Acoustic Features Based Accent Classification of Kashmiri Language using Deep Learning

Article ID

2NNHZ

Accurate speech accent recognition for Kashmiri language using deep learning techniques.

Acoustic Features Based Accent Classification of Kashmiri Language using Deep Learning

Shehzen Sidiq Malla
Shehzen Sidiq Malla
DOI

Abstract

Automatic identification of accents is important in today’s world, where we are souranded by ASR systems. Accent classification is the problem of knowing the native place of a person from the way He/She speaks the language into consideration. Accents are present in almost all the languages and it forms an important part of the language. Accents are produced from prosodic and articulation characteristics; in this research the aim is to classify accents of Kashmir Language. We have considered using the MFCC and Mel spectrograms for our research. A lot of research has been done for languages like English and is being done in this field and many models of machine learning and deep learning have shown state of the art results, but this problem is new for Kashmiri Language. The accents in Kashmir, vary from area to area and we have chosen 6 areas as our classes. We extracted the features from the audio data, converted those features into Images and then used the CNN architectures as our model. This research can be taken as base research for further researches in this language. Our custom models achieved the loss of 0.12 and accuracy of 98.66% on test data using Mel spectrograms, which is our best for our features.

Acoustic Features Based Accent Classification of Kashmiri Language using Deep Learning

Automatic identification of accents is important in today’s world, where we are souranded by ASR systems. Accent classification is the problem of knowing the native place of a person from the way He/She speaks the language into consideration. Accents are present in almost all the languages and it forms an important part of the language. Accents are produced from prosodic and articulation characteristics; in this research the aim is to classify accents of Kashmir Language. We have considered using the MFCC and Mel spectrograms for our research. A lot of research has been done for languages like English and is being done in this field and many models of machine learning and deep learning have shown state of the art results, but this problem is new for Kashmiri Language. The accents in Kashmir, vary from area to area and we have chosen 6 areas as our classes. We extracted the features from the audio data, converted those features into Images and then used the CNN architectures as our model. This research can be taken as base research for further researches in this language. Our custom models achieved the loss of 0.12 and accuracy of 98.66% on test data using Mel spectrograms, which is our best for our features.

Shehzen Sidiq Malla
Shehzen Sidiq Malla

No Figures found in article.

Shehzen Sidiq Malla. 2026. “. Global Journal of Computer Science and Technology – D: Neural & AI GJCST-D Volume 22 (GJCST Volume 22 Issue D1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Issue Cover
GJCST Volume 22 Issue D1
Pg. 39- 43
Classification
GJCST-D Classification: I.2.7
Keywords
Article Matrices
Total Views: 3136
Total Downloads: 27
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Acoustic Features Based Accent Classification of Kashmiri Language using Deep Learning

Shehzen Sidiq Malla
Shehzen Sidiq Malla

Research Journals