About the Presence of Irregular Precession Motions in a Symmetric Euler Gyroscope

Article ID

6BZI1

About the Presence of Irregular Precession Motions in a Symmetric Euler Gyroscope

P.K. Plotnikov
P.K. Plotnikov SSTU
DOI

Abstract

It is generally accepted that the only type of motion present in a symmetric Euler gyroscope (SEG) is regular precession. This paper proves that regular precession is not the only type of motion present, but corresponds only to the well-known initial coordinated Euler angles. At any other initial angles, motions that differ from regular precession occur. In the article, the problem is solved analytically in two stages: first, angular velocities of the gyroscope are determined using differential dynamic equations, at the second stage, as a result of integration of differential matrix kinematic and differential matrix Poisson equations (both with periodic coefficients), final relations about the SEG motion with arbitrary initial Euler angles are derived. Periodic coefficients are the SEG angular velocities that are found as a solution to the dynamic equations. From the obtained general formulas, special formulas of regular precession for particular coordinated initial Euler angles that coincide with the well-known ones are derived.

About the Presence of Irregular Precession Motions in a Symmetric Euler Gyroscope

It is generally accepted that the only type of motion present in a symmetric Euler gyroscope (SEG) is regular precession. This paper proves that regular precession is not the only type of motion present, but corresponds only to the well-known initial coordinated Euler angles. At any other initial angles, motions that differ from regular precession occur. In the article, the problem is solved analytically in two stages: first, angular velocities of the gyroscope are determined using differential dynamic equations, at the second stage, as a result of integration of differential matrix kinematic and differential matrix Poisson equations (both with periodic coefficients), final relations about the SEG motion with arbitrary initial Euler angles are derived. Periodic coefficients are the SEG angular velocities that are found as a solution to the dynamic equations. From the obtained general formulas, special formulas of regular precession for particular coordinated initial Euler angles that coincide with the well-known ones are derived.

P.K. Plotnikov
P.K. Plotnikov SSTU

No Figures found in article.

P.K. Plotnikov. 2020. “. Global Journal of Research in Engineering – D: Aerospace Science GJRE-D Volume 20 (GJRE Volume 20 Issue D1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjre

Print ISSN 0975-5861

e-ISSN 2249-4596

Classification
GJRE-D Classification: FOR Code: 090199
Keywords
Article Matrices
Total Views: 2230
Total Downloads: 1011
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

About the Presence of Irregular Precession Motions in a Symmetric Euler Gyroscope

P.K. Plotnikov
P.K. Plotnikov SSTU

Research Journals