Design of 8-Bit Arithmetic Processor Unit based on Reversible Logic

A.Kamaraj, C.Kalyana Sundaram, J.Senthil Kumar

Volume 13 Issue 10

Global Journal of Research in Engineering

Reversible logic is emerging as an important research area in the recent years due to its ability to reduce the power dissipation, which is the main requirement in low power digital design. Energy dissipation is proportional to the number of bits lost during computation. The reversible circuits do not lose information and can generate unique outputs from specified inputs and vice versa. It has application in diverse fields such as low power CMOS design, optical information processing, cryptography, quantum computation and nanotechnology. This paper proposes a reversible design of an 8 -bit arithmetic processor. The architecture of the processor has been proposed, in which, each block is realized using reversible logic gates. The important blocks of the processor are control unit, arithmetic and logical unit and register file. Each module has been coded using Verilog then simulated using Modelsim and prototyped in Xilinx-Spartan 3E.