A Dimensionless Equation Linking the Maximum and Minimum Values for Mass (or Energy) and Time (or Length)

Article ID

S2687

An academic article on the connection between equations and their maximum and minimum values over time.

A Dimensionless Equation Linking the Maximum and Minimum Values for Mass (or Energy) and Time (or Length)

Andre P. Steynberg
Andre P. Steynberg
DOI

Abstract

The James Webb telescope can detect photons in the infrared wavelength from cosmic events with a known intensity and emission frequency. The redshift data from such measurements for photons from the early universe can be used to determine the dimensions of a finite spacetime manifold. Such measurements would differ from predictions using the assumption that space and time are infinite. If these measurements confirm that the spacetime manifold is finite, then there exists a dimensionless ratio between the maximum and minimum dimensions for space and time. Furthermore, the Schwarzschild equation can be used to calculate the total mass of the Universe to determine a dimensionless ratio for the maximum and minimum mass values. The resulting equation derivation is a tribute to the work of Albert Einstein, Alexander Friedmann, Karl Schwarzschild, and Max Planck. The derived dimensionless relationship is Mu/mP = tm/𝜋𝜋tP = ℓm/𝜋𝜋ℓP

A Dimensionless Equation Linking the Maximum and Minimum Values for Mass (or Energy) and Time (or Length)

The James Webb telescope can detect photons in the infrared wavelength from cosmic events with a known intensity and emission frequency. The redshift data from such measurements for photons from the early universe can be used to determine the dimensions of a finite spacetime manifold. Such measurements would differ from predictions using the assumption that space and time are infinite. If these measurements confirm that the spacetime manifold is finite, then there exists a dimensionless ratio between the maximum and minimum dimensions for space and time. Furthermore, the Schwarzschild equation can be used to calculate the total mass of the Universe to determine a dimensionless ratio for the maximum and minimum mass values. The resulting equation derivation is a tribute to the work of Albert Einstein, Alexander Friedmann, Karl Schwarzschild, and Max Planck. The derived dimensionless relationship is Mu/mP = tm/𝜋𝜋tP = ℓm/𝜋𝜋ℓP

Andre P. Steynberg
Andre P. Steynberg

No Figures found in article.

Andre P. Steynberg. 2026. “. Global Journal of Science Frontier Research – F: Mathematics & Decision GJSFR-F Volume 22 (GJSFR Volume 22 Issue F3): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/GJSFR

Print ISSN 0975-5896

e-ISSN 2249-4626

Classification
GJSFR-F Classification: DDC Code: 621.3692 LCC Code: QC448, DDC Code: 221.8529 LCC Code: BS1199.T5
Keywords
Article Matrices
Total Views: 1406
Total Downloads: 18
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

A Dimensionless Equation Linking the Maximum and Minimum Values for Mass (or Energy) and Time (or Length)

Andre P. Steynberg
Andre P. Steynberg

Research Journals