Turing-Test Evaluation of a Mobile Haptic Virtual Reality Kissing Machine

Article ID

CSTNWSC13Y6

Innovative Turing-Test for Mobile Virtual Reality Kissing Devices.

Turing-Test Evaluation of a Mobile Haptic Virtual Reality Kissing Machine

Emma Yann Zhang
Emma Yann Zhang
Adrian David Cheok
Adrian David Cheok
DOI

Abstract

Various communication systems have been developed to integrate the haptic channel in digital communication. Future directions of such haptic technologies are moving towards realistic virtual reality applications and human-robot social interaction. With the digitisation of touch, robots equipped with touch sensors and actuators can communicate with humans on a more emotional and intimate level, such as sharing a hug or kiss just like humans do. This paper presents the design guideline, implementation and evaluations of a novel haptic kissing machine for smart phones – the Kissenger machine. The key novelties and contributions of the paper are: (i) A novel haptic kissing device for mobile phones, which uses dynamic perpendicular force stimulation to transmit realistic sensations of kissing in order to enhance intimacy and emotional connection of digital communication; (ii) Extensive evaluations of the Kissenger machine, including a lab experiment that compares mediated kissing with Kissenger to real kissing, a unique haptic Turing test that involves the first academic study of humanmachine kiss, and a field study of the effects of Kissenger on long distance relationships.

Turing-Test Evaluation of a Mobile Haptic Virtual Reality Kissing Machine

Various communication systems have been developed to integrate the haptic channel in digital communication. Future directions of such haptic technologies are moving towards realistic virtual reality applications and human-robot social interaction. With the digitisation of touch, robots equipped with touch sensors and actuators can communicate with humans on a more emotional and intimate level, such as sharing a hug or kiss just like humans do. This paper presents the design guideline, implementation and evaluations of a novel haptic kissing machine for smart phones – the Kissenger machine. The key novelties and contributions of the paper are: (i) A novel haptic kissing device for mobile phones, which uses dynamic perpendicular force stimulation to transmit realistic sensations of kissing in order to enhance intimacy and emotional connection of digital communication; (ii) Extensive evaluations of the Kissenger machine, including a lab experiment that compares mediated kissing with Kissenger to real kissing, a unique haptic Turing test that involves the first academic study of humanmachine kiss, and a field study of the effects of Kissenger on long distance relationships.

Emma Yann Zhang
Emma Yann Zhang
Adrian David Cheok
Adrian David Cheok

No Figures found in article.

Emma Yann Zhang. 2021. “. Global Journal of Computer Science and Technology – E: Network, Web & Security GJCST-E Volume 21 (GJCST Volume 21 Issue E1): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/gjcst

Print ISSN 0975-4350

e-ISSN 0975-4172

Classification
GJCST-E Classification: H.5.2
Keywords
Article Matrices
Total Views: 3662
Total Downloads: 915
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Turing-Test Evaluation of a Mobile Haptic Virtual Reality Kissing Machine

Emma Yann Zhang
Emma Yann Zhang
Adrian David Cheok
Adrian David Cheok

Research Journals