A Hydrodynamics Based Proposal to Substitute Heparin by Drag Reducing Polymers

Article ID

Z9025

A Hydrodynamics Based Proposal to Substitute Heparin by Drag Reducing Polymers

W. Lilienblum
W. Lilienblum
A. Pinkowski
A. Pinkowski
Dr. Alexander Pinkowski
Dr. Alexander Pinkowski
DOI

Abstract

Blood exhibits a non-Newtonian rheology, i.e., its shear-rate to shear-stress relationship is non-linear, i.e., one has to apply a threshold force, the so-called yield-stress before it moves at all. This particularity is due to the composition of blood and the particular qualities of its components (Boron et al., 2005). For our purpose we will consider that blood consists mainly of plasma with near-Newtonian flow properties and red blood cells (RBC) thus leading to a two-phase flow behavior where the plasma acts as the carrier phase and the RBC as suspended therein liquid-drop-like carried phase (Pinkowski, Lilienblum, 2015). At low shear rates (low velocity gradients) RBC tend to form rouleaux structures and these primary, randomly scattered rouleaux tend also to group together to form secondary rouleaux structures (Kulicke, 1986). Fibrinogen adhered to the vessel wall forms together with these secondary rouleaux fibrinogen filaments leading to increased viscosity at low shear rates. These fibrinogen filaments can be considered as precursors of blood clots. The key component in hemostasis is an elongated glycoprotein in the plasma that through activation by thrombin self-assembles into a first fibrin clot (Brown, J.H. et al. 2000).

A Hydrodynamics Based Proposal to Substitute Heparin by Drag Reducing Polymers

Blood exhibits a non-Newtonian rheology, i.e., its shear-rate to shear-stress relationship is non-linear, i.e., one has to apply a threshold force, the so-called yield-stress before it moves at all. This particularity is due to the composition of blood and the particular qualities of its components (Boron et al., 2005). For our purpose we will consider that blood consists mainly of plasma with near-Newtonian flow properties and red blood cells (RBC) thus leading to a two-phase flow behavior where the plasma acts as the carrier phase and the RBC as suspended therein liquid-drop-like carried phase (Pinkowski, Lilienblum, 2015). At low shear rates (low velocity gradients) RBC tend to form rouleaux structures and these primary, randomly scattered rouleaux tend also to group together to form secondary rouleaux structures (Kulicke, 1986). Fibrinogen adhered to the vessel wall forms together with these secondary rouleaux fibrinogen filaments leading to increased viscosity at low shear rates. These fibrinogen filaments can be considered as precursors of blood clots. The key component in hemostasis is an elongated glycoprotein in the plasma that through activation by thrombin self-assembles into a first fibrin clot (Brown, J.H. et al. 2000).

W. Lilienblum
W. Lilienblum
A. Pinkowski
A. Pinkowski
Dr. Alexander Pinkowski
Dr. Alexander Pinkowski

No Figures found in article.

Dr. Alexander Pinkowski. 2017. “. Global Journal of Medical Research – K: Interdisciplinary GJMR-K Volume 17 (GJMR Volume 17 Issue K2): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjmra

Print ISSN 0975-5888

e-ISSN 2249-4618

Classification
GJMR-K Classification: NLMC Code: QV 193
Keywords
Article Matrices
Total Views: 3410
Total Downloads: 1616
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

A Hydrodynamics Based Proposal to Substitute Heparin by Drag Reducing Polymers

W. Lilienblum
W. Lilienblum
A. Pinkowski
A. Pinkowski
Dr. Alexander Pinkowski
Dr. Alexander Pinkowski

Research Journals