A Classification of Quantum Particles

Article ID

SFR9H4QM

A Classification of Quantum Particles

Vu B Ho
Vu B Ho
DOI

Abstract

In this work, by summarising our recent works on the differential geometric and topological structures of quantum particles and spacetime manifolds, we discuss the possibility to classify quantum particles according to their intrinsic geometric structures associated with differentiable manifolds that are solutions to wave equations of two and three dimensions. We show that fermions of half-integer spin can be identified with differentiable manifolds which are solutions to a general two-dimensional wave equation, in particular, a twodimensional wave equation that can be derived from Dirac equation. On the other hand, bosons of integer spin can be identified with differentiable manifolds which are solutions to a general three-dimensional wave equation, in particular, a three-dimensional wave equation that can be derived from Maxwell field equations of electromagnetism. We also discuss the possibility that being restricted to three-dimensional spatial dimensions we may not be able to observe the whole geometric structure of a quantum particle but rather only the cross-section of the manifold that represents the quantum particle and the space in which we are confined. Even though not in the same context, such view of physical existence may comply with the Copenhagen interpretation of quantum mechanics which states that the properties of a physical system are not definite but can only be determined by observations.

A Classification of Quantum Particles

In this work, by summarising our recent works on the differential geometric and topological structures of quantum particles and spacetime manifolds, we discuss the possibility to classify quantum particles according to their intrinsic geometric structures associated with differentiable manifolds that are solutions to wave equations of two and three dimensions. We show that fermions of half-integer spin can be identified with differentiable manifolds which are solutions to a general two-dimensional wave equation, in particular, a twodimensional wave equation that can be derived from Dirac equation. On the other hand, bosons of integer spin can be identified with differentiable manifolds which are solutions to a general three-dimensional wave equation, in particular, a three-dimensional wave equation that can be derived from Maxwell field equations of electromagnetism. We also discuss the possibility that being restricted to three-dimensional spatial dimensions we may not be able to observe the whole geometric structure of a quantum particle but rather only the cross-section of the manifold that represents the quantum particle and the space in which we are confined. Even though not in the same context, such view of physical existence may comply with the Copenhagen interpretation of quantum mechanics which states that the properties of a physical system are not definite but can only be determined by observations.

Vu B Ho
Vu B Ho

No Figures found in article.

Vu B Ho. 2018. “. Global Journal of Science Frontier Research – A: Physics & Space Science GJSFR-A Volume 18 (GJSFR Volume 18 Issue A9): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/GJSFR

Print ISSN 0975-5896

e-ISSN 2249-4626

Issue Cover
GJSFR Volume 18 Issue A9
Pg. 37- 58
Classification
GJSFR-A Classification: FOR Code: 020699
Keywords
Article Matrices
Total Views: 2832
Total Downloads: 1494
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

A Classification of Quantum Particles

Vu B Ho
Vu B Ho

Research Journals