Unified Fractional Derivative Formulae for the Multivariable Aleph-Function

Article ID

8M71B

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function

FY. AY. Ant
FY. AY. Ant
DOI

Abstract

The object of this paper is to derive three unified fractional derivatives formulae for the Saigo-Maeda operators of fractional integration. The first formula deals with the product of a general class of multivariable polynomials and the multivariable Aleph-function. The second concerns the multivariable polynomials and two multivariable Aleph-functions with the help of the Leibniz rule for fractional derivatives. The last relation also implies the product of a class of multivariable polynomials and the multivariable Aleph-function but it is obtained by the application of the first formula twice and it implicates two independents variables instead of one. The polynomials and the functions have their arguments of the type are quite general nature. These formulae, besides being on very general character have been put in a compact form avoiding the occurrence of infinite series and thus making them put in applications. Our findings provide unifications and extensions of some (known and new) results. We shall give several corollaries and particular cases.

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function

The object of this paper is to derive three unified fractional derivatives formulae for the Saigo-Maeda operators of fractional integration. The first formula deals with the product of a general class of multivariable polynomials and the multivariable Aleph-function. The second concerns the multivariable polynomials and two multivariable Aleph-functions with the help of the Leibniz rule for fractional derivatives. The last relation also implies the product of a class of multivariable polynomials and the multivariable Aleph-function but it is obtained by the application of the first formula twice and it implicates two independents variables instead of one. The polynomials and the functions have their arguments of the type are quite general nature. These formulae, besides being on very general character have been put in a compact form avoiding the occurrence of infinite series and thus making them put in applications. Our findings provide unifications and extensions of some (known and new) results. We shall give several corollaries and particular cases.

FY. AY. Ant
FY. AY. Ant

No Figures found in article.

Frederic Ayant. 2018. “. Global Journal of Science Frontier Research – F: Mathematics & Decision GJSFR-F Volume 18 (GJSFR Volume 18 Issue F3): .

Download Citation

Journal Specifications

Crossref Journal DOI 10.17406/GJSFR

Print ISSN 0975-5896

e-ISSN 2249-4626

Issue Cover
GJSFR Volume 18 Issue F3
Pg. 37- 53
Classification
GJSFR-F Classification: MSC 2010: 33C60, 82C31
Keywords
Article Matrices
Total Views: 3148
Total Downloads: 1589
2026 Trends
Research Identity (RIN)
Related Research
Our website is actively being updated, and changes may occur frequently. Please clear your browser cache if needed. For feedback or error reporting, please email [email protected]

Request Access

Please fill out the form below to request access to this research paper. Your request will be reviewed by the editorial or author team.
X

Quote and Order Details

Contact Person

Invoice Address

Notes or Comments

This is the heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

High-quality academic research articles on global topics and journals.

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function

FY. AY. Ant
FY. AY. Ant

Research Journals