A Genetic-Neural System Diagnosing Hepatitis B
Hepatitis B is a life threaten disease and if not diagnose early can lead to death of the infected patient. In this paper a genetic neural system for diagnosing hepatitis B was designed. The system was designed to diagnose HBV using clinical symptoms. The dataset used in training the system was gotten from UCI repository. The system incorporated both genetic algorithm and neural network. The genetic algorithm was used to optimize the dataset used in training the neural network. The neural network was trained for 300 iterations and the system had a prediction accuracy of 99.14% on predicting Hepatitis B.