A Cost Sensitive Machine Learning Approach for Intrusion Detection

Article ID

CSTSDE59329

A Cost Sensitive Machine Learning Approach for Intrusion Detection

Adamu Teshome
Adamu Teshome Bahir Dar University
Dr.Vuda Sreenivasa Rao
Dr.Vuda Sreenivasa Rao
DOI

Abstract

The problems with the current researches on intrusion detection using data mining approach are that they try to minimize the error rate (make the classification decision to minimize the probability of error) by totally ignoring the cost that could be incurred. However, for many problem domains, the requirement is not merely to predict the most probable class label, since different types of errors carry different costs. Instances of such problems include authentication, where the cost of allowing unauthorized access can be much greater than that of wrongly denying access to authorized individuals, and intrusion detection, where raising false alarms has a substantially lower cost than allowing an undetected intrusion. In such cases, it is preferable to make the classification decision that has minimum cost, rather than that with the lowest error rate.For this reason, we examine how cost-sensitive machine learning methods can be used in Intrusion Detection systems. The performance of the approach is evaluated under different experimental conditions and different models in comparison with the KDD Cup 99 winner resultsin terms of average misclassification cost, as well as detection accuracy and false positive ratesthough the winner used original KDD dataset whereas for this research NSL-KDD dataset which is new version of the original KDD cup data and it is better than the original dataset in that it has no redundant data is used. For comparison of results of CS-MC4, CS-CRT and KDD winner result, it was found that CS-MC4 is superior to CS-CRT in terms of accuracy, false positives rate and average misclassification costs. CS-CRT is superior to KDD winner result in accuracy and average misclassification costs but in false positives rate KDD winner result is better than both CS-MC4 and CS-CRT classifiers.

A Cost Sensitive Machine Learning Approach for Intrusion Detection

The problems with the current researches on intrusion detection using data mining approach are that they try to minimize the error rate (make the classification decision to minimize the probability of error) by totally ignoring the cost that could be incurred. However, for many problem domains, the requirement is not merely to predict the most probable class label, since different types of errors carry different costs. Instances of such problems include authentication, where the cost of allowing unauthorized access can be much greater than that of wrongly denying access to authorized individuals, and intrusion detection, where raising false alarms has a substantially lower cost than allowing an undetected intrusion. In such cases, it is preferable to make the classification decision that has minimum cost, rather than that with the lowest error rate.For this reason, we examine how cost-sensitive machine learning methods can be used in Intrusion Detection systems. The performance of the approach is evaluated under different experimental conditions and different models in comparison with the KDD Cup 99 winner resultsin terms of average misclassification cost, as well as detection accuracy and false positive ratesthough the winner used original KDD dataset whereas for this research NSL-KDD dataset which is new version of the original KDD cup data and it is better than the original dataset in that it has no redundant data is used. For comparison of results of CS-MC4, CS-CRT and KDD winner result, it was found that CS-MC4 is superior to CS-CRT in terms of accuracy, false positives rate and average misclassification costs. CS-CRT is superior to KDD winner result in accuracy and average misclassification costs but in false positives rate KDD winner result is better than both CS-MC4 and CS-CRT classifiers.

Adamu Teshome
Adamu Teshome Bahir Dar University
Dr.Vuda Sreenivasa Rao
Dr.Vuda Sreenivasa Rao

No Figures found in article.

Adamu Teshome. 2014. “. Global Journal of Computer Science and Technology – C: Software & Data Engineering GJCST-C Volume 14 (GJCST Volume 14 Issue C6): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Classification
Not Found
Article Matrices
Total Views: 8452
Total Downloads: 2229
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

A Cost Sensitive Machine Learning Approach for Intrusion Detection

Adamu Teshome
Adamu Teshome Bahir Dar University
Dr.Vuda Sreenivasa Rao
Dr.Vuda Sreenivasa Rao

Research Journals