Encapsulation of Soft Computing Approaches within Itemset Mining – A Survey

Dr. Jyothi Pillai, O.P.Vyas

Volume 12 Issue 15

Global Journal of Computer Science and Technology

Data Mining discovers patterns and trends by extracting knowledge from large databases. Soft Computing techniques such as fuzzy logic, neural networks, genetic algorithms, rough sets, etc. aims to reveal the tolerance for imprecision and uncertainty for achieving tractability, robustness and low-cost solutions. Fuzzy Logic and Rough sets are suitable for handling different types of uncertainty. Neural networks provide good learning and generalization. Genetic algorithms provide efficient search algorithms for selecting a model, from mixed media data. Data mining refers to information extraction while soft computing is used for information processing. For effective knowledge discovery from large databases, both Soft Computing and Data Mining can be merged. Association rule mining (ARM) and Itemset mining focus on finding most frequent item sets and corresponding association rules, extracting rare itemsets including temporal and fuzzy concepts in discovered patterns. This survey paper explores the usage of soft computing approaches in itemset utility mining.