The spectral methods offer very high spatial resolution for a wide range of nonlinear wave equations, so, for the best computational efficiency, it should be desirable to use also high order methods in time but without very strict restrictions on the step size by reason of numerical stability. In this paper we study the exponential time differencing fourthorder Runge–Kutta (ETDRK4) method; this scheme was derived by Cox and Matthews in [S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, J. Comp. Phys. 176 (2002) 430–455] and was modified by Kassam and Trefethen in [A. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comp. 26 (2005) 1214–1233]. We compute its amplification factor and plot its stability region, which gives us an explanation of its good behavior for dissipative and dispersive problems. We apply this method to the Kuramoto-Sivashinsky Equation obtaining excellent results.