Robust Algorithms for Formation Flying Reconfiguration

Article ID

FJB0R

Robust Algorithms for Formation Flying Reconfiguration

Dr. Gianmarco Radice
Dr. Gianmarco Radice University of Glasgow & National university of Defense Technology
Tao Yang
Tao Yang
Weihua Zhang
Weihua Zhang
DOI

Abstract

Over the last 20 years spacecraft formation flying has been the subject of numerous research activities due to the advantages offered when compared with large, complex, single purpose satellites. With the obvious advantages of increased functionality and enhanced reliability, come however, also substantial challenges in the maintenance and reconfiguration of the spacecraft formation. The present paper addresses these problems by proposing two approaches that can be mathematically validated thus making it attractive for safety critical applications such as proximity operations. The first approach hinges on the implementation of pursuit algorithms first studied by French scientist Pierre Bouguer in the 18th century. The proposed approach separates the control law into two distinct stages: planar movement control and orthogonal displacement suppression. The second approach relies on the use of motion camouflage which is a hunting technique widely used in the natural world that allows a predator to approach a prey while appearing to remain stationary. A number of different scenarios are presented and the two approaches implemented within them. Numerical results shows that both methods are robust to dynamical uncertainties and do ensure the correct reconfiguration manoeuvres.

Robust Algorithms for Formation Flying Reconfiguration

Over the last 20 years spacecraft formation flying has been the subject of numerous research activities due to the advantages offered when compared with large, complex, single purpose satellites. With the obvious advantages of increased functionality and enhanced reliability, come however, also substantial challenges in the maintenance and reconfiguration of the spacecraft formation. The present paper addresses these problems by proposing two approaches that can be mathematically validated thus making it attractive for safety critical applications such as proximity operations. The first approach hinges on the implementation of pursuit algorithms first studied by French scientist Pierre Bouguer in the 18th century. The proposed approach separates the control law into two distinct stages: planar movement control and orthogonal displacement suppression. The second approach relies on the use of motion camouflage which is a hunting technique widely used in the natural world that allows a predator to approach a prey while appearing to remain stationary. A number of different scenarios are presented and the two approaches implemented within them. Numerical results shows that both methods are robust to dynamical uncertainties and do ensure the correct reconfiguration manoeuvres.

Dr. Gianmarco Radice
Dr. Gianmarco Radice University of Glasgow & National university of Defense Technology
Tao Yang
Tao Yang
Weihua Zhang
Weihua Zhang

No Figures found in article.

Dr. Gianmarco Radice. 2012. “. Global Journal of Research in Engineering – D: Aerospace Science GJRE-D Volume 12 (GJRE Volume 12 Issue D1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjre

Print ISSN 0975-5861

e-ISSN 2249-4596

Classification
Not Found
Article Matrices
Total Views: 5545
Total Downloads: 2750
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Robust Algorithms for Formation Flying Reconfiguration

Dr. Gianmarco Radice
Dr. Gianmarco Radice University of Glasgow & National university of Defense Technology
Tao Yang
Tao Yang
Weihua Zhang
Weihua Zhang

Research Journals