Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

Article ID

SFR74887

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

Kingsley E. Abhulimen
Kingsley E. Abhulimen
DOI

Abstract

Modelling safety procedures of complex risk systems of multifunctional production systems such as floating production storage and offloading (FPSO) vessels is typically rigorous. Deterministic modelling and Learning algorithms are normally used to generate whole sets of hazard data based on data of intrinsic risk events and safety measures incorporated. The model developed use failure data systems obtained from operator of multifunctional production systems of FPSO to generate fuzzy class surrogates based on learning algorithms to rank safety index. Thus classifications of risk events in a fuzzy set of system is predicted used weighted like hood of failure of human, process, mechanical, electrical, operational, in composite risk system to set the safety thresholds. The model used a learning constraint function in probable risk outcomes to match retroactively weights index of actual scenarios in skewed hazard surrogates to specific risk and safety ratings criteria. The MTBR (Mean Time before Repair) to plan maintainability studies and safety programmes were simulated to an optimal repair range from almost 0.5 yrs for worst case; fuzzy class 1 with safety rating of 0.0 to almost 5 million years for best case when the fuzzy class 5 with safety index rating of 1.0 assume availability is 80%.

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

Modelling safety procedures of complex risk systems of multifunctional production systems such as floating production storage and offloading (FPSO) vessels is typically rigorous. Deterministic modelling and Learning algorithms are normally used to generate whole sets of hazard data based on data of intrinsic risk events and safety measures incorporated. The model developed use failure data systems obtained from operator of multifunctional production systems of FPSO to generate fuzzy class surrogates based on learning algorithms to rank safety index. Thus classifications of risk events in a fuzzy set of system is predicted used weighted like hood of failure of human, process, mechanical, electrical, operational, in composite risk system to set the safety thresholds. The model used a learning constraint function in probable risk outcomes to match retroactively weights index of actual scenarios in skewed hazard surrogates to specific risk and safety ratings criteria. The MTBR (Mean Time before Repair) to plan maintainability studies and safety programmes were simulated to an optimal repair range from almost 0.5 yrs for worst case; fuzzy class 1 with safety rating of 0.0 to almost 5 million years for best case when the fuzzy class 5 with safety index rating of 1.0 assume availability is 80%.

Kingsley E. Abhulimen
Kingsley E. Abhulimen

No Figures found in article.

Kingsley E. Abhulimen. 2020. “. Global Journal of Science Frontier Research – A: Physics & Space Science GJSFR-A Volume 20 (GJSFR Volume 20 Issue A3): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/GJSFR

Print ISSN 0975-5896

e-ISSN 2249-4626

Issue Cover
GJSFR Volume 20 Issue A3
Pg. 39- 68
Classification
GJSFR-A Classification: FOR Code: 280401
Keywords
Article Matrices
Total Views: 2389
Total Downloads: 1179
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

Kingsley E. Abhulimen
Kingsley E. Abhulimen

Research Journals