A Review on Machine Learning Techniques for Neurological Disorders Estimation by Analyzing EEG Waves

Article ID

59Q6I

A Review on Machine Learning Techniques for Neurological Disorders Estimation by Analyzing EEG Waves

Janga Vijaykumar
Janga Vijaykumar Acharya Nagarjuna university
Prof. Eedara Sreenivasareddy
Prof. Eedara Sreenivasareddy
DOI

Abstract

With the fast improvement of neuroimaging data acquisition strategies, there has been a significant growth in learning neurological disorders among data mining and machine learning communities. Neurological disorders are the ones that impact the central nervous system (including the human brain) and also include over 600 disorders ranging from brain aneurysm to epilepsy. Every year, based on World Health Organization (WHO), neurological disorders affect much more than one billion people worldwide and count for up to seven million deaths. Hence, useful investigation of neurological disorders is actually of great value. The vast majority of datasets useful for diagnosis of neurological disorders like electroencephalogram (EEG) are actually complicated and poses challenges that are many for data mining and machine learning algorithms due to their increased dimensionality, non stationarity, and non linearity. Hence, an better feature representation is actually key to an effective suite of data mining and machine learning algorithms in the examination of neurological disorders. With this exploration, we use a well defined EEG dataset to train as well as test out models. A preprocessing stage is actually used to extend, arrange and manipulate the framework of free data sets to the needs of ours for better training and tests results. Several techniques are used by us to enhance system accuracy. This particular paper concentrates on dealing with above pointed out difficulties and appropriately analyzes different EEG signals that would in turn help us to boost the procedure of feature extraction and enhance the accuracy in classification. Along with acknowledging above issues, this particular paper proposes a framework that would be useful in determining man stress level and also as a result, differentiate a stressed or normal person/subject.

A Review on Machine Learning Techniques for Neurological Disorders Estimation by Analyzing EEG Waves

With the fast improvement of neuroimaging data acquisition strategies, there has been a significant growth in learning neurological disorders among data mining and machine learning communities. Neurological disorders are the ones that impact the central nervous system (including the human brain) and also include over 600 disorders ranging from brain aneurysm to epilepsy. Every year, based on World Health Organization (WHO), neurological disorders affect much more than one billion people worldwide and count for up to seven million deaths. Hence, useful investigation of neurological disorders is actually of great value. The vast majority of datasets useful for diagnosis of neurological disorders like electroencephalogram (EEG) are actually complicated and poses challenges that are many for data mining and machine learning algorithms due to their increased dimensionality, non stationarity, and non linearity. Hence, an better feature representation is actually key to an effective suite of data mining and machine learning algorithms in the examination of neurological disorders. With this exploration, we use a well defined EEG dataset to train as well as test out models. A preprocessing stage is actually used to extend, arrange and manipulate the framework of free data sets to the needs of ours for better training and tests results. Several techniques are used by us to enhance system accuracy. This particular paper concentrates on dealing with above pointed out difficulties and appropriately analyzes different EEG signals that would in turn help us to boost the procedure of feature extraction and enhance the accuracy in classification. Along with acknowledging above issues, this particular paper proposes a framework that would be useful in determining man stress level and also as a result, differentiate a stressed or normal person/subject.

Janga Vijaykumar
Janga Vijaykumar Acharya Nagarjuna university
Prof. Eedara Sreenivasareddy
Prof. Eedara Sreenivasareddy

No Figures found in article.

Janga Vijaykumar. 2018. “. Global Journal of Computer Science and Technology – D: Neural & AI GJCST-D Volume 17 (GJCST Volume 17 Issue D1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Classification
GJCST-D Classification: H.1.2
Keywords
Article Matrices
Total Views: 6593
Total Downloads: 1472
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

A Review on Machine Learning Techniques for Neurological Disorders Estimation by Analyzing EEG Waves

Janga Vijaykumar
Janga Vijaykumar Acharya Nagarjuna university
Prof. Eedara Sreenivasareddy
Prof. Eedara Sreenivasareddy

Research Journals