Assessment of Storage Related Haematological and Biochemical Changes in Blood Units

Article ID

3F60V

Assessment of Storage Related Haematological and Biochemical Changes in Blood Units

Dr. Sirat Kaur
Dr. Sirat Kaur
DOI

Abstract

Red blood cells are still the most widely transfused blood component worldwide and their story is intimately entwined with the history of transfusion medicine and the changes in the collection and storage of blood.1,2 At present, the most widely used protocol for the storage of red blood cells (for up to 42 days) is the collection of blood into anticoagulant solutions (typically citrate-dextrose-phosphate); red cell concentrates are prepared by the removal of plasma and, in some cases, also leukoreduction. The product is stored at 4 ± 2° C in a slightly hypertonic additive solution, generally SAGM (sodium, adenine, glucose, mannitol, 376 mOsm/L).1 The British obstetrician, Braxton Hicks in 1868, experimented with a solution of phosphate of soda, but this also proved toxic. Richard Lewinsohn, in 1915, of the Mount Sinai Hospital in New York is credited with introducing sodium citrate into clinical practice as an anticoagulant.3 In fact, a 1% solution of sodium citrate was already widely used in laboratories as an anticoagulant. This high concentration was toxic to humans but, as Lewinsohn himself recalled, `Nobody had ever followed the simple thought of carrying out experiments to ascertain whether a much smaller dose might not be sufficient’ for use as an anticoagulant.

Assessment of Storage Related Haematological and Biochemical Changes in Blood Units

Red blood cells are still the most widely transfused blood component worldwide and their story is intimately entwined with the history of transfusion medicine and the changes in the collection and storage of blood.1,2 At present, the most widely used protocol for the storage of red blood cells (for up to 42 days) is the collection of blood into anticoagulant solutions (typically citrate-dextrose-phosphate); red cell concentrates are prepared by the removal of plasma and, in some cases, also leukoreduction. The product is stored at 4 ± 2° C in a slightly hypertonic additive solution, generally SAGM (sodium, adenine, glucose, mannitol, 376 mOsm/L).1 The British obstetrician, Braxton Hicks in 1868, experimented with a solution of phosphate of soda, but this also proved toxic. Richard Lewinsohn, in 1915, of the Mount Sinai Hospital in New York is credited with introducing sodium citrate into clinical practice as an anticoagulant.3 In fact, a 1% solution of sodium citrate was already widely used in laboratories as an anticoagulant. This high concentration was toxic to humans but, as Lewinsohn himself recalled, `Nobody had ever followed the simple thought of carrying out experiments to ascertain whether a much smaller dose might not be sufficient’ for use as an anticoagulant.

Dr. Sirat Kaur
Dr. Sirat Kaur

No Figures found in article.

Dr. Sirat Kaur. 2021. “. Global Journal of Medical Research – K: Interdisciplinary GJMR-K Volume 21 (GJMR Volume 21 Issue K3): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjmra

Print ISSN 0975-5888

e-ISSN 2249-4618

Classification
GJMR-K Classification: NLMC Code: QV 180
Keywords
Article Matrices
Total Views: 1943
Total Downloads: 941
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Assessment of Storage Related Haematological and Biochemical Changes in Blood Units

Dr. Sirat Kaur
Dr. Sirat Kaur

Research Journals