Design of Machine Learning Framework for Products Placement Strategy in Grocery Store

Article ID

CSTSDEJJWE2

AI-powered grocery store placement strategy.

Design of Machine Learning Framework for Products Placement Strategy in Grocery Store

Olasehinde Olayemi
Olasehinde Olayemi
DOI

Abstract

The well-known and most used support-confidence framework for Association rule mining has some drawbacks when employ to generate strong rules, this weakness has led to its poor predictive performances. This framework predict customers buying behavior based on the assumption of the confidence value, which limits its competent at making good business decision. This work presents a better Association Rule Mining conceptualized framework for mining previous customers’ transactions dataset of grocery store for the optimal prediction of products placement on the shelves, physical shelf arrangement and identification of products that needs promotion. Sampled transaction records were used to demonstrate the proposed framework. The proposed framework leverage on the ability of lift metric at improving the predictive performance of Association Rule Mining. The Lift discloses how much better an association rule is at predicting products to be placed together on the shelve rather than assuming. The proposed conceptualized framework will assist retailers and grocery stores owners to easily unlock the latent knowledge or patterns in their large day to day stored transaction dataset to make important business decision that will make them competitive and maximized their profit margin.

Design of Machine Learning Framework for Products Placement Strategy in Grocery Store

The well-known and most used support-confidence framework for Association rule mining has some drawbacks when employ to generate strong rules, this weakness has led to its poor predictive performances. This framework predict customers buying behavior based on the assumption of the confidence value, which limits its competent at making good business decision. This work presents a better Association Rule Mining conceptualized framework for mining previous customers’ transactions dataset of grocery store for the optimal prediction of products placement on the shelves, physical shelf arrangement and identification of products that needs promotion. Sampled transaction records were used to demonstrate the proposed framework. The proposed framework leverage on the ability of lift metric at improving the predictive performance of Association Rule Mining. The Lift discloses how much better an association rule is at predicting products to be placed together on the shelve rather than assuming. The proposed conceptualized framework will assist retailers and grocery stores owners to easily unlock the latent knowledge or patterns in their large day to day stored transaction dataset to make important business decision that will make them competitive and maximized their profit margin.

Olasehinde Olayemi
Olasehinde Olayemi

No Figures found in article.

Olasehinde Olayemi. 2026. “. Global Journal of Computer Science and Technology – C: Software & Data Engineering GJCST-C Volume 22 (GJCST Volume 22 Issue C1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Classification
GJCST-C Classification: F.1.1
Keywords
Article Matrices
Total Views: 2721
Total Downloads: 20
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Design of Machine Learning Framework for Products Placement Strategy in Grocery Store

Olasehinde Olayemi
Olasehinde Olayemi

Research Journals