Study and Performance Analysis of Different Techniques for Computing Data Cubes

Article ID

CSTSDEX2M0X

Study and Performance Analysis of Different Techniques for Computing Data Cubes

Aiasha Siddika
Aiasha Siddika Stamford University Bangladesh
DOI

Abstract

Data is an integrated form of observable and recordable facts in operational or transactional systems in the data warehouse. Usually, data warehouse stores aggregated and historical data in multi-dimensional schemas. Data only have value to end-users when it is formulated and represented as information. And Information is a composed collection of facts for decision making. Cube computation is the most efficient way for answering this decision making queries and retrieve information from data. Online Analytical Process (OLAP) used in this purpose of the cube computation. There are two types of OLAP: Relational Online Analytical Processing (ROLAP) and Multidimensional Online Analytical Processing (MOLAP). This research worked on ROLAP and MOLAP and then compare both methods to find out the computation times by the data volume. Generally, a large data warehouse produces an extensive output, and it takes a larger space with a huge amount of empty data cells. To solve this problem, data compression is inevitable. Therefore, Compressed Row Storage (CRS) is applied to reduce empty cell overhead.

Study and Performance Analysis of Different Techniques for Computing Data Cubes

Data is an integrated form of observable and recordable facts in operational or transactional systems in the data warehouse. Usually, data warehouse stores aggregated and historical data in multi-dimensional schemas. Data only have value to end-users when it is formulated and represented as information. And Information is a composed collection of facts for decision making. Cube computation is the most efficient way for answering this decision making queries and retrieve information from data. Online Analytical Process (OLAP) used in this purpose of the cube computation. There are two types of OLAP: Relational Online Analytical Processing (ROLAP) and Multidimensional Online Analytical Processing (MOLAP). This research worked on ROLAP and MOLAP and then compare both methods to find out the computation times by the data volume. Generally, a large data warehouse produces an extensive output, and it takes a larger space with a huge amount of empty data cells. To solve this problem, data compression is inevitable. Therefore, Compressed Row Storage (CRS) is applied to reduce empty cell overhead.

Aiasha Siddika
Aiasha Siddika Stamford University Bangladesh

No Figures found in article.

Aiasha Siddika. 2019. “. Global Journal of Computer Science and Technology – C: Software & Data Engineering GJCST-C Volume 19 (GJCST Volume 19 Issue C3): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Issue Cover
GJCST Volume 19 Issue C3
Pg. 33- 42
Classification
GJCST-C Classification: H.2.7
Keywords
Article Matrices
Total Views: 4697
Total Downloads: 1223
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Study and Performance Analysis of Different Techniques for Computing Data Cubes

Aiasha Siddika
Aiasha Siddika Stamford University Bangladesh

Research Journals