Efficient Vehicle Counting and Classification using Robust Multi-Cue Consecutive Frame Subtraction

Article ID

CSTGV13YTN

Efficient Vehicle Counting and Classification using Robust Multi-Cue Consecutive Frame Subtraction

Manaswini Chadalavada
Manaswini Chadalavada
DOI

Abstract

The ability to count and classify vehicles provides valuable information to road network managers, highways agencies and traffic operators alike, enabling them to manage traffic and to plan future development of the network. Increased computational speed of processors has enabled application of vision technology in several fields such as: Industrial automation, Video security, transportation and automotive. The proposed method in this paper is a robust adaptive multi-cue frame subtraction method that detects foreground pixels corresponding to moving and stopped vehicles, even with noisy images due to compression. First the approach adaptively thresholds a combination of luminance and chromaticity disparity maps between the learned background and the current frame. The segmentation is further used by a two-step tracking approach, which combines the simplicity of a linear 2-D Kalman filter and the complexity of 3-D volume estimation using Markov chain Monte Carlo (MCMC) methods. The experimental results shows that the proposed method can count and classify vehicles in real time with a high level of performance under challenging situations, such as with moving casted shadows on sunny days, headlight reflections on the road using only a single standard camera.

Efficient Vehicle Counting and Classification using Robust Multi-Cue Consecutive Frame Subtraction

The ability to count and classify vehicles provides valuable information to road network managers, highways agencies and traffic operators alike, enabling them to manage traffic and to plan future development of the network. Increased computational speed of processors has enabled application of vision technology in several fields such as: Industrial automation, Video security, transportation and automotive. The proposed method in this paper is a robust adaptive multi-cue frame subtraction method that detects foreground pixels corresponding to moving and stopped vehicles, even with noisy images due to compression. First the approach adaptively thresholds a combination of luminance and chromaticity disparity maps between the learned background and the current frame. The segmentation is further used by a two-step tracking approach, which combines the simplicity of a linear 2-D Kalman filter and the complexity of 3-D volume estimation using Markov chain Monte Carlo (MCMC) methods. The experimental results shows that the proposed method can count and classify vehicles in real time with a high level of performance under challenging situations, such as with moving casted shadows on sunny days, headlight reflections on the road using only a single standard camera.

Manaswini Chadalavada
Manaswini Chadalavada

No Figures found in article.

Manaswini Chadalavada. 2013. “. Global Journal of Computer Science and Technology – F: Graphics & Vision GJCST-F Volume 13 (GJCST Volume 13 Issue F8): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Classification
Not Found
Article Matrices
Total Views: 9178
Total Downloads: 2393
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Efficient Vehicle Counting and Classification using Robust Multi-Cue Consecutive Frame Subtraction

Manaswini Chadalavada
Manaswini Chadalavada

Research Journals