Dark Matter and Real-Particle Field Theory

Article ID

SFR1G8W0

Dense, mysterious dark matter and real-particle field theory in astrophysics research.

Dark Matter and Real-Particle Field Theory

Zhong-Cheng Liang
Zhong-Cheng Liang Nanjing University of Posts and Telecommunications
DOI

Abstract

Based on real-particle field theory, this research demonstrates that dark matter comprises elastic electrons with a full cosmic background. In the real-particle field theory, real particles are elastic particles with both mass and volume. Real particles have three independent motion modes and two symmetrical interactions. The evolution of the real-particle field follows a set of Poisson equations. The theory shows that the electric and magnetic potentials represent electronic interactions of mass attraction and motion repulsion. The electromagnetic and dark-matter fields are essentially elastic electron fields. The laws of mechanics, gravitation, and electromagnetism of classical physics can be inferred from the real-particle field theory. In the electron field, electronic clusters are photons with the energy proportional to vibration frequency. The mechanic features of photons can be characterized by their volume, mass, and elasticity. Furthermore, the radiation of electronic clusters follows Planck’s law, which indicates that dark matter has a uniform density and no photonic current in the cosmic background. It is shown that matter essentially comprises discrete particles, and the matter field is merely a statistical convolution effect of a large number of particles. Consequently, dark matter particles contribute to the structural formation of all matter in the universe.

Dark Matter and Real-Particle Field Theory

Based on real-particle field theory, this research demonstrates that dark matter comprises elastic electrons with a full cosmic background. In the real-particle field theory, real particles are elastic particles with both mass and volume. Real particles have three independent motion modes and two symmetrical interactions. The evolution of the real-particle field follows a set of Poisson equations. The theory shows that the electric and magnetic potentials represent electronic interactions of mass attraction and motion repulsion. The electromagnetic and dark-matter fields are essentially elastic electron fields. The laws of mechanics, gravitation, and electromagnetism of classical physics can be inferred from the real-particle field theory. In the electron field, electronic clusters are photons with the energy proportional to vibration frequency. The mechanic features of photons can be characterized by their volume, mass, and elasticity. Furthermore, the radiation of electronic clusters follows Planck’s law, which indicates that dark matter has a uniform density and no photonic current in the cosmic background. It is shown that matter essentially comprises discrete particles, and the matter field is merely a statistical convolution effect of a large number of particles. Consequently, dark matter particles contribute to the structural formation of all matter in the universe.

Zhong-Cheng Liang
Zhong-Cheng Liang Nanjing University of Posts and Telecommunications

No Figures found in article.

Zhong-Cheng Liang. 2022. “. Global Journal of Science Frontier Research – A: Physics & Space Science GJSFR-A Volume 21 (GJSFR Volume 21 Issue A6): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/GJSFR

Print ISSN 0975-5896

e-ISSN 2249-4626

Issue Cover
GJSFR Volume 21 Issue A6
Pg. 27- 39
Classification
GJSFR-A Classification: FOR Code: 020199
Keywords
Article Matrices
Total Views: 1706
Total Downloads: 830
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Dark Matter and Real-Particle Field Theory

Zhong-Cheng Liang
Zhong-Cheng Liang Nanjing University of Posts and Telecommunications

Research Journals