Coupled Error Dynamic Formulation for Modal Control of a Two Link Manipulator Having Two Revolute Joints

Article ID

PN19M

Reliable control of two-link manipulators for advanced engineering applications.

Coupled Error Dynamic Formulation for Modal Control of a Two Link Manipulator Having Two Revolute Joints

Natraj Mishra
Natraj Mishra
DOI

Abstract

In the present work, reformulation of the dynamics of a planar two-link manipulator has been presented in the form of joint errors and their derivatives. The linear second-order differential equations with time-varying coefficients represent the Coupled Error Dynamics of the system. In these equations, the non-linear centrifugal and Coriolis terms are expressed as linear functions of joint error rates and the non-linear gravity terms as a linear function of joint errors with time-varying coefficients. After inclusion of linearized version of these terms, the concept of modal analysis is used in the design of a control system for the robot. The developed control approach is compared with the commonly used computed-torque control approach, as applied for a high-speed direct-drive two-link manipulator with revolute joints. Thus in the proposed approach for controller design, the system non-linearities are taken as part of the system representation itself instead of disturbances as assumed in existing approaches.

Coupled Error Dynamic Formulation for Modal Control of a Two Link Manipulator Having Two Revolute Joints

In the present work, reformulation of the dynamics of a planar two-link manipulator has been presented in the form of joint errors and their derivatives. The linear second-order differential equations with time-varying coefficients represent the Coupled Error Dynamics of the system. In these equations, the non-linear centrifugal and Coriolis terms are expressed as linear functions of joint error rates and the non-linear gravity terms as a linear function of joint errors with time-varying coefficients. After inclusion of linearized version of these terms, the concept of modal analysis is used in the design of a control system for the robot. The developed control approach is compared with the commonly used computed-torque control approach, as applied for a high-speed direct-drive two-link manipulator with revolute joints. Thus in the proposed approach for controller design, the system non-linearities are taken as part of the system representation itself instead of disturbances as assumed in existing approaches.

Natraj Mishra
Natraj Mishra

No Figures found in article.

Natraj Mishra. 2026. “. Global Journal of Research in Engineering – G: Industrial Engineering GJRE-G Volume 22 (GJRE Volume 22 Issue G1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjre

Print ISSN 0975-5861

e-ISSN 2249-4596

Classification
GJRE-G Classification: DDC Code: 332.041 LCC Code: HB501
Keywords
Article Matrices
Total Views: 1736
Total Downloads: 25
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Coupled Error Dynamic Formulation for Modal Control of a Two Link Manipulator Having Two Revolute Joints

Natraj Mishra
Natraj Mishra

Research Journals