Performance Analysis of Quickreduct, Quick Relative Reduct Algorithm and a New Proposed Algorithm

Article ID

CSTSDE553BW

Performance Analysis of Quickreduct, Quick Relative Reduct Algorithm and a New Proposed Algorithm

Ashima Gawar
Ashima Gawar GGSIPU
Prerna Mahajan
Prerna Mahajan
DOI

Abstract

Feature Selection is a process of selecting a subset of relevant features from a huge dataset that satisfy method dependent criteria and thus minimize the cardinality and ensure that the accuracy and precision is not affected ,hence approximating the original class distribution of data from a given set of selected features. Feature selection and feature extraction are the two problems that we face when we want to select the best and important attributes from a given dataset Feature selection is a step in data mining that is done prior to other steps and is found to be very useful and effective in removing unimportant attributes so that the storage efficiency and accuracy of the dataset can be increased. From a huge pool of data available we want to extract useful and relevant information. The problem is not the unavailability of data, it is the quality of data that we lack in. We have Rough Sets Theory which is very useful in extracting relevant attributes and help to increase the importance of the information system we have. Rough set theory works on the principle of classifying similar objects into classes with respect to some features and those features may collectively and shortly be termed as reducts.

Performance Analysis of Quickreduct, Quick Relative Reduct Algorithm and a New Proposed Algorithm

Feature Selection is a process of selecting a subset of relevant features from a huge dataset that satisfy method dependent criteria and thus minimize the cardinality and ensure that the accuracy and precision is not affected ,hence approximating the original class distribution of data from a given set of selected features. Feature selection and feature extraction are the two problems that we face when we want to select the best and important attributes from a given dataset Feature selection is a step in data mining that is done prior to other steps and is found to be very useful and effective in removing unimportant attributes so that the storage efficiency and accuracy of the dataset can be increased. From a huge pool of data available we want to extract useful and relevant information. The problem is not the unavailability of data, it is the quality of data that we lack in. We have Rough Sets Theory which is very useful in extracting relevant attributes and help to increase the importance of the information system we have. Rough set theory works on the principle of classifying similar objects into classes with respect to some features and those features may collectively and shortly be termed as reducts.

Ashima Gawar
Ashima Gawar GGSIPU
Prerna Mahajan
Prerna Mahajan

No Figures found in article.

Ashima Gawar. 2014. “. Global Journal of Computer Science and Technology – C: Software & Data Engineering GJCST-C Volume 14 (GJCST Volume 14 Issue C4): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Classification
Not Found
Article Matrices
Total Views: 8610
Total Downloads: 2389
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Performance Analysis of Quickreduct, Quick Relative Reduct Algorithm and a New Proposed Algorithm

Ashima Gawar
Ashima Gawar GGSIPU
Prerna Mahajan
Prerna Mahajan

Research Journals