On Asteroid Engineering

Article ID

SFR36DL7

On Asteroid Engineering

Olaf Lechtenfeld
Olaf Lechtenfeld Leibniz University Hannover
DOI

Abstract

I pose the question of maximal Newtonian surface gravity on a homogeneous body of a given mass and volume but with variable shape. In other words, given an amount of malleable material of uniform density, how should one shape it in order for a microscopic creature on its surface to experience the largest possible weight? After evaluating the weight on an arbitrary cylinder, at the axis and at the equator and comparing it to that on a spherical ball, I solve the variational problem to obtain the shape which optimizes the surface gravity in some location. The boundary curve of the corresponding solid of revolution is given by (x2 + z2)3 − (4 z)2 = 0 or r(θ) = 2√cos θ, and the maximal weight (at x = z = 0) exceeds that on a solid sphere by a factor of 35√3 5, which is an increment of 2.6%. Finally, the values and the achievable maxima are computed for three other families of shapes.

On Asteroid Engineering

I pose the question of maximal Newtonian surface gravity on a homogeneous body of a given mass and volume but with variable shape. In other words, given an amount of malleable material of uniform density, how should one shape it in order for a microscopic creature on its surface to experience the largest possible weight? After evaluating the weight on an arbitrary cylinder, at the axis and at the equator and comparing it to that on a spherical ball, I solve the variational problem to obtain the shape which optimizes the surface gravity in some location. The boundary curve of the corresponding solid of revolution is given by (x2 + z2)3 − (4 z)2 = 0 or r(θ) = 2√cos θ, and the maximal weight (at x = z = 0) exceeds that on a solid sphere by a factor of 35√3 5, which is an increment of 2.6%. Finally, the values and the achievable maxima are computed for three other families of shapes.

Olaf Lechtenfeld
Olaf Lechtenfeld Leibniz University Hannover

No Figures found in article.

Olaf Lechtenfeld. 2016. “. Global Journal of Science Frontier Research – A: Physics & Space Science GJSFR-A Volume 16 (GJSFR Volume 16 Issue A2): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/GJSFR

Print ISSN 0975-5896

e-ISSN 2249-4626

Classification
GJSFR-A Classification: FOR Code: 020109
Keywords
Article Matrices
Total Views: 3859
Total Downloads: 1996
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

On Asteroid Engineering

Olaf Lechtenfeld
Olaf Lechtenfeld Leibniz University Hannover

Research Journals