates real world problems modeled in a DGS 

environment, a DHLP in other words is a crucial tool for the teaching and learning of mathematics.  

If the teaching and learning of concepts through the use of real problems in a DGS environment is compared with 

the traditional approach, I conclude that, “the modelling perspective [using a DGS environment] offers major 

advantages. The process of modelling constitutes the bridge between mathematics as a set of tools for describing 
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aspects of the real world, on the one hand, and mathematics as the analysis of abstract structures, on the other” 

(Corte, Verschaffel & Greer, 2000, p.71).  Moreover, the intrinsic design of dynamic representational systems has 

essential impacts on the mental representations of the student, that is, the ways in which students construct their 

personal representations of meaning during the activity, whether these representations are directed at an 

individual student or in the student's collaborative environment with others. Accordingly, the conclusions can be 

used to analyze the potential of these tools for mathematics teaching and learning, to design new tools, and to 

better understand the ways in which these tools can be (instrumentally) decoded by teachers and students to be 

transformed into theoretical knowledge built through mediation. 

 

5.4.2. What is a Learning Progression (LP)?  

Duschl, Schweingruber, & Shouse (2007) define learning progressions as “descriptions of the successively more 

sophisticated ways of thinking about a topic that can follow one another as children learn about and investigate a 

topic over a broad span of time” (Duschl, Schweingruber, & Shouse, 2007, p.214).  

Learning trajectories are “subsets of [a] learning progression […] as it requires developing and testing an entire 

series of learning [paths] that describe specifically how to move students toward conceptual understanding of the 

big idea[s] in [mathematics and particularly in geometry]” (Krajcik, Shin, Stevens & Short, 2009, p.27).  

 

 
Figure 5.19.  A taxonomy on learning progressions (Stevens, Shin, & Krajcik, 2009, p. 2) 

 

According to Stevens, Shin, & Krajcik (2009) a learning progression “must include not only an ordered 

description of how the important ideas can develop over time, but also: 1) possible instructional strategies and 

learning experiences that might help students move along the progression, 2) the difficulties students might have 

developing conceptual understanding based on current learning research, and 3) assessments that will define 

students’ position on the progression” (Stevens, Shin, & Krajcik, 2009, p.3) 

Also, in the Table 1 (Figure 5.19) Stevens, Shin, & Krajcik (2009) in their study “Towards a model for the 

development of an empirically tested learning progression” report a taxonomy of terms related to the process of 

developing, refining and empirically testing learning progressions. 

A learning progression is also committed to the “notion of learning as an ongoing developmental progression. It 

is designed to help children continually build on, and revise their knowledge and abilities, starting from the initial 

conceptions about how the world works and curiosity about what they see around them” (National Research 

Council (NRC), 2010, p.2). Learning progressions has among others students’ assessment as important 
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component that aids to “measure student understanding of the key concepts or practices and can track their 

developmental progress over time” (Corcoran, Mocher & Rogat, 2009, p.15).   

 
Figure 5.20.   The assessment triangle (Pellegrino, Chudowsky, & Glaser, 2001, p. 44 cited in Shavelson et al., 2003, p. 3) (adapted) 

 

A learning progression in mathematics (or other disciplines, e.g language, science) can be built upon the concept 

of the Assessment Triangle (Pellegrino, Chudowsky & Glaser, 2001) which “explicate three key elements 

underlying any assessment: (1) a model of student cognition and learning in the domain, (2) a set of beliefs about 

the kinds of observations that provide evidence of students competencies and (3) an interpretation process for 

making sense of evidence” (Pellegrino, Chudowsky & Glaser, 2001, p.44) (Figure 5.20).  

Shavelson et al. (2003) clarify the elements of the Assessment Triangle as follows: The first element cognition 

“explains how students represent knowledge and develop competence” (Pellegrino, Chudowsky, & Glaser, 2001, 

p. 44, italics in original). The second element, observations are based on “[…] tasks or situations that prompt 

students to say, do, or create something to demonstrate knowledge and skills” (Pellegrino, Chudowsky, & Glaser, 

2001, p. 47). And the third element is interpretation, which involves “… all the methods and tools used to reason 

from fallible observations” (Pellegrino, Chudowsky, & Glaser, 2001, p. 48). 

 

 
Figure 5.21. Model of a hypothetical learning progression and the process of development, refinement and empirical 

testing (Stevens, Shin, & Krajcik, 2009, p.4). 

 

As Smith, Wiser, Anderson, & Krajcik (2006) argue the progress through learning progressions depends on 

instruction as well as the theory of van Hiele.  

Krajcik, Shin, Stevens & Short, (2009, p.28), and similarly Stevens, Shin, & Krajcik (2009, p.4) illustrate the 

difference between learning progressions and learning trajectories in the Figure 5.21. As Stevens, Shin, & 

Krajcik (2009) argue “hypothetical learning trajectories (HLTs) [are] subsets of HLPs that describe specifically 

how to help students meet some or all of the learning goals that support students in moving from one HLP level 

to the next”. Krajcik, Shin, Stevens & Short, (2009) consider that instructional sequences “provide the learning 

tasks and phenomena that students need to experience in order to build understanding of the learning goals” 

(p.20). 

Besides Battista (2011) supports that a learning progression differs from a learning trajectory because it has not 

been designed “to test a curriculum, based on a fixed sequence of learning tasks in that curriculum. [Instead] it is 
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focusing on a formative assessment system that applies to many curricula […] based on many assessment tasks, 

not those in a fixed sequence” (p. 513).  

Battista (2011) defines a learning trajectory as “a detailed description of the sequence of thoughts, ways of 

reasoning, and strategies that a student employs while involved in learning a topic, including specification of how 

the student deals with all instructional tasks and social interactions during this sequence” (p.510). Moreover, 

Battista (ibid.) argues that “One critical difference between my definition of learning progressions and my 

definition of learning trajectories is that trajectories include descriptions of instruction, progressions do not” 

(p.512). 

In my study “Student’s Learning Progression through Instrumental Decoding of Mathematical Ideas” 

(Patsiomitou, 2014), I describe a learning progression comprised of a few DHLPs. Points of departure for the 

anticipation of the DHLPs were the questions:  

• Do students understand the mathematical components of modeling when they see real-world 

environments’ representations?  

• What mental activities will the students develop when they participate in these learning [/ instructional] 

activities?  

• What mathematical representations are most appropriate for student learning?  

• How important is the role of a dynamic geometry program to reorganize students’ mental 

representations?  

• Does students’ actual learning correspond with what was anticipated?  

• How effective is the teaching and learning process using linking visual active representations (LVARs) 

to overcome cognitive obstacles and develop understanding of the mathematical concepts?  

• Which mathematical competencies are developed through the DHLP? 

• What is the need for students’ learning and understanding in upper-class curriculum processes for 

innovative learning when new practices and ideas (i.e., fractal activities) are incorporated? 

As a researcher, teacher-researcher, I know that the students encounter difficulties in order to understand the 

concepts in geometry. The connection between the “representation” and the “representing object” can create 

conflicts to students because they are not able to control the information that comes from the outside world 

(Mesquita, 1998). The question is how we can help students overcome the cognitive obstacles they face and what 

are these teaching situations which can provide the scaffolding to the next van Hiele level.  

For the learning progression mentioned above, I developed the instructional activities based on an analysis of the 

results of my PhD thesis, with regard to students’ evolution of understanding on instrumental decoding when they 

construct quadrilaterals. The complete study includes a detailed procedural analysis of the situations, the involved 

problems, in addition the problems’ conceptual analysis, instrumental decoding and learning targets (e.g., 

different solving strategies, formulas or figure’s decomposition). This incorporated the recognition and 

demonstration of transformations (e.g, recognition and drawing of symmetry lines or demonstration of 

reflections, translations and rotations) using multiple contexts (e.g., graphpapers, a computing environment). 

Furthermore, is described the recognition and utilization of properties that belong to a class of figures (or a 

subclass) and description of the characteristics of shapes and their relationships.  We worked as a whole class, 

trying to develop a form of practice compatible with social constructivism (e.g., Wood & Yackel, 1990). I was 

actively involved with the children, encouraging small group cooperation both in and outside of class, without 

intently to show the process to complete the activity. I started the activity with a question; after the answers were 

given, I continued with sequential questions to clarify the explanations or to help students with the cognitive 

conflicts. Then, I asked the students to complete the task in the paper-pencil environment and collected their 

work to see the level of understanding from the correct answers. After the evaluation of the students’ work, I 

continued with follow-up activities in the DGS environment to help the children reconstruct the solution methods. 

After the intervention with GSP activities, the paper-pencil work was repeated to see the difference in the 

students’ learning and understanding of the concepts. Indicative of students’ wrong representations will be 

presented and a short report made of their mistakes and misconceptions.  

“The situations that children find problematic take a variety of forms and can include resolving obstacles 

or contradictions that arise when they attempt to make sense of a situation in terms of their current 

concepts and procedures, accounting for a surprising  outcome (particularly when two alternative 

procedures lead to the same result), verbalizing their mathematical thinking, explaining or justifying a 

solution, resolving conflicting points of view, developing a framework that accommodates alternative 
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solution methods, and formulating an explanation to clarify another child's solution attempt” (Cobb & 

Steffe, 1991, p.395) 

In the Learning Progression I describe the following situations (Patsiomitou, 2014, p. 33):   

Situation 1: The highlighted idea in mathematics, which is ‘symmetry,’ is interdisciplinary, connected 

with art and culture. The aim is to ‘see’ mathematics in any context.  

Situation 2: The challenge is to connect the transformations in static and dynamic means conceptually and 

procedurally. Instrumental decoding of students’ mathematical ideas plays a major role for the overcoming of 

cognitive and instrumental obstacles.  

Situation 3: This situation aims to accomplish the figure’s symbol character. The grid in the DGS 

environment provides a challenge for the experimentation. The important points in this situation are the students’ 

methods of dealing with the questions: “Under what conditions does the rhombus become a square?” or “What 

are the similarities and differences between a kite and a square?” 

Situation 4: The motivation for this situation is that: if students have a set of properties, to understand the 

kind of quadrilateral. This phase is very crucial for the students to acquire the competence to replace a figure with 

a set of properties that represent it and from these properties to construct the figure. In other words, the figure will 

acquire the signal character. 

Situation 5: The recognition of differences and similarities between figures’ symmetry properties 

demarcates the scope of this situation. The instructional process must focus at the understanding of the 

structuring process and not the learning of ready-made structures. 

Situation 6: The development of structures in students’ minds has been achieved with the synthesis of a 

more complex construction. The situations aim to develop the abstraction. Pythagorean Theorem’s 

reconfigurations have been used as a tool for the development of students’ instrumental decoding of a complex 

figure’s anasynthesis. The 6th situation led students to think about self similarity, which is not included in high 

school curriculum.   

Situation 7: Self-similarity, Pythagorean Theorem and the midpoint theorem are the mathematical 

backgrounds of this situation. Here is explained the rationale in the design process and the importance of linking 

visual active representations and instrumental decoding. The structures of fractals, [by applying the meaning of 

dynamic LVAR representations], aims that students (a) review most of theorems, (b) identify the potential 

weaknesses and cognitive obstacles that students face in their effort to understand the process, (c) develop the 

links between the virtual representations and the formulations with which students justify their construction, as a 

result of understanding the figures’ transformations and symmetry, and (d) develop most of the competencies 

described in the beginning of the article and higher–order level skills (e.g., generalize patterns using recursion, 

use algebraic formulae and symbolic expressions to explain mathematical relationships, etc.) than those that they 

are able to develop through traditional mathematics. This is very important for their movement through vH levels.  

 

Figure 5.22. Vergnaud’s (1988, p.149) approach for investigation in mathematics education cited in Long (2011, p.123) 

(An adaptation for the current study) 
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Vergnaud (1988, p. 149) proposes an approach in mathematics education (Figure 5.11), which involves 

(cited in Long, 2011, p. 123):  

• Identifying and classifying situations […] which are at the cognitive level of the learner defining the 

conceptual domain.    

• Identifying levels of objects, relationships, and schemes (concepts-in-action and theorems-in-action) 

currently employed by learners in engaging with the problem situations, spanning the cognitive domain.  

• Collecting data on the ways the learners articulate their reasoning, identifying the links between the 

conceptual and cognitive domains as expressed by learners in the didactic domain.  

• Constructing symbolic representations by observing and analysing the use of concepts and theorems 

(from the mathematical concept perspective) and schemes that learners use (from the 

psychological/cognitive perspective).  

• Designing new situations and materials to experiment with students to inform the didactic perspective. 

Vergnaud depicts this approach for investigation in mathematics education, which includes the steps presented in 

the Figure 5.22 (Vergnaud, 1988, p.149 reported in Long, 2011, p.123).  

“A conceptual field is conceived as a set of problem situations, the solution of which requires mastery of 

several concepts […] (Vergnaud, 1988, p. 142 cited in Long, 2011, p.6). According to Long (2011) “The 

theory of conceptual fields has a mathematical framework, but in addition draws on a psychological 

perspective, notably the acquisition of concepts building on the work of Piaget, and the function of 

instruction building on the work of Vygotsky […] (p.4).   

As teachers (or teacher- researchers) design teaching concepts and ways of interacting with their students, they 

increasingly feel the need to understand the minds of the students, looking for methods to lead their students to 

understand the concepts. Therefore, the determining factor is the teacher who decides on the objectives/aims of 

the teaching method and chooses the means for effective implementation of the objectives or of the educational 

process. The positive attitudes/behaviors of the teachers of mathematics with regard to mathematics, their 

positive position with regard to technology, and their interest in the students’ understanding of the concepts, are 

the most important factors for the development of innovative applications in schools, in order to help students 

achieve “successively more sophisticated ways of thinking about a topic that can follow […]” (National Research 

Council, 2007, p. 214, cited in Battista, 2011, p. 508).  

 

5.4.3. A DHLP for the Learning of Parallelograms 

For my Ph.D thesis (Patsiomitou, 2012a), I designed a hypothetical learning path of both, DGS software and 

static means (i.e. constructions in paper and pencil environment, using ruler and compass) for the learning of 

quadrilaterals (i.e., a dynamic hypothetical learning path -DHLP- meaning a hypothetical learning path using 

dynamic geometry software) (Patsiomitou, 2012a, b), as I absolutely agree with what Isoda (2007) argues “both 

computer and traditional technology are inevitable for mathematics teaching”. The path consisted of phases of 

learning. I developed material based on the van Hiele theory (Dina van Hiele in Fuys et al., 1984; Crowley, 

1987). Through the DHLP, I tried to predict the thinking of the participating students as they responded to 

activities. I chose quadrilaterals because I had ascertained during previous research, which I conducted while 

writing my Master’s thesis that students (in both, Primary and Secondary education) face many difficulties 

understanding their conceptual and hierarchical structure. This concrete research was the starting point for my 

creation of sequential activities in a DGS software environment, the Geometer’s Sketchpad; I designed the DHLP 

to help the students of the experimental group to construct meanings and to develop argumentation and abstract 

processes. This led me to conclude that the way in which I designed the DGS problems and activities, creating 

semi-preconstructed dynamic visual “alive”- active linking representations impacted on the way in which 

students developed mental representations (e.g., Patsiomitou, 2007a, 2008 a, b, c, d, 2009a, b, c, 2010, 2011a, b, 

2012a, b, 2013, 2014, 2018a, b). As I concluded later from my post-doctoral research, this conclusion can be 

extended to an individual student, a group of students or the whole class.  

In my study “A Linking Visual Active Representation DHLP for student’s cognitive development” (Patsiomitou, 

2012b), I describe this ‘dynamic’ hypothetical learning path (DHLP) for the learning of the concept of 

parallelogram in geometry, which I “designed to engender those mental processes or actions [of students] 

hypothesized to move [them] through a developmental progression of levels of thinking” (Clements & Sarama, 

2004, p.83).  
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The development of a concept is subjected to epistemological, historical and cognitive analysis. The aim is to 

identify how it evolved over the years. During my thorough investigation of the relative literature regarding 

quadrilaterals, I found research relating to: 

• The effect of the constructional processes of quadrilaterals in a DGS software on to students’ 

reasoning or the impact the processes involved in constructing quadrilaterals in a DGS software has 

on student’s thinking (e.g., Mariotti, 1997, 2000; Vincent, 1998; Vincent & McCrae, 2001; Leung & 

Or, 2007) 

• The development of different kinds of reasoning during the interaction with each other or with the 

DGS software problems on  quadrilaterals (e.g., Hoyles, 1998; Arzarello et al., 1998; Hoyles & 

Healy, 1999; Mariotti, 2000; Hadas, Hershkowitz, & Schwarz, 2000; Marrades & Gutiérrez, 2000; 

Healy, 2000; Hölzl, 2001; Talmon & Yerushalmy, 2006) 

• The solving of geometrical problems relating to quadrilaterals and modelled in a DGS software 

environment (e.g., Arzarello, Micheletti, Olivero & Robutti, 1998; Healy, 2000; Hadas, Hershkowitz, 

and Schwarz, 2000; Hanna, 2001; Mariotti, 2000; Jones, 2000; de Villiers, 2004a,b) 

• How students think when they investigate problems that incorporate the meaning of symmetry in 

quadrilaterals (e.g., Arzarello, Micheletti, Olivero, & Robutti, 1998; Healy, 2000; Hadas, 

Hershkowitz & Schwarz, 2001; Mariotti, 2000; Jones, 2000; de Villiers, 2004a,b; Leikin, 2004; 

Jiang, 2002; Christou, Mousoulides, Pittalis, & Pitta-Pantazi, 2004a, b; Belfort & Guimarães, 2004; 

Graumman, 2005) 

• The effect of making transformations of rotation and reflection using the DGS software (e.g., 

Edwards, 1991; Natsoulas, 2000; Hollebrands, 2003, 2004, 2006). 

My study includes the following investigations (Patsiomitou, 2012b, p.58): 

(a) A detailed investigation of four phases of the students of the experimental group that followed the DHLP. 

Investigation covered how every student of the experimental group developed his/her thinking, using a 

detailed analysis of their formulations and comparing the kind of representations they produced and the 

kinds of definitions and reasoning (i.e., inductive, abductive or deductive).  

(b) A detailed investigation of four evaluations of the students of both groups (experimental, control groups) 

in a paper-pencil environment. This investigation covered how every student in both groups developed 

his/her thinking by comparing the milestones of their development moving through the van Hiele levels 

(i.e., the characteristics of every level as defined by Battista (2007) as they appeared in the paper-pencil 

tests). Moreover, I studied their ability to prove.   

(c) A comparison study between the students in both groups (i.e., how the students in level 1 or level 2 of the 

experimental group developed the characteristics of each level and how members of the control group did 

the same). 

The phases of the DHLP are interconnected in terms of: a) the conceptual context, b) the order in which the 

software’s technological tools are introduced, and c) the increasing difficulty at both levels. The experimental 

process lasted approximately four months, from January to May, 2007. Firstly I examined student’s level of 

geometric thought using the test developed by Usiskin (1982) which is in accordance to the van Hiele model 

using only the first twenty questions of the questionnaire. This description of the DHLP (Patsiomitou, 2012a, b) 

is a synthesis of an instructional design process and a redesign process, meaning a “systematic, self reflective 

spiral of planning, acting, observing and reflecting” (Steketee, 2004, p. 876). 

(d) In the instructional design process, I describe how I predicted the hypothetical transitional understanding 

of the meaning of parallelograms and the students’ way of thinking during the solution of the problems in 

combination with their actions in the software with the closest possible approach.  

(e) In the instructional redesign process, I describe the procedures that demanded the addition of new tools, 

which helped the students of the experimental group overcome cognitive and instrumental obstacles that 

they faced during the research process.  

Consequently, the description of the DHLP is separated into two sections for each phase (Patsiomitou, 2012b): 

(a) one which describes the aims of the DHLP as part of the general framework of the curriculum for the teaching 

and learning of geometry, and (b) a prediction process of the hypothetical interactions of the students with the 

tools, consequently an inductive way of thinking that has been supported by my previous observations. The 

DHLP is consisted of the following phases (Patsiomitou, 2012 a, b). 
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Phase A: Building and transforming quadrilaterals through Linking Visual Active Representations  

The aim of the first phase of the research process was for the students to obtain the competence to build and 

transform linking structurally unmodified representations of parallelograms. 

Problem 1: Construction of a parallelogram: construct a parallelogram if you know a straight line 

segment and a point on the screen.  

The transformation of the position of the point (-vertex of the parallelogram) through theoretical dragging leads 

to the transformation of the segment in order for the opposite sides to become congruent. The students 

dynamically reinvent their understanding through the process. 

Problem 2: Construction of a rectangle. Drag the vertex of the parallelogram you have constructed until 

it becomes a rectangle. Then, find a way to construct a robust construction of a rectangle. 

The rectangle is a fundamental meaning in parallelograms. Students are able to recognize the prototype image of 

the rectangle from the first classes of primary school. By this process, the students will construct the meaning of 

the rectangle as a specialization of the meaning of the parallelogram, incorporating the additional properties of 

the rectangle which will be dynamically reinvented. 

Problem 3: Construction of a rhombus. Join the opposite vertices of the parallelogram you constructed 

earlier. Drag one vertex until you construct a rhombus. What did you observe? Then, construct a robust 

rhombus. 

Design process: a) The students will shape the drawing of a rhombus by theoretically dragging the 

parallelogram so that the figure will obtain the property of the congruency of the sides and will match the mental 

prototype image the students have for the figure of the rhombus. b) A second intended activity will be for the 

students to theoretically drag the figure of the rhombus so that the isosceles triangles become equilaterals. The 

perception of the rhombus as a synthesis of two equilateral triangles may lead students to a cognitive conflict. c) 

A third intended activity will be to have the students build a robust construction of a rhombus. The cognitive task 

for the students is to connect the structure of the rhombus with the meaning of reflectional symmetry, and 

consequently see it as a reconfiguration (Duval, 1995) of the isosceles triangle. So, a new issue will arise: How 

can an isosceles triangle be constructed on screen?  

Redesign process: At this point I introduced a parametrical segment (see Patsiomitou, 2008b, 2009) in 

order to help students to construct the congruent radius of the circles, or the congruent circles. Therefore, by 

using the parametrical segment to construct the circles and then by dragging its end points, the students would 

have the opportunity to link the process with the theory of geometry. 

Problem 4: Construction of a square. Construct a square with a free procedure. 

With the construction of a square the investigation of the students’ understanding of the hierarchical 

relationship is aimed at (a) a specialized rectangle with additional properties (e.g., the congruency of its sides) 

and (b) a specialized rhombus with additional properties (e.g., the congruency of its angles). 

Redesign process: This is a good point for the students to be introduced to the rotation of a segment. The 

students interact with an intermediary representation before seeing the final rotation of the object on screen. 

The accomplishment of the first phase evoked a crucial issue for me: Can students use the figures’ secondary 

properties to accomplish the construction of a parallelogram? By secondary properties are meant the properties of 

the figure’s diagonals, which relate to the symmetry of the shape. This is in accordance with what Dina van Hiele 

(Fuys et al, 1984) argues, that “a student proves he possesses the structure of the analysis when he shows that he 

can manipulate the organizing principles. One of those organizing principles is symmetry” (p.184). For this, it is 

very important that the students follow the second phase. 

The emphasis on construction using the Transform menu in GSP was shaped to facilitate the understanding of 

symmetries and strengthen the development of structures in the students’ minds. This process can lead students to 

dynamically reinvent new ways of constructing parallelograms using DGS. 

 

Phase B: Investigating and building figures through symmetry 

In this phase the notion of symmetry ant their properties are introduced by using the transformations of the 

rotation and reflection of the software. The recognition/understanding of the symmetry of geometrical objects is 

the fundamental aim of this study, in accordance with van Hiele’s theory. I separated the second phase into four 

subphases: 

Part B1. The recognition—visualisation part of the second phase  

Problem: Reflect point A (on a given line l) in order to construct its image, point A΄. Imagine that 

point A will approach the reflection line l (don’t use the dragging mode of the software). Describe the movement 
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of point A΄. Will it approach or move away from the reflection line? Then drag point A until it approaches the 

reflection line and check your previous formulation. What do you observe? Do you have to revise your previous 

statement? Give reasons. 

Part B2. The perceptually componential analysis part of the second phase 

Problem: Construct the axes of symmetry of rectangle. The students will face difficulties in 

understanding the meaning of axis of symmetry and how it differs from rotational symmetry, which is expressed 

with the misunderstanding of the roles that the secondary elements (for example, the medians of a triangle or the 

diagonals of a rectangle) play in the figures’ symmetry. Another point is students’ difficulty in distinguishing the 

difference between the meanings of “symmetry of an object with regard to an axis of symmetry” and the meaning 

of “symmetry lines of the shape.” 

Problem: Construct the axes of symmetry of rhombus. Then join the midpoints of the opposite sides 

with a segment and explain why it is an axis of symmetry or not. Then, drag the vertex of the 

rhombus to form a square.  

Most students intuitively know that the axes of symmetry of a rhombus are its diagonals. This is a crucial 

point for the research process because the students have to overcome a cognitive obstacle: The segment that joins 

the midpoints of the opposite sides of the rhombus is not an axis of symmetry because this line is not 

perpendicular to the sides of the rhombus. 

Problem: Construct a square’ axes of symmetry. The students have to recognize/realize that the square 

concentrates all the properties that the previous figures did, with regard to its symmetry lines. This means the 

segment that joins the midpoints of the opposite sides of the square is a symmetry line, as are its diagonals, so the 

square concentrates all the properties of the rhombus and the rectangle with regard to symmetry lines. This means 

that the students can give hierarchy to the square as a rhombus or a rectangle and define it from its properties 

from the lines of symmetry.  

Part B3. The informal componential analysis part of the second phase 

     Redesign process: The investigation of the meaning of rotational symmetry 

The students’ cognitive conflicts led me to redirect my study in order to include the investigation of the meaning 

of rotational symmetry. The students were confused about the two meanings and most students believed that the 

rotational symmetry of a point can be defined as a reflectional symmetry of the point.  

In order to facilitate the process, I created a ‘custom tool’ that could apply the procedure of the rotation of a point 

by 180o, appearing only as the final step of the rotation process (meaning the students could not see the entire 

intermediary steps of the rotation process) (an extended report regarding the use of the custom tool “symmetry” is 

in the Chapter IV, section 4.2.4).  

      Redesign process: The example and the counter-example of custom tool’s use. 

The difficulties that arose from the use of the custom tool made me use an example and a counter-example of its 

use. By example I mean, where the “custom tool” is helpful is in understanding that the rotation of every point of 

the circumference of a circle on its center (rotation of the circle around its center) results in the circumference of 

the same circle. By counter-example I mean that the rotation of an equilateral triangle at the intersection point of 

the perpendicular bisectors results in a different equilateral triangle (rotation by 180° of the original at the 

intersection point of the perpendicular bisectors) 

      Redesign process: The construction of the structure of the bisected diagonals  

The students will construct the image of the segment CD by rotating it by 180° around H. There are several 

perspectives. From an instrumental genesis perspective, the students can construct an instrumented action scheme 

by using the custom tool “symmetry”. Moreover they will be able to construct the meaning the “diagonals [of a 

parallelogram] are bisected /dichotomized”. Consequently the procedure will help the students to recognize the 

figure of its properties, meaning the figure will acquire the signal character. This means that these 

representations are linked   

• structurally as the dragging of any point does not modify the structure of the construction.  

• conceptually through the meaning of the symmetry by center and the meaning of the intersected 

bisected diagonals.  

Part B4. The formal componential analysis part of the second phase. The aim of this part of the third 

phase is for the students to construct a parallelogram with their starting point being their knowledge of the 

symmetry of the figure. I investigated whether the figures have acquired the signal character and if the students 

can justify their procedures theoretically. This is a very complex process since the students must have both 
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conceptual and procedural competence, meaning the competence to instrumentally decode their mental 

representations of a set of properties with actions through the use of tools. This means, for example, to interpret 

the congruency with the circle tool and simultaneously bisect with the custom tool.  

Furthermore, for them to construct the hierarchical categorization and definition of figures through their 

symmetrical properties and in accordance to their understanding. 

 

Phase C: Investigation of problems aiming the students to construct the classification of quadrilaterals 

with regard to their diagonals. The students of all groups investigated several instances of Varignon’s theorem 

occurring from the use of dragging (Patsiomitou, 2012a). Also they investigated several instances of Viviani’s 

problem, in order to construct formal proofs and generalizations (still unpublished).  

Varignon (1654-1722) proved that “a parallelogram is formed when the midpoints of the sides of a convex 

quadrilateral are joined in order”. Varignon’s proof was published in 1731 in “Elemens de Mathematique” 

(Oliver, 2001, p.316). Graumann (2005) in an extended and detailed description of the study of quadrilaterals 

classified the quadrilaterals with regard to their diagonals (Figure 5.23a). As he writes: 

• “if we ask for all convex quadrilaterals whose middle-quadrilateral is a rectangle we will be lead to a 

new type of quadrilaterals namely those with orthogonal diagonals 

• if we ask for all convex quadrilaterals whose middle-quadrilateral is a rhombus we will be lead to a 

new type of quadrilaterals namely those with diagonals of equal length 

• if we ask for all convex quadrilaterals whose middle-quadrilateral is a square we will be lead to a new 

type of quadrilaterals namely those with diagonals which are orthogonal and with equal 

length”(p.194). 

In this way he distinguished the quadrilaterals into separate categories: those whose diagonals are congruent, 

those whose diagonals are perpendicular and those whose diagonals have both properties. Moreover, he 

distinguished those quadrilaterals whose one diagonal intersects the other at an arbitrary point and whose one 

diagonal bisects the other diagonal.  

Graumann (2005) continued the classification of the quadrilaterals by adding properties into each one of the 

above-mentioned categories until they had been led to a specialized figure such as a square whose diagonals are 

congruent and perpendicular. 

In my study “A Linking Visual Active Representation DHLP for student’s cognitive development” 

(Patsiomitou, 2012b), I describe a new classification of quadrilaterals, due to the different properties of the 

internal parallelograms (or middle-quadrilaterals) which are constructed if we join the midpoints of the external 

quadrilaterals (Figure 5.23b). This classification is reported in details in my study "A Dynamic Teaching Cycle of 

Mathematics through Linking Visual Active Representations"(Patsiomitou, 2015a, in Greek).  

The internal quadrilateral (or middle-quadrilateral in the words of Graumann) is a parallelogram for every 

external quadrilateral. Graumann (2005) has represented this classification with a figure. I have constructed an 

adaptation of Graumann’s figure (2005, p.194) by constructing the internal parallelogram, joining the midpoints 

of the sides of the external quadrilateral (Patsiomitou, 2012a, b, 2015a).  

In this way, a new classification of quadrilaterals occurs. For example, the parallelogram which is shaped from 

the midpoints of the sides of the quadrilaterals whose diagonals are perpendicular and bisected to each other is 

also a rectangle and in addition its sides are symmetrical with regard to the diagonals of the external 

quadrilateral. (Patsiomitou, 2012a, b, 2015a) 
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I have constructed the Table 5.3 below in which I have described the kind of the middle-parallelogram, which 

occurs in the internal section of the external quadrilateral.  

 

 
 

Figure 5.23a.Graumann’s (2005, p. 194) “house of 

quadrilaterals” (adapted)

Figure 5.23b.An adaptation of Graumann’s“house of 

quadrilaterals” to represent the internal quadrilaterals (Patsiomitou, 

2012a, b,, 2015a)
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Figure 5.24. My proposal for the classification of the internally constructed quadrilaterals in Varignon’s theorem, taking into 

account the non-convex quadrilaterals (Patsiomitou, 2012a, b, 2015a) 

 

Consequently, the classification of a quadrilateral as a rhombus which occurs internally is not adequate with 

regard to the properties of the rectangle (the external quadrilateral). The classification of the rhombus as a 

quadrilateral whose diagonals are perpendiculars and are bisected accurately determines the parallelograms’ 

shape, whose two sides are symmetrical as regards the diagonals of the kite. 

In the Figure 5.24 I explain the classification of the internally constructed quadrilaterals when we join the 

midpoints of the external quadrilaterals, taking into account the non-convex quadrilaterals. 

Graumann (2005) gives examples of non-convex quadrilaterals, “such with one re-entrant angle, [or] with two 

sides cutting each other and also such with three co-linear vertices” (p. 191). Moreover, he states that  

“If we look out for the middle-quadrilaterals of nonconvex quadrilaterals we first can make the same 

considerations as above. Thus for all quadrilaterals, also the non-convex one, the middle-quadrilateral is a 

parallelogram, even for those in space. Also if we ask conversely for all non-convex quadrilaterals whose 

middle-quadrilateral is a rectangle, rhombus or square we are lead to the same conditions: diagonals with 

equal length, orthogonal diagonals or both conditions. Only by looking out for non-convex quadrilaterals 

with one of these conditions we have to make some new reflections” (p. 194-195).  

The non-convex quadrilaterals in Figure 5.24 belong to three main categories: those whose diagonals are 

perpendicular, those whose diagonals are congruent and those whose diagonals are both perpendicular and 

congruent. Of course, there are more instances of non-convex quadrilaterals.  

For the development of the concept of parallelogram the notions of specialization and generalization (De Villier, 

1994) have been taken into account. De Villier (1994) in his article “The role and function of a hierarchical 

classification of quadrilaterals” distinguishes between “two essentially different types of classification, namely 

descriptive (a posteriori) or constructive (a priori) classification, each of which can be either hierarchical or 

partitional” (p.13). According to De Villier (1994) 

• “hierarchical classification is the classification of a set of concepts in such a manner that the more 

particular concepts form subsets of the more general concepts” (p.11) 

• “partitional classification of concepts is such a classification [which] the various subsets of concepts 

are considered to be disjoint from one another”. (p.11) 

In Figure 5.25 De Villiers pictures a generalization and specialization of parallelograms “[emphasizing] that 

the generalization or specialization need not be hierarchical but could theoretically be partitional (although in 

actual practice this may be the exception rather than the rule)”. (p.14). 
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Figure 5.25. De Villiers’ (1994, p. 13) generalization and specialization of parallelograms (adapted) 

 

Phase D: The LVAR modes in correspondence to the learning phases are described  

 An extended study which describes the LVAR modes is included in my paper: “Linking Visual Active 

Representations and the van Hiele model of geometrical thinking” (Patsiomitou, 2008b), as well as the revised 

version of this paper: “Building LVAR (Linking Visual Active Representations) modes in a DGS environment” 

(Patsiomitou, 2010). I shall briefly discuss LVAR modes in the next sections. 

 

 

 
Figure 5.26. Cognitive Analysis of interactions with the tools: representing the instructional design process of the DHLP through 

LVARs using a pseudo-Toulmin model (Patsiomitou, 2014, p. 33) 

 

The design and redesign of activities for the teaching and learning processes, with real problems or simulations of 

real-world problems through LVAR in the dynamic geometry software, and the results obtained from the research 
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data (Patsiomitou, 2012 a, b), suggest that a student develops his/her abstractive competency when his/her 

cognitive structures are linked through representations that the student develops during the learning process.  

“Apart from the aspect of anticipating the mental activities of the students, a key element of the notion of a 

hypothetical learning trajectory is that the hypothetical character of the learning trajectory is taken 

seriously. The teacher has to investigate whether the thinking of the students actually evolves as 

conjectured, and he or she has to revise or adjust the learning trajectory on the basis of his or her findings. 

In relation to this, Simon (1995) speaks of a mathematical teaching cycle. In a similar manner, 

Freudenthal (1973) speaks of thought experiments that are followed by instructional experiments in a 

cyclic process of trial and adjustment. If we accept this image of the role of the teacher in instruction that 

aims at helping students to invent some (to them) new mathematics, we may ask ourselves, what type of 

support should be offered to teachers. Apparently, we will have to aim at developing means of support that 

teachers can use in construing and revising hypothetical learning trajectories” (Gravemejer, 2004, p.9). 

The use of a computing environment such as dynamic geometry helps students to build ‘a model of the meaning’ 

(Thompson, 1987, p.85) and overcome the difficulties of translation between representations through the 

automatic translation or "dyna-linking" (Ainsworth, 1999a, p. 133), since [they] “encode causal, functional, 

structural, and semantic properties and relationships of a represented world – either abstract or concrete” (Sedig 

& Sumner, 2006, p.2). An implementation of the DHLP in school is described in my study “Student’s Learning 

Progression Through Instrumental Decoding of Mathematical Ideas” (Patsiomitou, 2014), as I developed the 

instructional activities based on an analysis of the results of my PhD thesis, with regard to students’ evolution of 

understanding on instrumental decoding when they construct quadrilaterals. 

The whole action is an innovative production of a new approach to the educational process based on the 

theoretical underpinning of hypothetical learning trajectories. This innovation is introduced for the first time in 

the school of established practice, and thus, proposes the redevelopment / redesign of the everyday teaching 

practice by using LVARs, with proper interventions in school curriculum. Specifically, linked representations 

that the student is able to construct (Patsiomitou, 2012a, b): 

 

5.4.4. The Mathematics Teaching Cycle 

Simon (1995) introduced and developed the idea of the Mathematics Teaching Cycle and created a diagram 

(Figure 5.27) in order to represent the way that a hypothetical learning trajectory is an ongoing modification of 

three components:  

• “the learning goal that defines the direction,  

•  the learning activities and  

• the hypothetical learning process”(Simon, 1995, p. 136).  

 

 
Figure 5.27. The Mathematics Teaching Cycle (Simon, 1995, p.136)(adapted) 
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The Mathematics Teaching Cycle portrays the relationship between the following areas of knowledge (Simon, 

1995): “the teacher’s knowledge of mathematics and his hypotheses about the students' understandings, several 

areas of teacher knowledge come into play, including the teacher's theories about mathematics teaching and 

learning; knowledge of learning with respect to the particular mathematical content; and knowledge of 

mathematical representations, materials, and activities” (p. 133). 

Mathematics tasks are related to the teacher’s mathematical and pedagogical knowledge. According to Simon 

(1995) “the ingredient necessary in order to initiate mathematics learning is pedagogy” (p. 115, italics in original 

manuscript). Furthermore, teacher’s knowledge about effective mathematical pedagogy influences their 

instructional practices (e.g., Simon & Shifter, 1991; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989). 

The activities are “linked to [students’] curriculum and are being tested by collecting their work from classroom 

in which the curriculum is being used to specify the expected achievement levels; [the current] study tend to be 

longitudinal, with changes in student thinking and ability tracked over the course of […] a year.” (Corcoran, 

Mocher & Rogat, 2009, p.33).  

McGraw (2002, p.10) in her Ph.D thesis created an adaptation on Simon’s (1995) teaching cycle, aiming to 

include the actual discussions with students that “occurred within the ‘interaction with students’, which 

influenced the “teacher’s knowledge”.  

 

 
 

Figure  5.28. My proposal for the Dynamic Mathematics Teaching Cycle, based on Simon’s (1995) Mathematics Teaching Cycle 

(Patsiomitou, 2014, p. 35) 



[190] 

 

 

The analysis of the teaching situations led me to create an iterative diagram (Figure 5.28) that is an adaptation of 

Simon’s (1995, p.136) work, taking into account also the work of McGraw (2002, p.10). What has been 

examined is the use of technology in the teaching cycle, the influence of LVARs which plays an important role in 

the development of discussions, as well as students’ vH level. The diagram aims to include the incorporation of 

technology practices in class. The results depend on the teacher’s different types of knowledge [based on 

Schulman (1987) and Mishra and Koehler’s (2006) framework of Technology, Pedagogy, and Content 

Knowledge (TPACK)], the students’ backgrounds, external resources in the school environment, etc. The 

teacher’s interaction with students and the mathematical communication through dialogues is accomplished in 

sequential situations: the implementation of activities, effective teaching and inquiry into students’ mathematics, 

the assignment of students’ knowledge, all of which leads to the teacher’s feedback. These processes go on 

continually and can suggest adaptations in various domains of a teacher’s knowledge, including in the following 

areas: mathematics, pedagogy, representations, technology, and modeling through LVAR representations.  

5.5. What are LVARs? 

Visual representation systems encourage students to interact with visually represented mathematical concepts and 

ideas. Since the 1980s, computers and technological tools have changed the way students, teachers and 

researchers think, allowing them to visualize mathematical ideas in ways that were previously impossible (Kaput, 

1992; Balachef and Kaput, 1997). Technological tools can help the students focus their attention and translate 

between mathematical representations or interpret information received from a real world environment. 

Computers and technological tools have changed the context of mathematical activity, imbuing the instructional 

design process, and the relationship between math and other contexts, with new possibilities.  Pea (1987) 

supports that these tools  

“help students develop the languages of mathematical thought by linking different representations of 

mathematical concepts, relationships, and processes.[…] The languages of mathematical thought, which 

become apparent in these different representations, include: (a) Natural language description of 

mathematical relations […]; (b) Equations composed of mathematical symbols […]; (c) Visual Cartesian 

coordinate graphs of functions in two and three dimensions; (d) Graphic representations of objects 

[…]”(p.109)  

Researchers investigated the influence of technology in mathematics education (e.g., Kaput, 1999), the influence 

of technology to problem solving, and to teaching and learning (e.g., Borba & Confrey, 1996; Schwartz & 

Yerushalmy, 1985). Moreover, Burger & Shaughnessy (1986) support that instruction in a successive sequence of 

increasing complexity has positive effects on students’ development of thinking.  

Visual Mathematical Representations (VMRs) are those representations, that in Sedig & Sumner’s (2006, p.2) 

opinion: 

“encode these properties and relationships for a represented world consisting of mathematical structures or 

concepts (Cuoco & Curcio, 2001; Hitt, 2002; quoted in Sedig & Sumner, 2006) in providing a framework 

to help designers of mathematical cognitive tools in their selection and analysis of different interaction 

techniques as well as to foster the design of more innovative interactive mathematical tools”.  

Linking Visual Active Representations (LVARs) are Visual Mathematical Representations (VMRs) which are 

dynamic, linking and active; LVARs can help students in the proving process as I designed the LVAR modes in a 

successive sequence of increasing complexity.  

The terms that I chose to define the concept of LVARs have been illustrated in previous studies (Patsiomitou, 

2008a, b; Patsiomitou, 2010, p.2):  

• The term ‘linking’ was preferred to ‘linked’ because the former denotes something that can be linked, but 

is not necessarily linked at this moment.  

• All DGS objects are necessarily ‘visual’ representations of what they stand for. 

• An ‘active’ representation is a representation that causes action, motion or change because it is in 

operation, in effect or in progress. Dynamic representations can always become active if we cause an 

action on them, but they are not always pre-constructed.  

LVARs always involve semi pre-constructed dynamic diagrams that can be linked and become active in 

accordance with the wishes of the user, meaning the user is not limited to “actions pre-set by the sketch creator” 

(Sinclair, 2001).  
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Namely, a representation can become active in a DGS environment as a student acts on it and decides the steps 

and techniques toward his aim, trying to address a problem.  

The term “active representation” is considered in mindful processing of information in which students 

individually or in collaboration manipulate and interact with the objects and tools in the dynamic environment 

and construct their knowledge by reflecting on what they have created.  

There is a lack of comprehension about how the active representations provided by the dynamic geometry 

software is elaborated or processed in the student’s mind; whatever insights I can support are included in the 

results of my research  (e.g. Patsiomitou, 2007a, b, 2008a, b, 2010, 2011a, b, 2012a, b, 2013a, b, 2014, 2016a, b; 

2018a, b). We can gain insights through continuous recording of brain activity and interactivity with these 

representations. Other important considerations include: how these connections with the students’ pre-existing 

information are achieved; how this connection is linked to the process of learning; how these active connections 

are modified; and hence the associations between different linking representations are stored in students’ mind.  

 

5.5.1. How did I design LVARS?  

LVARs is a part of an instructional design process which I was designed in phases: for example, what I did 

towards preparing the lesson before the instruction was delivered; what the organized topics were of the learning 

trajectory; what I predicted regarding the external stimulation delivered by new representational infrastructures in 

order to create successive stages in the transformation of previously learned material retrieved from the learner’s 

memory etc.  

The instructional design process developed into a didactic experiment of action research (Kemmis & McTaggart, 

1982; Schön, 1987). The qualitative study (Merriam, 1998) with a quasi-experimental design (Campbell & 

Stanley, 1963) was conducted in a public high school class in Athens Greece. For this study, the constant 

comparative method was chosen in order to deduce a grounded theory (Strauss & Corbin, 1990). Concretely, 

during a didactic experiment with the support of Geometer’s Sketchpad v4 dynamic geometry software, student 

participants followed a 4-phase Dynamic Hypothetical Learning Path (DHLP) (Patsiomitou, 2012 a, b) which I 

conceived and applied as part of my PhD thesis (Figure 5.29). The methodology used, consisted of the 

methodological forms of case studies of pairs of students, action research (Bogdan & Biklen, 1998) and “theory-

building” (Eisenhardt, 2002) from case studies. I was responsible for the choice of activities, for session planning 

and for student assessment. The DHLP (aforementioned in section 5.4.3) is composed of four phases 

(Patsiomitou, 2010, p. 1): Phase 1– construction activities; Phase 2 – construction through 

symmetry/transformations activities; Phase 3 – the exploration of open-ended problems; and Phase 4 – building 

and transforming semi-predesigned Linking Visual Active Representations (LVARs). The four phases constitute 

a learning trajectory, hypothetical at the beginning of the process. The phases are interconnected in terms of: a) 

the conceptual context, b) the order in which the software’s technological tools are introduced, and c) the 

increasing difficulty at both levels. 

The learning path/trajectory was hypothetical at the beginning, as I had hypothesized “if and how [the students] 

would construct new interpretations, ideas, and strategies” (Fosnot, 2003, p. 10) and the path would follow as 

they worked on the problem. Moreover, the instructional design process was a synthesis of constructivism and 

discovery learning, as it was my intention: (a) the students to build on their previous knowledge, (b) the teaching 

and learning process would be supported through mathematical discourse and conceptual understanding and (c) 

the learning included students’ discovery (“aha” expressions) and their dynamic reinvention of knowledge under 

investigation. 

Cobb and Steffe (1983) encourage the idea of the researcher as teacher, arguing that: “the activity of exploring 

children’s construction of mathematical knowledge must involve teaching”. Steffe et at. (1983) describes 

constructivist teaching experiment as being “derived from Piaget’s clinical interviews” and notes that: “A 

distinguishing characteristic of the technique is that the researcher acts as teacher. Being a participant in 

interactive communication with a child is necessary because there is no intention to investigate teaching a 

predetermined or accepted way of operating (p.177).  

I shall report here what I also wrote in my study “The development of students’ geometrical thinking through 

transformational processes and interaction techniques in a dynamic geometry environment” (Patsiomitou, 

2008a). I linked the sequential steps in a proof by linking sequential actions over multiple pages of the software 

or linked the steps in the representation of the problem in order to lead students to a cognitive linking of the used 

dynamic representations, based on the work of Kaput which supports that linking representations “creates a 

whole that is more than the sum of its parts […]” (Kaput, 1989). Furthermore, it creates a “temporal sequence of 
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the […] steps [representing] the counterpart of the logic hierarchy between the geometric properties of a figure” 

(Mariotti, 2002, p. 686). Students’ understanding of meanings often led me to note the sequence of steps or stages 

through which they gathered information from the [computing] environment as stimuli. The information from the 

computer environment goes through a modification, linked to students’ minds stored information (or is modified 

in the light of the information stored in their mind) so they can answer the teacher’s questions or participate in a 

class discussion. The students possibly transform this stimulus into mental representations linked with similar 

pre-existing information in their minds. I say ‘possibly’, as I cannot see into my students’ minds. What I can see 

is the following: those representations that could not be linked to previous information were rejected by the 

students, as they did not answer. What is important to investigate is the level of strength of these links or 

connections in the students’ mind, which can illustrate how the learning of meanings was accomplished.   

 

 
Figure 5.29: A diagram representing the instructional design process of the DHLP (Patsiomitou, 2012a, p. 456, in Greek) 

 

This concept of a design process accords with what several scholars have formulated in relation to the explicit 

linking of ideas through linking representations. For example, Thomas (2004, p.14) argues:   

“we might say that because conceptual ideas may be constructed from a number of representations it is a 

good idea for students to experience a number of these at the time they begin to learn the concept. In 

particular, the explicit linking of ideas across representations is very useful and important. Hence, teaching 

should seek to assist representational versatility by concurrently providing, and linking, a number of 

representations in each learning situation.”  
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Reiterating what I have described at length in previous chapters of the current work, I will argue that, in order to 

develop an understanding of a meaning, the students have to create a transitional bridge between the external and 

internal representation (e.g, Kaput, 1999; Goldin & Shteingold, 2001; Pape & Tchoshanov, 2001) of this 

meaning, through instrumental decoding. Moreover, students’ visualization of an object may differ from their 

perception of it, while the important thing is to understand which mathematical concept or relationship is being 

represented.  

To create a dynamic diagram during the Linking Visual Active Representations (LVARs) design process in the 

Geometer’s Sketchpad environment, I used a diverse set of interaction techniques including “animating” a point 

on its path, ‘tracing” a segment, “hiding and showing” action buttons, and “linking” or “presenting” action 

buttons, or a combination of interaction techniques (Patsiomitou, 2008a, b; 2010; 2012a, b), to achieve students’ 

interaction. Sedig and Sumner (2006) have distinguished between basic and task-based interactions with visual 

mathematical representations (See also Sedig, & Liang, 2008). According to Sedig and Sumner (2006) “Benefits 

of animating VMRs include: attracting and directing attention to embedded detail, visualizing dynamic and 

transitional processes, supporting external cognition, increasing visual explicitness of encoded information, and 

facilitating perception of semantic and temporal  transformations inherent in the VMR”.  

Sedig, Klawe, and Westrom (2001, cited in Sedig & Sumner, 2006) conducted an empirical study and they found 

that “adding scaffolding to direct manipulation of representations of transformation geometry concepts 

significantly improved student learning”. Paraphrasing with what Sedig, Rowhani, & Liang (2005, p.422) 

support, I argue that “the interaction with [LVARs] in a computing environment has two aspects: the action upon 

a representation by the user through the intermediary of a human-computer interface, and the representation 

communicating back through some form of reaction or response.” To illustrate this I captured two screenshots 

(Figures 5.30a, b), showing a pop-up menu of the rotate command (see also Patsiomitou, 2008a). When we press 

the “rotate” button the segment is transformed, by rotating it through 90 [or 180] degrees. We can also use a 

combination of action buttons for hiding/showing objects on screen, or a presentation button which repeats 

actions sequentially, and a link button which links the current page with the next one, thereby connecting the 

actions. The action upon the rotating command for the construction of transformation of an object has an 

important result: the reaction of the representation with a student’s response “this angle is equal to 90 degrees, 

and the lines are perpendicular” or “this angle is equal to 180 degrees and the three points belong to same line. 

 

  

Figures 5.30a, b. Screenshots showing the pop-up menu of the rotate command 

 

The rotation command /technique “has been referred to as direct concept manipulation, as opposed to direct 

object manipulation” (p.35) because  “if students are to focus on the concept of rotation, rather than focusing on 

the shape being rotated, they can directly interact with a visual representation of rotation” (Sedig et al., 2001 

quoted in Sedig & Sumner, 2006).  

LVARs in a geometry proving process allow students to act on and modify them using the full range of program 

features.  I took into account two distinguished but interconnected options when designing the activities, both of 

which are based on classroom observations made over many years of my teaching geometrical proof to 

secondary-level students in class. Namely (Patsiomitou, 2008a, p. 358): “linking the steps in the constructional, 

transformational or explorative actions or processes in the software using interaction techniques” by “linking the 

steps in the proof via a sequence of pages or the same page in the DGS environment using interaction 

techniques”. In other words, I took into account how to link conceptual with procedural knowledge, or 

operational with structural understanding. Both factors impact directly on how students are guided to the proof 

process through solving problems, and hence on how students are guided to abstract thought processes. Thus, 
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during the problem-solving process or when reproducing a theorem with a view to proving it, the teacher or 

students ask questions which help them construct the proof. Thus, a problem would be solved by breaking it 

down into a series of questions whose answers gradually distil the proof the students seek.  

This process tends to remind us of the Socratic method (“maieftiki” in Greek) by which teachers ask questions 

designed to elicit the correct answer and reasoning processes. Socratic method is the method, which according to 

Weusijana, (2006) is “originated form Socrates’ use of it in the Meno dialogue of Plato, but it has other names, 

such as the inquiry method of teaching (Collins, 1977).[…] The Socratic Method also encourages learners to 

generate their own answers to an educator’s questions as opposed to being given the answers. Often such 

knowledge that is generated by learners instead of just being received is more easily recalled (Bobrow & Bower, 

1969; Slamecka & Graf, 1978). Furthermore, the educator doing the questioning can also gain insight into how 

students are receiving instruction (Anderson, 1988)” (Baba Kofi Adam Cooper Puryear Weusijana, 2006, p. 26). 

The Socratic Method is a dialectic method of inquiry. The questioning process thus helps students determine and 

extend their underlying knowledge. Freudenthal (1971, p.414) supports that “Socrates did not teach a readymade 

solution but the way of reinventing the solution.” The same approach two millenia later was formulated by 

Comenius (quoted in Freudenthal, 1971): “The best way to teach an activity is to show it.” According to 

Freudenthal “this is a socratic idea, though it involves more than a Socratic lesson. While Socrates taught his 

lesson, the slave listened, whereas Comenius will show the student an activity to explain afterwards what it 

means and finally to have it imitated by the student.” Freudenthal supports that modern educators are likely to 

subscribe to a variation of Comenius' device while “The best way to teach an activity, is (not) to show it” but 

rather “The best way to learn an activity, is to perform it.” Representations were the first empirical mode leading 

to the proving process in Ancient Greece, too (see, for example, Socrates and Meno) although the process 

observed in Euclid’s “Elements” does not display a transition from visual representation to rigorous reasoning.  

The LVAR process expands the “maieftiki” inquiry method as through LVARs, I investigated the ability of 

students to develop deductive reasoning during problem solving process, dynamically “reinventing the subject 

matter” (Freudenthal, 1971, p.416). More particularly, I investigated in how Geometer’s Sketchpad, might 

contribute to developing students rigorous proof. The visual representations can proof only specialized cases, 

while the Euclidean proof can empower every case by reinforcing the initial visual proof. Through LVARs, the 

teacher can guide the students by means of elucidation or questions eliciting conclusions which form a step-by-

step visual proof. The successive pages in the software also play a significant role, and can be seen as an active 

“alive” dynamic section (Patsiomitou, 2019a, b) in an e-book revealing the various stages in the proof. The 

sequence of increasingly sophisticated construction steps could thus correspond to the numbering of the action 

buttons which allows student to interact with the tool when they are motivated by their own thoughts or when 

they are encouraged to do so by their teacher in class.  

Proof, proving and deductive reasoning in my opinion, are notions that are strongly connected to each other. 

What did I achieve through LVARs design process? According to Schoenfeld (1994b) 

“[...] proof becomes a natural means of exploration and communication [...and] proof will be a necessary 

component of the sense-making and discourse processes” (p.30). 

I chose real problems that would stimulate the students’ interest and induce them to use their knowledge of 

geometry to: a) visualize and conjecture, b) investigate, and c) prove. According to Kilpatrick (1987) problem 

formulating should be viewed not only as a goal of instruction but also as a means of instruction. 

Here are two examples of half pre-designed steps to illustrate the software process (Patsiomitou, 2008): 

•  A) the straight line KL can be traced and every new position of point F produces a different trace of KL. 

This action corresponds to the question: “What would happen, do you think, if we changed the position 

of point F, where the flag is?” (Figures 5.31a, b). We then leave the students to answer by moving Point 

F. This produces a series of lines KL, all of which pass through Point T. “Trace” according to Jahn 

(2002) “emphasises a dynamic interpretation of the representation of a trajectory of a point […]”.  

• B)  Pre-designed hide/show action button allow the user to hide objects (e.g., the flag and with it Point 

F), which allows students to experiment and investigate the subject in their own way. This action causes 

the lines which could lead to the treasure point T simultaneously disappearing. I consciously and 

intentionally left Point T on the screen, because if it disappeared, the students would be unable to 

visualize or investigate the problem.  

This means that the process is directly linked to how the activities can scaffold the students to reach conclusions. 

Analyzing the logic of the design process, I should point out that I bore the following in mind when designing, 
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constructing and implementing the activities: the process should be active to keep the students interested and 

promote discovery and dynamic reinvention of knowledge should be based on theories which deal with 

knowledge, teaching and the learning of Mathematics. Moreover, students should be conclude using Euclidean 

proof.  

 

  

Figures 5.31a, b. Building LVAR modes (Patsiomitou, 2008a, b, 2010) 

 

Yuen Lie Lim (2009) in her study “A comparison of students’ reflective thinking across different years in a 

problem-based learning environment” argues that “Problem-based learning (PBL) is a constructivist approach to 

learning which is believed to promote reflective thinking in students” (p.1). She suggests that critical reflection 

may happen in stages. The four levels of reflective thinking are outlined in the following table  (Mezirow, 1997, 

cited in Yuen Lie Lim, 2009, p.173). 

 

 
Figure 5.32. Four levels of reflective thinking (Mezirow, 1997, cited in Yuen Lie Lim, 2009, p.3) (adapted) 

 

According to Yuen Lie Lim (2009) “How do these levels of reflection relate to problem-based learning? For a 

start, […] the problem trigger ignites cognitive conflict, thereby providing the spark for reflective thought 

[…]Finally, they would have to compare and evaluate various ideas and solutions” (p. 174).  

Building on the above-reviewed theoretical background and new views, I introduced and defined the year 2008 

the notions of Linking Visual Active Representations and Reflective Visual Reaction during a dynamic geometry 

problem solving session, directly connected with the design process in the software as follows (e.g., Patsiomitou, 

2008a): 

Linking Visual Active Representations are the successive phases of the dynamic representations of the 

problem which link together the problem’s constructional, transformed representational steps in order to 

reveal an ever increasing constructive complexity; since the representations build on what has come before, 

each one is more complex, and more integrated than in previous stages, due to the student's (or teacher's, in 

a half-preconstructed activity) choice of interaction techniques during the problem-solving process, aiming 

to externalize the transformational steps they have visualized mentally (or exist in their mind). 

Reflective Visual Reaction is that reaction which is based on a reflective mode of thought, derived from 

interaction with LVAR in the software, thus complementing and adding to the student’s pre-exesting 

knowledge or facilitating comprehension and integration of new mathematical meanings. 



[196] 

 

Finally, “Linking Visual Active Representations” (LVARs) during a dynamic geometry problem solving session 

are defined as follows (e.g, Patsiomitou, 2012a, b, 2019a), incorporating the notion of instrumental decoding 

(Patsiomitou, 2011a, b, 2012 a, b) and the notion of dynamic hypothetical learning path (DHLP) (Patsiomitou, 

2012a, b):  

Linking Visual Active Representations are the successive/consequential building steps in the dynamic 

representations of a problem or between problems, which repeat the same procedural steps or steps 

reversing a procedure in the same phase or between different phases of a hypothetical learning trajectory. 

LVARs reveal an increasing structural complexity by conceptually and structurally linking the 

transformational steps taken by the user (conducting anticipatory thought experiments) through the 

interaction techniques provided by the software as a result of his/her development of thinking and 

understanding of geometrical concepts, which are instrumentally decoded by the way s/he has visualized 

mentally what exist in his/her mind or a revision of it.  

Reflective Visual Reaction is the reaction based on a reflective mode of thought, derived from interaction 

with LVARs in the software.  

My aims in developing LVAR (Patsiomitou, 2010) were to: 

• enrich the existing curriculum with DGS–based problems that are adaptations and extensions of existing 

static activities, tasks and real-world situations;  

• enrich students’ experiences with more effective presentation and interaction techniques better suited to 

the DGS environment than to other didactic materials;  

• trigger students’ actual cognitions in geometry as well as their aesthetic and digital sense; and 

• attract students to solve DGS problems designed to develop their mathematical understanding, deductive 

reasoning and formal Euclidean proof, either individually or in an orchestrated classroom process.  

The first results from the use of LVARs have been described in my study “The development of students’ 

geometrical thinking through transformational processes and interaction techniques in a dynamic geometry 

environment” (Patsiomitou, 2008a) as well as in my study “Building LVAR (Linking Visual Active 

Representations) modes in a DGS environment” (Patsiomitou, 2008b, 2010). Concretely:  

LVARs motivated the students to answer rapidly and spontaneously. I asked the participated students sequential 

oral questions, which meant students did not have time to use paper and pencil. The classroom observations 

revealed that the same students did not always display the same spontaneous reflective reactions. The LVARs 

that spread over multiple pages helped the students to react instantaneously and to articulate their thoughts. The 

LVARs helped the students to operate in an auxiliary or complementary manner, assimilating or accommodating 

their prior knowledge, or as a confirmation of the student’s cognitive processes. The students’ RVR occurred at 

many points during the didactic experiment thanks to the use of interaction techniques. As a result the students 

constructed mental schemes for mathematical meanings and were “starting to develop longer sequences of 

statements” (De Villiers, 2004). LVARs helped the students form rigorous Euclidean proofs and they reached 

conclusions on the problem by correlating the theorems they already know. This is to say that LVARs assisted 

students to develop their van Hiele level.  

The research has led me to conclude that LVARs have the following features:  

• They appear in stages in dynamic linking illustrations, which help to recognise the connections between 

the objects in the diagrammatic representation and keep the students focused on the aim of the overall 

construction. 

• They can be acted on and modified by students, allowing them to use the full range of program features, 

which renders them being “Alive”. 

These results were crucial, allowing me to continue the research and further investigate the effect that Linking 

Visual Active Representation modes (e.g., Patsiomitou, 2008b, 2010, 2012 a, b) have on students’ gradual 

acquisition of competence in the construction of rigorous proofs, as part of a problem solving process.   

  

5.5.2. What are LVAR modes?  

As I have written in my study “Building LVAR (Linking Visual Active Representations) modes in a DGS 

environment“(Patsiomitou, 2008b, 2010) the process of proving a problem or theorem consists of a series of steps 

which can function as responses, anticipating the questions posed explicitly or implicitly by teacher or student. 

This is what I had in mind when I  designed the different LVAR modes in Sketchpad to link the proving process 
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with envisaging arguments and combining “these arguments into a deductive chain that constitutes a sketch of the 

final proof” (Heinze, 2004, p.44)  

Research has shown that even when working with static means, students start conjecturing when they face a 

problem situation. Depending on the tools with which they are provided and their interaction with the teacher or 

other students, they can develop elements of reasoning by “developing specific competencies inherent in 

producing conjectures and proving the produced conjectures by taking elements of theoretical knowledge into 

account” (Boero, 1999). Although the two phases—conjecture production and proof construction—cannot be 

separated and linearly sequenced, their component elements are described and reported by Boero (1999):  

• producing a conjecture (which includes exploring the problem situation, identifying possible 

"regularities" and the conditions under which such regularities take place, identifying arguments for the 

plausibility of the produced conjecture);  

• […] exploring the content of the conjecture and the limits of its validity (which includes heuristic, 

semantic (and even formal) elaborations about the links between hypothesis and thesis, identifying 

appropriate arguments for validation related to the reference theory, and envisaging possible links 

amongst them);  

• selecting and enchaining coherent, theoretical arguments into a deductive chain […] ;  

• organizing the enchained arguments into a proof that is acceptable according to current mathematical 

standards; and  

• approaching a formal proof (or parts of the proof). 

Heinze (2004, p.34) modified this sequence into five coding categories, of which the last three categories are:  

• Phase 3 – an explorative phase based on the formulated conjecture and aimed at identifying appropriate 

arguments for the conjecture and a rough planning of a proof strategy, which can be divided into four 

subcategories: (a) referencing assumptions, (b) investigating assumptions, (c) collecting further 

information and (d) generating a proof idea;  

• Phase 4 – the combination of these (verbal or written) arguments into a deductive chain that constitutes a 

sketch of the final proof; and  

• Phase 5 – the writing down of the chain of arguments according to the standards of the mathematics 

classroom in question (including a retrospective overview of the proof process (Heinze, 2004, p. 35).  

Stylianides (2007) in his study “Proof and Proving in school Mathematics” defines proof. As he states “proof is a 

mathematical argument, a connected sequence of assertions for or against a mathematical claim, with the 

following characteristics:  

1. It uses statements accepted by the classroom community (set of accepted statements) [...]  

2. It employs forms of reasoning (modes of argumentation) that are valid [...]  

3. It is communicated with forms of expression (modes of argument presentation) that are appropriate [...] 

(p. 291).  

In the following Table Stylianides (2007) “gives examples of the three components of a mathematical argument, 

mentioned in the definition of proof” (p. 207). 

 
Figure 5.33. Examples of the three components of a mathematical argument, mentioned in the definition of proof 

(Stylianides, 2007, p. 207) 
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According to Schoenfeld (1994b) “Proof is not a thing separable from mathematics, as it appears to be in our 

curricula; it is an essential component of doing, communicating, and recording mathematics.  And I believe it 

can be embedded in our curricula, at all levels”.  (p.28)  

A DGS environment like Sketchpad or Web Sketchpad is a perfect means to support the LVAR argumentation 

and proving process. I very often try to make a mental shift from an observer’s point of view to an actor’s point 

of view (Cobb, Yackel & Wood, 1992 in Gravemeijer, 2004) when designing activities, interchanging the 

predetermined student and teacher roles in my mind. By this, I mean that I place myself (as an observer) in the 

position of my students (as actors), trying to think as a student and responding to my own questions: How can a 

student perceive a mathematical meaning through a concrete learning path? Are the procedures sequential and the 

diagrams complementary? Do the activities help my students to recall preexisting structures? Clements & Sarama 

(2014) point out:  

“[…] When [the teachers] interact with the student, teachers also consider their own actions from the 

student's point of view. […]. Thus, the benefit for the teacher is to have a well-formed and specific set of 

expectations about students' ways of learning-a likely path that incorporates the big, worthwhile ideas” (p. 

23).  

Specifically, having observed that there are several ways of characterizing different connections/links between 

representations correlated with the use of different interaction techniques supported by the Sketchpad, I produced 

a characterization for these different modes of linking representations. The different LVAR modes can be built 

using a combination of different transformational processes and interaction techniques supported by the 

Sketchpad environment. The LVAR modes are described as follows (e.g., Patsiomitou, 2008b, pp. 169-174, 

Patsiomitou, 2010, p. 11-19):  

• Mode A-the inquiry/information mode: In this mode of LVARs the students familiarize themselves 

with the field under investigation using the instantiated parts of the diagrams which lead them to discover a 

certain structure.  

The use of an action button “animation” (in combination with the trace command) for example, transforms 

the diagram into a "diagram in motion", reinforcing the formulation of conjectures since the stimulus 

received from the hybrid-dynamic representation leaves the properties of the figure unaltered despite the 

transformation it undergoes. 

• Mode B-the directed orientation mode: The sequential constructional and transformational steps of 

LVARs are displayed as a global shape to which more elements and/or information are gradually added, 

rearranging, annotating and probing parts of the diagram when action buttons are directly manipulated. The 

steps in the construction of the diagrammatic reconstruction which are displayed by pressing the action 

buttons are linked to suitable questions and their answers. 

The process has the following advantages: during this process the students are led to cognitively connect 

additional, complementary, transformational reconstructions of the problem configuration and actions 

aimed at externalizing the student’s thoughts by means of suitable chain questions which guide them 

towards the solution to the problem. 

• Mode C–the explicitation mode: Transformations in increasingly complex linked dynamic and active 

representations of the same phase of the problem modify the on-screen configurations simultaneously. The 

figures on screen undergo a metamorphosis as a result of the manipulations.  

The student can observe a continuous flow on the screen because “cause and effect are observed 

simultaneously” (Sedig & Sumner, 2006, p.7). 

• Mode D–the free orientation mode: LVARs can be displayed side by side on the same page of the 

software in an overview. The students can focus their observation on what extra information is presented in 

the next emerging iconic form of the representation. The emerging additional representations can be 

dragged independently. The students are led to a proof that confirms their initial reasoning, conjectures and 

exploratory processes. 

• Mode E–the integration mode: Successive LVARs on different pages that are linked cognitively and 

not necessarily constructionally, compose the solution to the problem. The information with which they 

became familiar in the new network of evoked geometrical objects and their interrelationships is reviewed 

and summarized. The students have developed thinking processes and applied skills, developing a 

mathematical model to interpret the realistic problem. 
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A detailed description of the LVAR modes with screenshots of the sequential representations of two problems 

modelled in the software are presented in my study “Building LVAR (Linking Visual Active Representations) 

modes in a DGS environment” (Patsiomitou, 2010), a revised version of the study   “Linking Visual Active 

Representations and the van Hiele model of geometrical thinking” (Patsiomitou, 2008b).  

The papers also include examples of the LVAR modes correlated with excerpts from dialogues recorded during 

the research process in which I have identified students’ arguments or conjectures and students deductive chains 

to construct their solutions to the problems presented to them.  

For the needs of the current study I shall report examples of the LVAR modes of the modelling process of the 

problem “A power plant is to be built to serve the needs of the cities of A (Athens), B (Patras) and C 

(Thessaloniki).Where should the power plant be located in order to use the least amount of high-voltage cable 

that will feed electricity to the three cities?”(this is an adaptation of a similar problem  cited in Olive, 2000).  

In my studies screenshots of the sequential representations of two problems modelled in the software are 

presented and correlated with excerpts from dialogues recorded during the research process in which I have 

identified students’ arguments or conjectures and students deductive chains to construct their solutions to the 

problems presented to them. 

 

 
Figure 5.34a. Mode A, Sequential phases of experimentations with the dynamic objects (screenshot from the GSP file) (see also 

Patsiomitou, 2008b, 2010) 
Mode A-the inquiry/information mode (Figure 5.34a): According to Patsiomitou (2008b, 2010): The students 

investigate the modifications made to the calculations of the segments to identify the different positions of point 

K. Changing the position of point K by dragging it is dynamically linked to the changes/ modifications in the 

resultant angles in the table and the upcoming modification to the sum of the segments. This process encourages 

students to observe that the minimal sum is observed when every angle is equal to 120o. The students are usually 

led to draw rough conclusions regarding the position of the point under investigation; for instance, that it is the 

circumcentre of the triangle ABC. The construction of the circumcentre and the measurements reveal cognitive 

conflicts in the students. The addition of a new line in the table for new measurements every time point K is 

dragged can lead students to posit inductive formulations which converge on the angles between the segments 

being 120 degrees. During this process, we have a reversible (bi-directional) transformation of a) the geometrical 

into an algebraic model, and b) the algebraic conclusions drawn from comparisons between on-screen dragging 

on the geometrical representation. 
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Figure 5.34b.  Mode B- Sequential LVARs due to the action buttons (see also Patsiomitou, 2008b, 2010) 

 

Mode B-the directed orientation mode (Figure 5.34b): According to Patsiomitou (2008b, 2010): By pressing 

the buttons, the student can see the following steps executed simultaneously: A constructional process on the on-

screen diagram and a computational process in which the sum of the segments is transformed. Use and 

manipulation of the action buttons makes it possible to link the following forms of representations—

figurative/iconic, symbolic and verbal—which appear almost simultaneously on screen. During this process, a 

geometrical object is transformed into a new geometrical object emanating from the rotation. This process leads 

to the transformation of the sum of the three segments AK, KK΄ and K΄B΄ on a crooked line and is followed by a 

mental transformation. That is to say, the process begins into the spatiographical and leads to the theoretical 

field.  

 

 
Figure 5.34c. Mode C-The transformed-translated phases of the LVARs (see also Patsiomitou, 2008b, 2010) 

 

Mode C – the explicitation mode (Figure 5.34c). According to Patsiomitou (2008b, 2010):  

I created the successive phases of the constructional steps, using the translation transformation process. By 

dragging a point of the original configuration or the translated images, the students can observe the processes that 

emerged previously being modified simultaneously. Students are able to directly assume or infer the properties 

and the interrelationships between figures from properties indicated on the diagram by conventional marks (for 

example the equality of angles, or the angles measurements). The process leads the student to construct an 

infinite class of transformational processes of the same geometrical object on screen; consequently leads to a 

generalization of the conclusions they have been led in previous phases of the solution.  

Mode D –the free orientation mode (Figures 5.34d, e): According to Patsiomitou (2008b, 2010): Students are 

able to directly assume or infer the properties and the interrelationships between figures from properties indicated 

on the diagram by conventional marks (for example the equality of angles, or the angles measurements). It is 

essential that the student can display every step in the solution together on the same screen; only thus, can they 
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see the progressive changes globally. The students can use their creativity to pose open goals with multiple steps 

and alternative solutions, thereby extending their knowledge to what they have seen before. One could consider 

this, as the second part of directed orientation, in which the students learn to find their way through the network 

of relations assisted by their extant knowledge.  

 

 
Figure 5.34d.  Mode D, stages in the solution displayed side by side on the same page (see also Patsiomitou, 2008b, 2010) 

 

For example, the proving process leads to a solution which requires the construction of the circumscribed 

circles of the equilateral triangles with a view to finding their intersection, which is the solution to the modelled 

problem”.  

 

 
Figure 5.34e. Mode D, conceptual connection with Fermat’s problem (see also Patsiomitou, 2008b, 2010) 

 

Mode E –the integration mode (Figure 5.34f): According to Patsiomitou (2008b, 2010): The students are 

dynamically guided to reinvent an interpretation of the process in the modelled problem. At this stage, through 

dynamic reinvention can apply the custom-tool “construction of the circumscribed circle” to the sides of the 

equilateral triangles, so that the intersection point of the three circles gives the right place for point K, which is 

the solution and the interpretation of the solution to the real problem. 

According to Patsiomitou (2008b, 2010) “the building and transforming of the semi-predesigned LVAR leads the 

students to pass from a visual way of thinking to a theoretical geometrical one, or to pupils’ mental 

transformations. Students use verbal formulations to exchange their ideas meaning that they transform their 

mental objects into a language mapping, corresponding to LVAR transformations on pages in the software. 
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Figure 5.34f.  Mode E, implementation of the solution to the real world problem (see also, Patsiomitou, 2008b, 2010) 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

In my study “From Vecten’s Theorem to Gamow’s Problem: Building an Empirical Classification Model for 

Sequential Instructional Problems in Geometry” (Patsiomitou, 2019a), I describe how I designed LVAR modes 

(A and C) incorporating the currently introduced notion of hybrid objects and hybrid-dynamic diagrams. 

Concretely in a trying to classify the different types of DGS problems I report how I transformed Vecten’s 

theorem to a real-world situation in LVAR diagrams “to gain students’ interest and attention” from the first 

moment (Gagné, Briggs, and Wager, 1992). 

Let me begin the story from the year 2007.  In year 2007, I turned my investigations of Vecten’s theorem to its 

known version as a real-world problem, created by Gamow (1948, reprinted 1988) through modeling it in 

Sketchpad DGS environment (e.g., Patsiomitou, 2008a, b) inspired by a work of Daniel Scher (2003), regarding 

the concrete problem. Daniel Scher (2003) designed the activity in multiple linked pages using Sketchpad v4. 

Previously, I also discussed the concrete problem with Professor Paris Pamfilos and Professor Constantinos 

Christou, when I was experimenting, using the Euclidraw Dynamic Geometry program (Web page [32]). 

Gamow’s (1948, reprinted 1988) problem involving pirates and buried treasure seemed ideal for my students. I 

enhanced the problem with historical evidence from Homer, seeking thus to motivate my students to develop 

their interest in ancient history through geometry. Gamow’s problem hinges on a treasure map found in an old 

man’s attic. Here is the revision (Patsiomitou, 2008a, p. 357):

“In the Odyssey, Homer (c74-77) mentions that the pirates also raided Greek islands. The pirate in our 

story has buried his treasure on the Greek island of Thasos and noted its location on an old parchment. 

“You walk directly from the flag (point F) to the palm tree (point P), counting your paces as you walk. 

Then turn a quarter of a circle to the right and go to the same number of paces. When you reach the end, 

put a stick in the ground (point K). Return to the flag and walk directly to the oak tree (point O), again 

counting your paces and turning a quarter of a circle to the left and going the same number of paces. Put 

another stick in the ground (point L). The treasure is buried in the middle of the distance of the two sticks 

(point T).”(Figures5.35a, b5.36). After some years the flag was destroyed and the treasure could not be

found through the location of the flag. Can you find the treasure now or is it impossible?”

Many researchers have been attracted to the problem (e.g., De Villiers, 1999a). I considered the problem as 

particularly interesting because it allows three quite different approaches (Patsiomitou, 2008a, p. 366): (i) the so-

called ‘static’ approach; (ii) a software-supported: ‘dynamic’ approach; and (iii) a paper and pencil ‘dynamic’ 

approach concerning dynamic methods in geometry, consisting of ‘thinking in motion’ in a paper pencil 

environment. In the current paper I shall describe how I designed mode A and mode C, trying to concentrate on 

two of its aspects: 1) linking actions with constructional steps in the software, and 2) linking the various visual 

steps in the proving process. 
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Figures 5.35a, b. Screenshots of sequential diagrams of Vecten’s 

theorem in Sketchpad (Patsiomitou, 2008a; 2019a, p. 17) 
Figure 5.36. Screenshot of 

Gamow’s problem in 

Sketchpad(Patsiomitou, 2008a; 

2019a, p. 17) 

 

Mode A: The synthesis of the dynamic representation incorporates an image that is a permanently annotated 

pictorial representation, a two-dimensional hybrid object representing the closed and curved polygonal island, 

annotated in green and two dynamic fractal trees placed on the island. The background (font) of the screen has 

been selected to be light-blue using the complex preferences pop-up menu, to give the impression of the sea 

around the island. The positions of the trees P, O are two points with zero degrees of freedom (Figure 5.36). 

According to the Geometer’s Sketchpad reference manual (2001) “points are the fundamental building blocks of 

classical geometry, and geometric figures such as lines and circles are defined in terms of points” (p.11). 

Hollebrands, Laborde and Straeser (2008, p.165) identified the distinction between the three different kinds of 

points in a DGS environment: (a) a free point has 2 degrees of freedom, (b) a point on an object has 1 degree of 

freedom  and (c) an intersection point has 0 degrees of freedom. Point F, which represents the position of a 

moveable flag, can move with two degrees of freedom and be dragged on screen. The rotation of the segments 

PF, FO to 90 degrees reorganizes the visual mathematical representations. Two new objects the segments PK, OL 

have been added on screen, the images of the PF, FO respectively. Point T (the treasure point), is the midpoint of 

the segment KL. It has constructed with zero degrees of freedom due to its dependence on the points K, L.  

When students interact with the hybrid-dynamic diagram to create the rotations they interact with the 

intermediate representation of the pop-up menu for the selection of the rotation angle. The students can construct 

during instrumental genesis an instrumented action scheme of the perpendicularity and the congruence of the 

segments (PF and PK, OF and OL).The synthesis of the diagram leads to the following complex transformations 

(Patsiomitou, 2008a, 2012a):  

• Rotation of the segments PF, FO to construct the points K, L (Figures 5.37 a, b). This portrays a 

rearrangement of the visual representation giving the students the opportunity to perceive the internal 

relations between the mathematical objects on screen. Point F can be dragged. This results in the 

transformation of the rotated segments, a complex transformation of the dragging and rotation of a 

geometric object.  

• The hide–show action button for the points K, L, T also creates also a decomposition of the diagram. 

Concretely, an action button hides the point where the flag is located. The dependent objects have also 

been hidden (Figures 5.37 b).  

• The dragging of KL on the screen creates traces of the segment, meaning a set of points through which 

the segment passes. In this case (Figures 5.37c, 5.38) the result is a complex transformation of the 

dragging and tracing of a geometric object (for example a point, a segment, or a line etc). 
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Figures 5.37 a, b, c. Screenshots from LVARs-mode A (before or after 

hiding the flag) (Patsiomitou, 2008a; 2019a, p. 17) 
Figure 5.38. Screenshot of the 

combination of tracing & 

dragging the segment KL in 

Sketchpad (Patsiomitou, 2008a; 

2019a, p. 17) 

Subsequently, the images of KL (Figure 5.38) demonstrate the temporal positions of the segment as a 

correspondence of a point with its image. Every point of the initial constructed image has its correspondent 

image. Subsequently, we have a function f which corresponds to every point A on the segment KL to a point f(A) 

the image of point A, where the point A corresponds to point A1 to point A2, and then to point An with the n-

dragging. We can thus see that the transformation of Point A is a 1–1 function to every dragging depended of the 

previous point–image. The set of ‘A’ images on screen created by the trace command is the set of points through 

which Point A passes. A point’s dragging on screen results to the transformation of its position and 

simultaneously the appearance of tracing tracks on screen, which show the path that the point follows or the 

tracks that a line passes due to dragging transformations. This action results to the determination of a basic 

property of the diagram (or a property of the diagram that remains stable and unaltered) which cannot be directly 

perceived from the diagram. “Trace” according to Jahn (2002) “emphasizes a dynamic interpretation of the 

representation of a trajectory of a point … representing, at least implicitly, the image of a set of points for a 

certain application.” (p. 79). 

 

 
Figure 5.39a. Mode C- the reformulated RGNA problem (Patsiomitou, 2008a, p. 373) 

 

Mode C started with a second problem, investigated by the students in a paper-pencil environment (using a 

reformulated RGNA problem) reported in Patsiomitou (2008a, p. 372): 

 “An archaeologist has an old map which explains the position of a clay pot: You walk directly from point 

P to point F (F, Ε are constant points) counting your paces as you go. Then turn right 90 degrees and walk 

the same number of paces from point F. When you reach the end, put a stick in the ground. Return to point 

P and walk directly to point E, again counting your paces and turning left 90 degrees and walking the 

same number of paces. Put another stick in the ground. The vessel (point V) is buried in the middle of the 

distance of the two sticks. Rejecting the procedure described above, the archaeologist did the following: 

starting from the midpoint of the segment FE, he followed the directions given on the map until he finally 
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found the pot. a) Can you plot the shape according to the steps that archaeologist followed? And b) can 

you explain (using formal logic) why he was right?” (Figure 5.39a).  

This is a complex phase. The dynamic diagrams are linked, using a translation transformation and every diagram 

on the right is a sequential successive and gradual procedure conducted on the previous one which is on the left. 

The translation gives to the dynamic representation the property to a simultaneous alteration of every dynamic 

object on them if we drag any point.  

The synthesis of the dynamic LVARepresentation has the following design: Point P has two degrees of freedom 

and point O has 0 degrees of freedom. The screen background (light-blue colour) has been changed using 

Sketchpad’s complex preferences dialogue in order to link it to the previous page. The experimental dragging of 

point V does not transform the rectangle’s figure, which remains a hybrid object on screen. In order to solve the 

problem we have to follow the following analysis: we have to prove that V is the midpoint of KL, meaning we 

have to prove that KL and AB are dichotomized, or KA//=BL (Patsiomitou, 2008a, p.373). 

From a diagram with congruent triangles which occurred from a rotation through 90 degrees (Figure 5.39a), the 

students can develop two subgoals (e.g., Patsiomitou, 2008b, 2010, 2012a, 2019b): firstly, proving that the sides 

are equal and, secondly--stemming from the segment’s perpendicularity, proving that the sides are parallel. This 

is to say they have developed a conceptual object: the same objects act as parallel lines and as equal sides. 

(Figure 5.39b). 

 

 
Figure 5.39b. Developing subgoals and goals (Patsiomitou, 2012a, 2019b) 

 

According to Battista (2011) “Selecting/creating instructional tasks, adapting instruction to students' needs, […] 

require detailed, cognition-based knowledge of how students construct meanings for the specific mathematical 

topics targeted by instruction” (p.527). 
For the student, solving a problem like Gramow’s is like embarking on a journey into the unknown. They will 
meet conceptual obstacles along the way, and hence all manner of difficulties, but the benefits gained make the 
journey more than worthwhile, as the students emerges stronger from the experience. This is why mathematics 
educators need to take it on board that the journey is more important than the destination; that it is the process by 
which students arrive at an answer and the added sophistication they gain in their problem-solving, that raises 
their van Hiele level.  

 

5.5.3. How can we solve a problem using LVARs?  

Figure 5.38 depicts the problem-solution flow in a software environment, since the solution to the problem 

depends on the right decisions being made when the task’s strategies are being designed, using LVAR modes, 

implementing different interaction techniques. Consequently, students can develop conceptual transformations 

during the process of dynamic geometry problem-solving as a means of achieving meaningful and deep learning 

and/or increasingly conceptual model building (e.g., Greeno, 1983; Mayer, 2000). The instrumental genesis 

theory helped me to interpret student behavior in the dynamic geometry environment and to observe the links 

between procedural and conceptual components within instrumentation schemes.  
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There were changes in the behavior of the students (Guin & Trouche, 1999, p.220) observed after their 

investigation in the dynamic geometry environment, taking into account their mathematical profile and the main 

features of the student’s van Hiele level of geometrical thought claim. On the other hand, I observed that before 

the software sessions, the students in the experimental team didn’t differ from the students of the same level in 

the control group with regard to representations of problems and reasoning. 

Creating LVARs can make it easier for students to grasp the relevant concepts by allowing the continuous 

manipulation of mathematical objects in real time. The LVARs are embedded into a multi-page file, and their 

active “alive” functions lead students to solve the problem, while their construction can make geometry easier by 

being partly prepared by the teacher, which saves times. Teachers can thus improve their students’ knowledge by 

eliciting mental schemes from them, which is to say the students can be guided to reach conclusions which form a 

step-by-step visual proof. There are studies (for example Bennett & Desforges, 1988) which caution that the 

problems used should be set in a familiar context and build on the students’ extant knowledge. The 

aforementioned process described and analyzed, allowed me to reach conclusions relating to how students learn 

in a dynamic geometry environment with LVARs, which are comparable to an “alive” section in an e-book, and 

to how their level of reasoning develops—a phenomenon observed during the sessions. 
 

 
Figure 5.40: Interpretation of the problem solving in a dynamic geometry environment using LVARs (Patsiomitou, 2008a, 

p. 386) (modified) 
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Figure 5.41. The transformations that occurred to students during their interaction with LVAR (Patsiomitou, 2010, p. 20) (modified) 

 

Specifically, when students do not know how to go on, they return to a previous action, reconstructing or undoing 

a given step which doesn’t seem to have helped, trying in this way to get feedback with regard to a future 

procedure relating to solving the problem. The LVARs allowed me to reach to a conclusion which depicts the 

problem-solution flow in a software environment, since the solution to the problem depends on the right 

decisions being made when the activity’s strategies are being designed, on the right combination of LVAR, and 

on creating and choosing different interaction techniques. The instrumental genesis process via the 

transformations undergone by the LVARs and the utilization schemes the students draw up with a view to solving 

the problem lead to the construction of cognitive schemata which are developed through collaboration and 

constant interaction with the environment. 
When the instrumental genesis occurs, transformations of linking representations globally or on the objects in the 

LVAR (i.e. artefacts or tools in the software) reflect on the assimilation or the accommodation of the situation by 

the subject. The students’ development of geometrical thought takes place through the interaction with the LVAR 

in relation to the progressive adaptation of their schemes of use.  
Therefore, it appears that the use of LVARs in the Sketchpad dynamic geometry environment proving process 

can organize the problem-solving situation using as tools the interaction techniques facilitated by the software, 

and the structuring and restructuring of the user’s instrumental schemes it evokes as the activity unfolds. As the 

LVARs’ composition changes, there is a transformation of the user’s verbal formulations due to rules subjacent 

to the user’s organized actions. Consequently, the scheme of use associated with the constructed instrument 

changes leads the students to pass from an empirical to a theoretical way of thinking or to students’ mental 

transformations (Figure 5.41). 

Mathematical properties can be described in terms of transformations which may be represented through several 

types of manipulative activities. In the case of modelling a problem in the DGS environment, this process can be 

achieved through interaction techniques in the software during the problem-solving process. Initially, the students 

perform actions upon semi-predesigned LVAR. But eventually when the LVARs as objects become distinct 

images, students are able to perform mental transformations upon these images in a cognitive operation which 

builds upon actions but goes beyond them. During the interaction with LVAR, two different developments occur 

simultaneously:  One is vision-spatial, using processes on the screen to perform tasks (i.e. rotation) that are 

completed between a pre-image (the original figure before transformation) and an image (the corresponding 

figure after the transformation). The other is conceptual, using concepts (i.e. properties of figures, 

interrelationships between figures, theorems etc.) and verbalized thoughts. The process of proof is developed 

using verbal formulations and geometrical relationships which become conceptualized during the proving 

process. Students use verbal formulations to exchange their ideas. They transform their mental objects into a 

language mapping, corresponding to motion transformations on the sketch. Semperasmatically, actions on LVAR 

(or interaction with LVAR) leading to proofs also lead to the development of geometrical thoughts. Students can 

develop their level of thinking by proceeding through increasingly complex, sophisticated and integrated figures 

and visualizations to more complex linked representation of a problem, and thereby moving instantaneously 

between the successive Linking Visual Active Representations by means of their mental consideration and 
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without returning to previous representations to reorganize their thoughts (Patsiomitou, 2008a, p. 388; 

Patsiomitou, 2008h, in Greek). 

 

5.5.4. What is the Role of LVARs in Students’ Thinking  

Visualization of student’s cognitive development during the research has been made by pointing out the main 

snapshots of their development in an Excel matrix. Concretely, I conceived and applied the following process: 

The first column of the matrix contains the tools and synthesis of tools that helped students to formulate an 

expression or a characteristic that could be an indication of their van Hiele level. Tools were categorized and 

every tool defined by a distinct code (Patsiomitou, 2012a, 2013a, p. 803). For example a few codes for the tools 

are described in the next table.   

 

Table 5.4: Coding tools for the use of cognitive analysis (Patsiomitou, 2012a, 2013, p.803) 

code Tools  

T1 for the point used by experimental dragging 

T2 for the point used by theoretical dragging 

T3 for the reflection tool 

T8 for the circle tool 

T9 for the rotation tool 

T11 for the parametric tool 

T12 for the custom tool “symmetry” (Patsiomitou, 2012a, p. 68) 

T15 for the custom tool used with ‘economy or catachresis’ 

T16 for the hide/show action button tool 

T17 for the trace tool 

T18 for the annotation tool 

 

Furthermore, the characteristics of the van Hiele levels that appeared during analysis of students’ dialogues led 

me to create an adaptation to Battista’s (2007) categorization. Concretely, the first row of the Excel matrix 

contains characteristics of the van Hiele levels, each with a distinct code (Patsiomitou, 2012a, 2013a). For 

example, characteristics of level 1, 2.1 […] 3.4 were coded as follows: I0 for cognitive conflicts and I1 for 

informal descriptions, etc. described at the Table 1 below. 

 

Table 5.5: An adaptation to Battista’s (2007) categorization on van Hiele levels (Patsiomitou, 

2012a, 2013a, p.804) 

level 1 I0 for cognitive conflicts and I1 for incorrect and informal descriptions. 

level 2.1 I2 for dynamic perceptual definition and I3 for the synthesis of formal and 

informal descriptions of students. 

level 2.2 I4 for incomplete definitions and incomplete reasoning and I5 for inductive 

argumentation/concepts-in-action or theorems-in-action. 

level 2.3 I6 for formal description and non-economical definitions and I7 for connections 

between meanings. 

level 3.1 I8 for economical definitions and I9 for logical correlations between meanings. 

level 3.2 I10 for structural analysis competence, I11 for abductive-deductive reasoning. 

level 3.3 I12 for deductive argumentation, I13 for the generic example proof scheme. 

level 3.4 I14 for thought experiment proof scheme, I15 for the competence of logical 

hierarchy. 
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Transformative reasoning, dynamic reinvention, and reflective visual reaction were coded as I16, I17, and I18, 

respectively. I posed the dialogue counting of the concrete team in which the student participated at the 

intersection of an intelligible parallel line, starting at the tool and moving to the horizontal axis, and an 

intelligible perpendicular line, starting from the van Hiele characteristic. The process was accomplished by 

tracing a crooked line through the counting so that the learning path of the student could be visualized; moreover, 

it would determine what tools affected to the student’s movement at van Hiele levels. In my study “Students 

learning paths as ‘dynamic encephalographs’ of their cognitive development” (Patsiomitou, 2013), I present two 

examples of the visualization of students cognitive development through the use of tools. In the following 

example is illustrated how M7 developed her thinking through the LVAR process (Figure 5.40), by pointing out 

the main snapshots of her development in an Excel matrix. 

 

 

Figure 5.42. The development of  M7 student’s thinking in connection with the use of Sketchpad tools (Patsiomitou, 2012a) 

5.6. Conclusions 

Are the students able to grasp logical operations on abstract mathematical objects? What does it mean to obtain 

access to an abstract mathematical object or a mathematical entity? This assumption imposes a series of questions 

about the nature of the mathematical objects to which symbols are presumed to refer; for example, if we are not 

able to have access to mathematical objects, which processes could become mental objects whose aim is to 

reinforce students’ cognitive development in mathematical thinking? Thus, we have to act or operate on external 

objects or on external representations of these objects or on their external symbols. This is in accordance with 

what Piaget (1970) stated about mathematical knowledge which can be abstracted either directly from objects or 

the external experiences we have in relation to the objects, or from operations that are mentally performed on 

objects.  

The design and redesign of activities for the teaching and learning processes, with real problems through LVARs 

in the dynamic geometry software, and the results obtained from the research data (e.g., Patsiomitou, 2012 a, b), 

suggest that a student develops his/her abstract thinking when his/her cognitive structures are linked through 

conceptual representations that the student develops during the learning process. Moreover, the linking of 
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sequential phases in a proof or actions over multiple pages or evolving steps in the representation of the problem 

leads to a cognitive linking of mental representations. A student can construct linking active representations 

(Patsiomitou, 2012a, b):  

• When s/he builds a representation (for example, a figure) in order to create a unmodified  construction, 

using software’s interaction techniques by externalizing his/her mental approach or generally by 

transforming an external or internal representation to another representation in the same representational 

system or another one.  

• When s/he gets feedback from the theoretical dragging (Patsiomitou, 2011a, b, 2012a, b, 2014) to mentally 

link figures’ properties so that, because of the addition of properties, subsequent representations stem from 

earlier ones.  

• When s/he transforms representations so that the subsequent representations stem from previous ones due 

to the addition of properties. 

• When s/he links the developmental procedural aspects in a process of a dynamic reinvention  

• When s/he reverses mentally the procedure in order to create the same figure in a phase of a dynamic 

hypothetical learning trajectory or between phases of the same dynamic hypothetical learning path.  

The modeling of a problem in the dynamic environment can 'carry' any [mathematical] object to the classroom in 

two ways: through the use of digital images or through the use of their simulations. On the other hand, a 

technological tool is important as the design of artifacts can be generalized and replicated in any group of 

students, at different times and in any thematic framework (e.g., science, geography). Therefore, referring to 

LVAR is concluded in the following (Patsiomitou, 2012a, p. 498): 

• How could this affect the students' understanding of the utilization of LVAR in the teaching and learning 

of other disciplines (e.g., physics or ancient Greek and history)? [or] Would students understand the 

obscure points of other disciplines, because of the interaction with the [appropriate] dynamic LVAR 

representations? 

• Can the students develop their linking of the conceptual and procedural representations of these objects? 

On the other hand, new cognitive tools are not included [or included in a very slow way] for the teaching of 

concepts. It is particularly important for the 'movement' of a process by applying innovative practices to change 

the negative views that a large portion of teachers have regarding technology. This seems to focus on a lack of 

knowledge because of the phobias surrounding technological tools in the mathematics classroom, leading to an 

adherence to traditional teaching methods.  

In general, the whole issue has to do with the way we perceive the world, the natural objects (unconscious), how 

we compare them mentally (consciously) with theoretical constructs of geometry in order to represent them and 

how we instrumental decode them using technology. Finally, it is important to continue teaching and research 

concepts in this vital field, through activities that involve children in the learning process, so using lining visual 

representations they will learn how to develop, interpret, and make sense of geometric concepts. This argument 

recognizes and underlines the force of Kant’s argument (1929, “Critique of Pure Reason”) that: 

There can be no doubt that all our knowledge begins with experience. For how should our faculty of 

knowledge be awakened into action did not objects affecting our senses partly of themselves produce 

representations, partly arouse the activity of our understanding to compare these representations, and, by 

combining or separating them, work up the raw material of the sensible impressions into that knowledge of 

objects which is entitled experience? [Because] “Understanding is the faculty of knowledge and […] 

knowledge consists in the determinate relation of given representations to an object”.  
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In place of an epilogue: Are LVARs a new theory for teaching and learning? 

 

 
The title of this monograph references the international bibliography relating to learning trajectories on Didactics 

of Mathematics. The basic idea was, starting from a general perspective on the didactics of mathematics, to 

provide a structured book for the teaching and learning of the didactics of mathematics incorporating LVAR. The 

spark for the conception of the meaning of linking visual active representations (LVAR) were the files I created 

in the Geometer’s Sketchpad environment in 2005 and my research results. I grasped the meaning of LVAR 

when I was writing my Master thesis and created activities for the investigation of the meanings of limit and 

sequence. 

The first international work on linking representations incorporating a few DGS activities of my Master Thesis, 

as well as the investigation and the experiment with these dynamic representations with primary and secondary-

level students in a very condensed form had been submitted and accepted at the “International Conference on 

Technology in Mathematics Teaching (ICTMT8) in Hradec Králové: “Fractals as a context of comprehension of 

the meanings of the sequence and the limit in a Dynamic Computer Software environment.”(Patsiomitou, 2007a). 

The linking diagrams can be transformed into "active [alive] diagrams", reinforcing the original image since the 

stimulus received from the visual representation leaves the properties of the figure unaltered despite the 

transformation it undergoes.  The results in my study were very important for the teaching and learning of 

geometry. 

However, I was still questioning whether the students’ understanding had evoked from the active linking of the 

dynamic “alive” representations. In my PhD study, I introduced and investigated a hypothetical learning path for 

quadrilaterals which sought to raise the students van Hiele levels. The study of my PhD was conducted in a class 

at a public high school in Athens during the second term of the academic year (from January-May 2007), and 

involved 65 students aged 15-16. My curiosity led me to revisit the dialogues between myself and the 

participating students from the fourth phase of my didactic experiment. When I searched my field notes for words 

and phrases that would suggest my students' van Hiele level had moved, I found that the participated students 

answered my questions and used long complex, detailed, rigorous proofs. The first definition of the meaning of 

LVAR was accepted at three conferences during roughly the same period: An indicative expert of my study is 

presented in my paper “The development of students’ geometrical thinking through transformational processes 

and interaction techniques in a dynamic geometry environment” (Patsiomitou, 2008a) and a condensed form of 

this paper has been accepted as Research Report included in the Proceedings of the Joint Meeting of the 32nd 

Conference of the International Group for the Psychology of Mathematics Education, and the XX North 

American Chapter (Patsiomitou & Koleza, 2008). I presented also the paper “The development of geometrical 

thinking through linking visual active representations” (Patsiomitou & Koleza, 2009), on April 17, 2008 at the 5o 

Colloquium of Mathematics, which had been contacted at the University of Crete. When I introduced and 

presented the meanings LVARs and RVR at the 5th Colloquium at the University of Crete, many important 

Professors (e.g., Professor Abraham Arcavi, Professor Michele Artique, Professor Nurit Hadas, Professor 

Hershkowitz Rina), were among others in the audience and gave me feedback. During the presentation, in which 

I felt under pressure to support my study, a Professor advised me to slow down: “Don’t run Lina”. I think I’ve 

been in a hurry all my life. I am a “runner”.  

My PhD started June 2007. In December 2007, my supervisor Professor Eugenia Koleza sent me a notification 

that she had applied/requested to be moved to another university.  
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During the “difficult” year 2008 the devotion to my study led me to write three more papers. The papers were 

accepted by the ATCM conference (Patsiomitou, 2008b, c, d). These are:  

• “Linking Visual Active Representations and the van Hiele model of geometrical thinking” (Patsiomitou, 

2008b);  

•  “Do geometrical constructions affect students’ algebraic expressions?” (Patsiomitou, 2008c);  

• “Custom tools and the iteration process as the referent point for the construction of meanings in a DGS 

environment” (Patsiomitou, 2008d).  

The second and third papers incorporate preliminary research using LVARs. In the first paper, I presented the 

LVAR modes and snapshots of the research process. The above mentioned papers had been accepted to be 

published at the eJMT journal, after a peer review process. For this, an extended improved version of the paper 

including LVAR modes has been published, entitled as: “Building LVAR (Linking Visual Active Representations) 

modes in a DGS environment” (Patsiomitou, 2010). 

The year 2008, my stress over the future of my Ph.D led me to write a monograph in Greek (up to 600 pages). It 

consists of 15 stand-alone chapters on a common theme: the development of structures through sequential 

activities in Sketchpad which I designed using linking visual active representations. In the monograph, I describe 

the way in which the included activities can be created, detailing the steps in their construction process and 

including illustrations. With the help of the concrete book, each teacher can create his own tools and activities by 

using the software's functions for the needs of his/her students. The book was approved by the Greek Pedagogical 

Institute and through the Greek Ministry of Education it had been sent to the libraries of the Experimental Model 

Secondary-level schools of Greece.  

In December 2008, another professor (Assist. Professor Anastassios Emvalotis) agreed to replace my previous 

supervisor. Also, Professor Koleza notified me a letter of recommendation addressed to the University of 

Ioannina (Thu, 29 Jan 2009, 15:44:22); the official “restart” date of my Ph.D was March 2009.  

I supported my PhD thesis December of 2012. I thank both supervisors from the heart, for the period of 

cooperation with everyone; their efforts to start and continue my PhD gave me the freedom I needed to pursue 

my inquiries and develop as a researcher. I would also like to express my gratitude to the following Professors (in 

as well as the software designer of the Geometer’s Sketchpad software, Nicholas Jackiw. I thank them for the 

comments and the help, sent via e-mails over the years. I also greatly appreciate the comments via e-mail made 

by Professor Raymond Duval, Professor Usiskin and Professor Michael Shaughnessy. Moreover, I would like to 

thank all the referees for their comments to improve the quality of my studies. I deeply appreciate the time they 

dedicated to reading my papers and providing valuable feedback on them. It is important for me also to highlight 

how lucky I was to have listened the lectures of an excellent team of professors in the Mathematics Departments 

at the National and Kapodistrian University of Athens and the University of Cyprus in the frame of my Master in 

the Didactics and Methodology of Mathematics. They included the advisors on my Master’s thesis, Professors 

Chronis Kynigos, Constantinos Christou and Theodosis Zachariades. My need to be constantly introducing and 

investigating new approaches in mathematics, following my own personal journey to knowledge, is largely due to 

my studies on this course. Thanks to them, I was already familiar with a substantial part of the extant theory 

relating to the subject of “Didactics of Mathematics” before I started my Ph.D. My experience as a teacher of 

Mathematics in secondary education was another very important factor in making me a successful “runner” in the 

Didactics of Mathematics.  

In this volume, I have tried to include (an overview of) the current theoretical framework which helped me to 

arrive at key theoretical constructs including LVARs, RVR. For the need of my study I conceived also and 

defined the meanings: instrumental decoding, theoretical and experimental dragging, instrumental obstacles 

introduced in the paper “Theoretical dragging: a non linguistic warrant leading to dynamic propositions” 

(Patsiomitou, 2011a) presented at the PME35 Conference, at Ankara Turkey. The summer of 2009, I realized that 

the diagram created by Teppo (1991) did not cover the needs of my study. So I changed the diagram to cover the 

needs of my study. The concrete diagram is included in the published paper “Secondary students’ dynamic 

reinvention of geometric proof through the utilization of Linking Visual Active Representations» (Patsiomitou, 

Barkatsas, and Emvalotis, 2010). The DHLP for quadrilaterals which I conceived and implemented in my PhD 

study is described in the paper “A Linking Visual Active Representation DHLP for student’s cognitive 

development” (Patsiomitou, 2012b). I introduced also a pseudo-Toulmin for the needs of my studies. 

alphabetical order): Anastasios Barkatsas, Constantinos Christou, Daniel Scher, Rudolf Straesser, Luc Trouche, 
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In December 2012, I also wrote the work «Students learning paths as 'dynamic encephalographs' of their 

cognitive development» (Patsiomitou, 2013). The paper utilized all previous concepts for describing the 

phenomena of my study and further I formulated the meanings of: dynamic (/ perceptual) definition and arbitrary 

economic definition. In the same article I describe an adaptation to Battista’s (2007) categorization regarding the 

development of abstract processes and the development of every skill in each van Hiele level (Patsiomitou, 2013, 

p. 804), as well as how it relates to the utilization of the software tools (different types of cognitive development 

of students at different stages of the study). All the above concepts arose from the need to interpret the results of 

the research process, to explain various phenomena explaining tool -student interactions mainly and the result of 

a thorough analysis of experimental procedures as immediate consequence of other concepts such as digital proof 

(Patsiomitou, 2006e, p.515) parametric polygons (Patsiomitou, 2007c, p.62) etc. which I had written and they 

had been accepted in earlier Greek scientific conferences. I have to mention that all the research study, the 

publications etc. occurred in parallel with my work at the secondary education as well as with the raising of my 

three children.  

In brief, the theoretical constructs I conceived, introduced, applied and developed during the writing of my Ph.D. 

thesis and afterwards are as follows: 

• Linking Visual Active Representations (LVAR) (Patsiomitou, 2008a, 2012a); 

• Reflective Visual Reaction (Patsiomitou, 2008a, 2012a); 

• Theoretical and experimental dragging  (Patsiomitou, 2011a, b); 

• Instrumental decoding (Patsiomitou, 2011a, b); 

• Dynamic point, dynamic segment, parametrical segment, dynamic meanings, dynamic proposals, 

instrumental obstacles  (Patsiomitou, 2011a, b); 

• Serial, verbal, place way, operational apprehension of the use of tools (Patsiomitou, 2011a, b); 

• A pseudo-Toulmin’s model (Patsiomitou, 2011a, 2012b); 

• An adaptation of the Graumann’s house of quadrilaterals (Patsiomitou, 2012b); 

• A Dynamic Hypothetical Learning Path  (Patsiomitou, 2012b); 

• An adaptation of Battista (2007)’s categorization regarding the development of students’ abstract 

processes (Patsiomitou, 2012a, 2013a); 

• The Dynamic Teaching cycle  (Patsiomitou, 2012a, b, 2014); 

• The meaning of “alive” tool (Patsiomitou, 2005a, 2018b); 

• Hybrid-dynamic objects, hybrid diagram, hybrid-dynamic diagram  (Patsiomitou, 2019a, b); 

• Dynamic object, Dynamic section (Patsiomitou, 2019a, b); 

• A classification of dynamic problems (Patsiomitou, 2019a). 

 

Epilogue 

Working towards a doctorate can seem like an odyssey, with Ithaca always far beyond the horizon. You’ re 

sailing alone on the deep blue ocean water without chart or compass […] And as it was for Odysseus, it’s not the 

arrival that matters, but the journey itself,  discovering new routes, encountering obstacles and moonless nights 

which make the venture more exciting. You don’t know which route to take, you could get lost along the way. 

There’s no expectation of gold at the end of the rainbow… All you can think about is finally getting there. And 

when you finally do, every memory of the pain it took to get there magically vanishes. 
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