Effects of Simulation Parameters on Residual Stresses in 3D Finite Element Laser Shock Peening Analysis

Article ID

Q0T32

Effects of Simulation Parameters on Residual Stresses in 3D Finite Element Laser Shock Peening Analysis

Ju Hee Kim
Ju Hee Kim Dept. of Mechnical Engineering/Korea Military Academy
Jong Woo Lee
Jong Woo Lee
DOI

Abstract

Laser shock peening(LSP) is an innovative surface treatment technique, which is successfully applied to improve fatigue performance of metallic components. After the treatment, the fatigue strength and fatigue life of a metallic material can be increased remarkably owing to the presence of compressive residual stresses in the material. Recently, the incidences of cracking in Alloy 600 small-caliber penetration nozzles (CRDM (control rod drive mechanism) and BMI(bottom mounted instrument)) have increased significantly. The cracking mechanism has been attributed to primary water stress corrosion cracking (PWSCC) and has been shown to be driven by welding residual stresses and operational stresses in the weld region. For this reason, to mitigating weld residual stress, preventive maintenance of BMI nozzles was considered application of laser shock peening process. Effects of parameters related to finite element simulation of laser shock peening process to determine residual stresses are discussed, in particular parameters associated with the LSP process, such as the maximum pressure, pressure pulse duration, laser spot size and number of shots. It is found that certain ranges of the maximum pressure and pulse duration can produce maximum compressive residual stresses near the surface, and thus proper choices of these parameters are important. For the laser spot size, residual stresses are not affected, provided it is larger than a certain size. Magnitudes of compressive residual stresses are found to increase with increasing number of shots, but the effect is less pronounced for more shots.

Effects of Simulation Parameters on Residual Stresses in 3D Finite Element Laser Shock Peening Analysis

Laser shock peening(LSP) is an innovative surface treatment technique, which is successfully applied to improve fatigue performance of metallic components. After the treatment, the fatigue strength and fatigue life of a metallic material can be increased remarkably owing to the presence of compressive residual stresses in the material. Recently, the incidences of cracking in Alloy 600 small-caliber penetration nozzles (CRDM (control rod drive mechanism) and BMI(bottom mounted instrument)) have increased significantly. The cracking mechanism has been attributed to primary water stress corrosion cracking (PWSCC) and has been shown to be driven by welding residual stresses and operational stresses in the weld region. For this reason, to mitigating weld residual stress, preventive maintenance of BMI nozzles was considered application of laser shock peening process. Effects of parameters related to finite element simulation of laser shock peening process to determine residual stresses are discussed, in particular parameters associated with the LSP process, such as the maximum pressure, pressure pulse duration, laser spot size and number of shots. It is found that certain ranges of the maximum pressure and pulse duration can produce maximum compressive residual stresses near the surface, and thus proper choices of these parameters are important. For the laser spot size, residual stresses are not affected, provided it is larger than a certain size. Magnitudes of compressive residual stresses are found to increase with increasing number of shots, but the effect is less pronounced for more shots.

Ju Hee Kim
Ju Hee Kim Dept. of Mechnical Engineering/Korea Military Academy
Jong Woo Lee
Jong Woo Lee

No Figures found in article.

Ju Hee Kim. 2013. “. Global Journal of Research in Engineering – A : Mechanical & Mechanics GJRE-A Volume 13 (GJRE Volume 13 Issue A9): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjre

Print ISSN 0975-5861

e-ISSN 2249-4596

Classification
Not Found
Article Matrices
Total Views: 4658
Total Downloads: 2294
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Effects of Simulation Parameters on Residual Stresses in 3D Finite Element Laser Shock Peening Analysis

Ju Hee Kim
Ju Hee Kim Dept. of Mechnical Engineering/Korea Military Academy
Jong Woo Lee
Jong Woo Lee

Research Journals