A Unique Method for Detecting and Characterizing Low Probability of Intercept Frequency Hopping Radar Signals by means of the Wigner-Ville Distribution and the Reassigned Smoothed Pseudo Wigner-Ville Distribution

Article ID

JQOC6

Radar signal detection method for engineering research studies.

A Unique Method for Detecting and Characterizing Low Probability of Intercept Frequency Hopping Radar Signals by means of the Wigner-Ville Distribution and the Reassigned Smoothed Pseudo Wigner-Ville Distribution

Daniel L. Stevens
Daniel L. Stevens
DOI

Abstract

Low probability of intercept radar signals, which are may times difficult to detect and characterize, have as their goal ‘to see but not be seen’. Digital intercept receivers are currently moving away from Fourier-based techniques and toward classical time-frequency techniques for analyzing low probability of intercept radar signals. This paper brings forth the unique approach of both detecting and characterizing low probability of intercept frequency hopping radar signals by employing and comparing the Wigner-Ville Distribution and the Reassigned Smoothed Pseudo Wigner-Ville Distribution. Four-component frequency hopping low probability of intercept radar signals were analyzed. The following metrics were used for evaluation: percent error of: carrier frequency, modulation bandwidth, modulation period, and time-frequency localization. Also used were: percent detection, lowest signal-to-noise ratio for signal detection, and relative processing time. Experimental results demonstrate that overall, the Reassigned Smoothed Pseudo Wigner-Ville Distribution produced more accurate characterization metrics than the Wigner-Ville Distribution. An improvement in performance could potentially translate into saved equipment and lives.

A Unique Method for Detecting and Characterizing Low Probability of Intercept Frequency Hopping Radar Signals by means of the Wigner-Ville Distribution and the Reassigned Smoothed Pseudo Wigner-Ville Distribution

Low probability of intercept radar signals, which are may times difficult to detect and characterize, have as their goal ‘to see but not be seen’. Digital intercept receivers are currently moving away from Fourier-based techniques and toward classical time-frequency techniques for analyzing low probability of intercept radar signals. This paper brings forth the unique approach of both detecting and characterizing low probability of intercept frequency hopping radar signals by employing and comparing the Wigner-Ville Distribution and the Reassigned Smoothed Pseudo Wigner-Ville Distribution. Four-component frequency hopping low probability of intercept radar signals were analyzed. The following metrics were used for evaluation: percent error of: carrier frequency, modulation bandwidth, modulation period, and time-frequency localization. Also used were: percent detection, lowest signal-to-noise ratio for signal detection, and relative processing time. Experimental results demonstrate that overall, the Reassigned Smoothed Pseudo Wigner-Ville Distribution produced more accurate characterization metrics than the Wigner-Ville Distribution. An improvement in performance could potentially translate into saved equipment and lives.

Daniel L. Stevens
Daniel L. Stevens

No Figures found in article.

Daniel L. Stevens. 2026. “. Global Journal of Research in Engineering – F: Electrical & Electronic GJRE-F Volume 22 (GJRE Volume 22 Issue F3): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjre

Print ISSN 0975-5861

e-ISSN 2249-4596

Classification
GJRE-F Classification: DDC Code: 621.3848 LCC Code: TK6592.S95
Keywords
Article Matrices
Total Views: 1620
Total Downloads: 28
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

A Unique Method for Detecting and Characterizing Low Probability of Intercept Frequency Hopping Radar Signals by means of the Wigner-Ville Distribution and the Reassigned Smoothed Pseudo Wigner-Ville Distribution

Daniel L. Stevens
Daniel L. Stevens

Research Journals