An Integration of Deep Learning and Neuroscience for Machine Consciousness

Article ID

I2SB0

An Integration of Deep Learning and Neuroscience for Machine Consciousness

Ali Mallakin
Ali Mallakin West Coast Biomedius
DOI

Abstract

Conscious processing is a useful aspect of brain function that can be used as a model to design artificial-intelligence devices. There are still certain computational features that our conscious brains possess, and which machines currently fail to perform those. This paper discusses the necessary elements needed to make the device conscious and suggests if those implemented, the resulting machine would likely to be considered conscious. Consciousness mainly presented as a computational tool that evolved to connect the modular organization of the brain. Specialized modules of the brain process information unconsciously and what we subjectively experience as consciousness is the global availability of data, which is made possible by a non modular global workspace. During conscious perception, the global neuronal work space at parieto-frontal part of the brain selectively amplifies relevant pieces of information. Supported by large neurons with long axons, which makes the long-distance connectivity possible, the selected portions of information stabilized and transmitted to all other brain modules. The brain areas that have structuring ability seem to match to a specific computational problem. The global workspace maintains this information in an active state for as long as it is needed. In this paper, a broad range of theories and specific problems have been discussed, which need to be solved to make the machine conscious. Later particular implications of these hypotheses for research approach in neuroscience and machine learning are debated.

An Integration of Deep Learning and Neuroscience for Machine Consciousness

Conscious processing is a useful aspect of brain function that can be used as a model to design artificial-intelligence devices. There are still certain computational features that our conscious brains possess, and which machines currently fail to perform those. This paper discusses the necessary elements needed to make the device conscious and suggests if those implemented, the resulting machine would likely to be considered conscious. Consciousness mainly presented as a computational tool that evolved to connect the modular organization of the brain. Specialized modules of the brain process information unconsciously and what we subjectively experience as consciousness is the global availability of data, which is made possible by a non modular global workspace. During conscious perception, the global neuronal work space at parieto-frontal part of the brain selectively amplifies relevant pieces of information. Supported by large neurons with long axons, which makes the long-distance connectivity possible, the selected portions of information stabilized and transmitted to all other brain modules. The brain areas that have structuring ability seem to match to a specific computational problem. The global workspace maintains this information in an active state for as long as it is needed. In this paper, a broad range of theories and specific problems have been discussed, which need to be solved to make the machine conscious. Later particular implications of these hypotheses for research approach in neuroscience and machine learning are debated.

Ali Mallakin
Ali Mallakin West Coast Biomedius

No Figures found in article.

Ali Mallakin. 2019. “. Global Journal of Computer Science and Technology – D: Neural & AI GJCST-D Volume 19 (GJCST Volume 19 Issue D1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Issue Cover
GJCST Volume 19 Issue D1
Pg. 21- 29
Classification
GJCST-D Classification: I.2.6
Keywords
Article Matrices
Total Views: 5253
Total Downloads: 1348
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

An Integration of Deep Learning and Neuroscience for Machine Consciousness

Ali Mallakin
Ali Mallakin West Coast Biomedius

Research Journals