A Proposed Method to Identify the Occurrence of Diabetes in Human Body using Machine Learning Technique

Article ID

T30E3

An image showing a research journal on diabetes detection using machine learning techniques.

A Proposed Method to Identify the Occurrence of Diabetes in Human Body using Machine Learning Technique

Tanvir Rahman
Tanvir Rahman
DOI

Abstract

Advanced machine-learning techniques are often used for reasoning-based diagnosis and advanced prediction system within the healthcare industry. The methods and algorithms are based on the historical clinical data and factbased Medicare evaluation. Diabetes is a global problem. Each year people are developing diabetes and due to diabetes, a lot of people are going for organ amputation. According to the World Health Organization (WHO), there is a sharp rise in number of people developing diabetes. In 1980, it was estimated that 180 million people with diabetes worldwide. This number has risen from 108 million to 422 million in 2014. WHO also reported that 1.6 million deaths in 2016 due to diabetes. Diabetes occurs due to insufficient production of insulin from pancreas. Several research show that unhealthy diet, smoking, less exercise, Body Mass Index (BMI) are the primary cause of diabetes. This paper shows the use of machine learning that can identify a patient of being diabetic or non-diabetic based on previous clinical data. In this article, a method is shown to analyze and compare the relationship between different clinical parameters such as age, BMI, Diet-chart, systolic Blood Pressure etc. After evaluating all the factors this research work successfully combined all the related factors in a single mathematical equation which is very effective to analyze the risk percentage and risk evaluation based on given input parameters by the participants or users.

A Proposed Method to Identify the Occurrence of Diabetes in Human Body using Machine Learning Technique

Advanced machine-learning techniques are often used for reasoning-based diagnosis and advanced prediction system within the healthcare industry. The methods and algorithms are based on the historical clinical data and factbased Medicare evaluation. Diabetes is a global problem. Each year people are developing diabetes and due to diabetes, a lot of people are going for organ amputation. According to the World Health Organization (WHO), there is a sharp rise in number of people developing diabetes. In 1980, it was estimated that 180 million people with diabetes worldwide. This number has risen from 108 million to 422 million in 2014. WHO also reported that 1.6 million deaths in 2016 due to diabetes. Diabetes occurs due to insufficient production of insulin from pancreas. Several research show that unhealthy diet, smoking, less exercise, Body Mass Index (BMI) are the primary cause of diabetes. This paper shows the use of machine learning that can identify a patient of being diabetic or non-diabetic based on previous clinical data. In this article, a method is shown to analyze and compare the relationship between different clinical parameters such as age, BMI, Diet-chart, systolic Blood Pressure etc. After evaluating all the factors this research work successfully combined all the related factors in a single mathematical equation which is very effective to analyze the risk percentage and risk evaluation based on given input parameters by the participants or users.

Tanvir Rahman
Tanvir Rahman

No Figures found in article.

tanvir_rahman. 2021. “. Global Journal of Computer Science and Technology – G: Interdisciplinary GJCST-G Volume 21 (GJCST Volume 21 Issue G3): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Issue Cover
GJCST Volume 21 Issue G3
Pg. 19- 46
Classification
GJCST-G Classification: H.1.2
Keywords
Article Matrices
Total Views: 3359
Total Downloads: 957
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

A Proposed Method to Identify the Occurrence of Diabetes in Human Body using Machine Learning Technique

Tanvir Rahman
Tanvir Rahman

Research Journals